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Abstract: The fuel cost minimization problem on steady-state natiral gas pipeline networks system s addressed.
Fram the optimization perspective, this problem is modeled as a {non-convex) nonlincar propram (NLP), where we
consider two types of decision continuous varishles: mass flow rate through cach are and pressure value at cach
node. The proposed method consists of two phases. In phase 1, a set of feasible flows is found by a reduction
technigue, which makes use of a pre-processing procedure. Then, in phase 2, an optimal sct of pressures s found
(for Lhe given flow) by applying a non-sequential dynamic programming technique. This method avoids the many
numerical difficultics inherent to this very complex while treated with classical nonlinear progranuming technigues,
We work with several different types of topologies, many of thosc being cyclic structures. A computalional study

reveals the effectiveness of the praposed procedure when tested over a wide variety of problemn instances.

Kev-words, Operalions research, natural gas, pipeline networks, nonlinear programming, non-sequential dynamic

Programming.

1 Introduction

A natural gas lransmission network optimization
problem is addressed. 1t is a well-know fact, from the
praclical  perspective, the Iremendous economic
impact that even a marginal improvement in netwaork
operation can have. Hence, the problem of finding
out how Lo optimally operate the compressors driving
the gas in a pipeline network bocomes significantly
impartant,

Irom the oplimivalion perspective, this prohlem is
modeled as a (non-convex) nonlinear program [NLP),
where we consider two types of continuous decision
variables: mass flow mate through each arc und
pressure value al cach node,

The state of the art on research abowl this problem
revedls A few important facls, First, there are two
fimdamental types of network topologies: non-cyelic
and ¢yclic. The former is a type that has received most
of the allention during the past 30 vears. Several
selutions methodologies have been developed: most
of them based on dynamic programming (see [6] for a
survey}. [n contrasl, cyclic topologies are a lot harder
to solve. Work on this area is practically nonexistent.

In this work, we present an efficient procedure for
handling cyclic structures, The procedure consists of
two phascs. First a set of feasible tlows is fiumd by a
reduction technique and then an optimal set of
pressure values (for the pre-specified flow) is found
by applying a non-sequential dynamic programming
(NDP} algorithm, This is motivated by the work of
Carter [2]. The algorithm delivers global optimal
salutions (within a given domain discretization size).
This procedure avoids the many numerical ditficultics
inherent to this very complex problem when Lreated
with  classical nonlinear  programming  (NLP)
lechniques.  Preliminary computational  experience
ncluding both nen-cyclic and cyclic topologies is
presented. The resubts show the effectivencss of the
proposed procedurs.

The rest of the paper is organized as follows. In
Section 2, we introduce and describe the NLP model,
[n Section 3, woe present a sumimary of related work,
The deseription of the algorithn i3 presented in
Section 4, We conclude with the computational
evaluation both on non-cyclic and eyclic networks,
and conclusions in Scction 3 and 6, respectively.
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2 Mathematical Framework

1.1 Assumptions

In the present paper, we make the following modeling

assumptions,

* We assuine thal the problem is in sleady state. This
15, our madel will provide solution for systems that
have been operating for a relative large amount of
time. Transient analysis would require incroasing the
number of variables and the complexity of this
problem, and is a fact one of the higgest rescarch
challenges in this area.

¢ The network is balanced. This means that the sum of
all the net flows in each node of the networl is il
W wero, In other words, the total supply flow is
driven completely 1 the total demand flow wirhout
loss. Each arc in the network has a pre-specificd
divection.

* Lach paramcler s known (i.e., a deferministic model
is assurned),

2.2 The NLP Model

Parameters;

W Jet of all nodes in the network

Vi set of supply nodes (V, = V)

Vi Set of demand nodes {V, = V)

Ay Set of pipchine ares

A Set of compressor station arcs

Ar Set of all arcs in the network: A = Apii A,
Ly Are capacity of pipeline (1,j); (ij) & A,

Ryt TResistance of pipeline (i,j); (i) = Ay,
PEPY: Lower and upper node pressore limits; 5V
By Net mass flow rate at node 1) 12N

B0t iV, Bibific Yy, B=0 olherwise

Variables: wy Mass Now rate in arc gk k= A
gt Pressurcatnodeizic V

Farmudation:

Minimize Ty cae Hap (%, by p;) (1)

Subject 1o
Zipien %= Zyiipea) %= B eV (2)
?ii%i' Uli'i . {1,]} E &, (3]
P Ry = (gl Ay (4
P ps eV (5)
(x5 pi i) & Ly (e A (6

X =0 (7

The objective function (1) is the sum of the fuel
consumption at each compressor station in the
network, Constraints (2)-(3) are the typical neiwork
flow constrainls representing node mass balance and
arc capacity, respectively, where .o B = 0.
Constraint (4) represents the gas fuw dynamics in
each pipcline of the network assuming steady state.
Constraints (5) denote the pressure limits in each
node.  Constraint  (f) represents the non-convex
feasible operating domain for compressor station (1,1},
More details on the natwre of ps; and Dy can be
found in Wu et al. [10].

3 Literature Review

Dynamic Progearaming (DP) was invented by Richard
Bellman [1] in 1957. DP for network opiimization
was originally applied to gun-barrcl systems since the
late 1960s. It was one of the most useful technigues
due both to its quick computational behavior and its
insensitivity to non-linearity on sequential sysiems.

DP was first applied to gas pipeline optimization
by Wong and Larson [9] in 1968, They applied the
method to fuel cost minimization in a single, sLraiprhi-
line system, and used a recursive formulation,

The firsl attempr at optimiving a branching
structure in the pipeline industry using DF was by
Zimmer {I1] in 1975. A similar approach was
described by Lall and Percell [5] in 1990, who
allowed one diverging branch in their system.

In the late 1980s, hybrid DT  enumeration
anncaling  methods for optimizing more gencral
branched and looped networks were proposed,
Although these were very successful at optimizing
pipelines the hybrid nature of the methads sometimes
caused long min times or reduced accuracy in solving
the discretized problem.

In 1989, Gilmour, Luongo, and Schrocder 4
published a hierarchical approach that allowed both
loops and branches of arbitrary complexity, This was
a great advance in tenms of finally addressing the
issue of real-world pipeline configurations. The only
disadvantage was that their technique was no longer
pure DP. Basically, DP was uscd o oprimally
describe the pieces of the pipeline that were arranged
in a sequential manner, This typically reduced a
system to a much smaller combinatory problem, but
one withoul any possibility of a recursive DP solution.
It this reduced problem was sufficiently small, it was
solved exactly via enumeration; otherwisc it was
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solved inexaclly wsing simulated annealing, This
hierarchical approach works very well for many
complex pipelines, but for others the colprutation:)
cost can be very high.

Up until the carly 19905, dynamic propramming
could only oplimize non-cyelic syslems, so it has been
of limited use for pipcline companies with such
diverse systems. Often such companies would only
consider small subsets of their pipelines when
performing optimization, After such studies were
performed, they could somclimes patch together the
results for the ditferent subsets manually.,

The hierarchical approach depends on using
specified, known flow values throughout the system.
However, if the inlet and oulel ows are allowed to
vary rather than being pre-specified by the user, or if
internal tlow splits are variable, one can apply another
optimizalion algorithm before 1P in the hicrarchy to
scarch for an optimum over these variables as well.

4 Description of Algorithm

Consider a steady-state natural gas transmission
netwark with N compressor stations and a set of
feasible flow rates. In general, there will be upper and
lower limits on the pressure semings (decision
variables). Rather than considering any possihle
pressure between the upper and lower limils, in this
paper we will consider only a discrete sel of & possible
pressures. For instance, if our allinwahle pressures are
between 600 and 800 PSIG, and Ap=10, we would
consider only pressures at ten pound increments: 600,
aln, 620, .., 8OO,

Each compresm: station will have a range of
attainable operaling conditions based on  such
limitations =s max horsepower cansiraints, physical
limils on individual compressor, and so on. If the
compressor station can operate at specified inlel and
outlet pressures, we assume that we can compute a
cost for this operational setting, and that the total cost
ol operating the system is the sum of the cost of
operating compressor slation mr, j, is the inleper
decision variable at the suction side of the station, and
£ 15 the inteper decision variable al the discharge side
ol the station.

In this part, we present a search algorithm (Fig. 13
for {inding an optimal solution for the fucl cost
minimizalion problem  being  addressed.  This
algorithm consists of two phases, The first procedure
(Thase 1) makes use of a preprocessing technique Lo

tind a set feasible flow on the net. Ow procedure for
constructing the feasible flows, wlilizes a reduction
technique. Details can be found in [7].

SCARCH ALGORITHM

hegin

INPEIT:  [Propertics of narural gas pipelive network syslem)
G={V. AL where A={Ad, Az,
B(1) souwrces value ¥igV
PHASE 1:  {Tind feasible flows)
Reduced Networle PROCEDURE-1
PHASE 2; {Find optimal pressires
Non_Sequential DPF PROCEDIRE-2

endd

Figure 1 Adgocithm for glohal nptima] salusions (for fixed fows).

The second procedure (Phase 2) makes use a Non-
sequential D8 Afgorithm to find optimal pressures at
each node on the network (as originally proposed by
Carter |2]}. Rather than attempting to formulate DP as
4 recursive algorithm, in this approach we simply look
al a system, grab two connected compressor, and
replace them by a “virlual™ composite element that
behaves just like ils components operating in an
optimal manner. These elements can be selected from
anywhere in the system, so the idea of “recursion” is
really not a good description for this process., The
process continues, reducing the number of elements in
the problem by one each time, until the system is
reduced no further. Typically, that oceurs when there
is cxactly one virtual element lefl, which completely
characterizes the oplimal behavior of the entirc
pipeline network. The best pipeline operation can then
be found by just searching one simple table for the
lowesl acourring value.

A B
1 E J
for i=1:n,
[or j=1ma
Canlij)min , { Cafik) + Cp (k) }
enel
el

Figurs 2. Cambisting lwao sequential comprossoer SEIO0S 0o & one
L k ] E
oplimal compnRite.

Only three types of simple compaosition operations
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are necessary to reduce a system. Let Cy be a table
costs for operaling a compressor station A for its
various inputs and outputs, and let Cy be similarly
defined for compressor station B,

Fig. 2 shows how fo combine two scqueniial
elements A and B into one optimal composite, Here
element A poes from segment I to sepment I, alement
B goes from segment K 1o sepment J, and the
composite element goes (rom segment I to segment. J,
The compesilc clement then has its own cost table
Cag. IT onmly this transtormation is allowed, the
resulting method is essentially the same as the
hierarchical method of Luongo [4].

for j=1:n,
leri=1:m,
Ciapenlia)=Cafl) + min y Cg (k)
end
ehd

Figure 3. Combining o “dangling™ clement B ito an nadpcent clement A,

Fig. 3 shows how to combine a “dangling” element B
mto an adjacent elemenl A, Here element A goes lrom
segmient 1 to segment T, element 3 goes trom scgment
I'to segment K, and the composite element poes from
segment [ oto segment J. Segment K can not be
allached to any element other than B; hence the
terminology “dangling element™.

Fig. 4 shows how to combine two parallal
compressor stations A and B inle one optimal
composile, Here element A gocs from segment | to
sepment J, element B goes from segment 1 to segment
J, and the composite element goes fram scement T to
supgment .

These operations can be applied to a complex
network to eventually reduce it to a single composite
equivalent. Nole that some of the composition
operations will, of course, be recursively applied to
composite  elements. Also, un  appropriate data
structure must be used 1o allow the reconstruction of
the actual optimal pressure settings of the uriginal

system once the optimal ohjective has been read off
the final compuosite table.

A
1 OF
B
far =t
[or j=1:n4
Cn:s(i,jj—cﬂﬁsﬂ + ':H ﬁd,l'
end
end

Figunz 4, Cambining two parallel counpiessor slations Aoand B into
ane aptimal compusie.

5 Computational Results

In order o assess the effectiveness of the proposcd
procedure, we apply the search NDP algorithm under
different scenarios with different kinds of topologies.
There are many types of topologies: (a) simple or gun-
barrel, (b} tree, and () cyclic, Our evaluation is based
o a dutabase developed by Villalobos-Muorales et al.

8],

Topalomy Tvpology
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=

Figure 5. Bramples of topulegies vpe ¢ wsod,
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For example, in Fig. 5, a striped node (shown with an
ingoing arrow next to it) represents a supply point, a
black node (shown with an outgoing arow next to it)
represents o demand point, and a white node is a
fransshipment node, A single dirceted arc joining two
nodes represents a pipeline, and a dirceled arc with a
black trapezoid represents a4 COMPpressar,

Cr procedure was coded in C++ and min on a
Sun Uliea 10 under Solaris 7. Computational
cvaluation was based for different mesh sizes (Ap=20,
5, 1. The computational results on gun barrel
networks arc shown in Table 1. The instances tested
are shown in the first column; the following columns
show the CPU rime {sce) and objective fimction value
for each of the mesh sives testes, Similarly,
computational results on tree and cyclic networks are
shown in Tables 2 und 3, respectively.
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Table 2. Compululicnal restlis on ree aerworks.

As we can see, the mesh size becomes an
important factor in terms of accuracy of solution. We
must point oul that results for non-cyclic instances
(Table 1 and 2) are global optimal, whereas results for
the eyelic instances (Tahle 3) are "optimal” for the

given Mow. CPU times arc very reasonable.  For
example, the test requiring more effort [Ap—-1) never
exceaded three minutes,
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Tuble 3, Computational rzsuls on yalic nebworks.

Finally, Table 4 shows the excellent behaviar ol
the NDP algorithm against a GRG method 3] on
cyclhic networks. The inslances tested are shown in the
first column; immediately, the slatus (whete, G5, LS,
and 15 mean plobal optimal, local optimal, and
infensible solution, respectively), CI'U Time (see) and
the best objective value found are presented for each
methad in the analysis. Firsl, the NDI' wis able to
deliver solutions to all instances Lested, whereas GRG
failed for ten of these. NDP outperformed the GRG n
icrms of solution qualily.
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6 Conclusions

Our computational results showed empirically how
the problem structure can be clficiently exploited by
taking advantape of a non-sequential  dynamic
programming  technique.  When using the finest
discretization size, the computational cfTort never
exceeded 3 minutes,

A central issue rewarding the NDP  algorithim
applied (o naloral  gas  transmission  network
optimization is on how its performance, when
compared with other methods on cyclic topologies,
such as the GRG moethod, had more success on
topologics thal contains more compressor stations.
Finally, the NDP Algorithm has been applicd 1o
several rest instances representing dozens of different
pipeline systems over a broad variety of flow
conditions, with wniformly good results, So, this
search alporithm not only found better solutions, hut
also reduced the resources (compulalional fime) usad
by the computer. This rupresents a  significant
contribution, especially when dealine with evelic
structurcs where previous approaches had failed.

We must point out that results for non-cyclic
instances are indeed global oplimal, whereas results
tor the ¢yclic instunces are “optimal™ for the given
flow. So, one current research trend is to develop a
method to efficiently modify the flow values. The use
of meta-heuristics such as GRASP or Tabu Search,
wheose internal muechanism for escaping local eptima
secins very dllractive.
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