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ABSTRACT 

 
The problem of minimizing fuel consumption on natural gas pipeline networks is addressed. Both 
a nonlinear programming model and a mixed-integer nonlinear programming model are 
presented. A database containing many problem instances under different types of topologies is 
proposed and described.  For a more efficient application of optimization algorithms, 
preprocessing techniques for this problem are presented, discussed, and computationally 
evaluated.  It is found the use of three techniques provides a significant algorithm performance 
improvement reducing considerably many of the numerical difficulties inherent to this very 
complex problem.  In addition, a preliminary computational evaluation of an outer approximation 
with equality relaxation and augmented penalty algorithm for MINLPs is presented. In initial 
findings, the algorithm reports promising results by finding optimal solutions to many problem 
instances. 

 

  



 
1. INTRODUCTION 
 
Natural gas is transported by pressure throughout a pipeline system. This transmission produces 
energy loss caused by the existing friction between the gas and the pipeline's inner wall, and by 
the heat transfer between the gas and the environment. Compressor stations are installed in the 
network to increase the pressure level and keep the gas moving. Typically, compressor stations 
consume in fuel about 3 to 5% of the total gas transported through the network. The problem of 
finding out how to operate the stations becomes significantly important due to the high amount of 
gas transported daily through the system. 
 
There are several variations of this problem depending on the modeling assumptions and the 
decisions to be made. In this work we describe two models. The first is a model where we 
consider two types of decision variables: mass flow rate through each arc and pressure value at 
each node (Wu et al., 2000). Both are continuous variables so the model is a nonlinear 
programming (NLP) problem. We assume that it is known in advance how many compressor 
units are operating within each compressor stations.  The second model is an extension of the 
first, where discrete decision variables that represent the number of compressor units to be turned 
on are introduced. In this case, the NLP becomes a mixed-integer nonlinear program (MINLP), 
where the discrete variables are precisely the number of compressor units to be used within the 
station. Both models are nonconvex, which make them hard to solve. 
 
In this paper, we state the main assumptions and describe a NLP and a MINLP models. We 
present and propose a database of problem instances that we use in our work.  Due to numerical 
difficulties found when attempting to use a generalized reduced gradient (GRG) algorithm to 
solve this problem, we present and describe some preprocessing techniques.  These are 
computationally evaluated over a variety of problem instances.  We found the application of these 
techniques yield significant algorithm performance improvement. In addition, we present a 
preliminary computational evaluation of an outer approximation with equality relaxation and 
augmented penalty algorithm (Viswanathan and Grossmann, 1990) for the MINLP model.  The 
results are promising as we were able to find optimal solutions for several problem instances.  We 
end up this paper by highlighting our current and future work in this project. 

 
 

2. MATHEMATICAL MODEL 
 
2.1  Modeling Assumptions 
 
In the present paper, we make the following modeling assumptions. 

• We assume that the problem is in steady state. This is, our model will provide solution for 
systems that have been operating for a relative large amount of time. Transient analysis 
would require increasing the number of variables and the complexity of this problem. 

  



• The network is balanced. This means that the sum of all the net flows in each node of the 
network is equal to zero. In other words, the total supply flow is driven completely to the 
total demand flow without loss. We know that compressor stations are feed with some of 
the fuel driven by the pipelines. For sustaining the zero mass balance assumption, we 
consider the cost of this consumption as an extra opportunity cost that represent the 
amount we would spend if we were to buy the fuel from third parties. 

• Each arc in the network has a pre-specified direction. 
• Each parameter is known (deterministic). 

 
2.2  The NLP Model 
 
Parameters: 
 
V:   Set of all nodes in the network 
Vs:   Set of supply nodes (Vs ⊆ V) 
Vd:   Set of demand nodes (Vd ⊆ V) 
Ap:   Set of pipeline arcs 
Ac:    Set of compressor station arcs 
A:   Set of all arcs in the network; A = Ap ∪ Ac 
Uij:   Arc capacity of pipeline (i,j); (i,j) ∈ Ap 
Rij:   Resistance of pipeline (i,j); (i,j) ∈ Ap 
Pi

L, Pi
U:   Pressure lower and upper limit at each node; i ∈ V 

Bi:   Net mass flow rate at node i;  i∈N. Bi > 0 if i ∈ Vs, Bi < 0 if i ∈ Vd, Bi = 0 otherwise 
 
Variables: 
 
xij:   Mass flow rate in arc (i,j); ); (i,j) ∈ A 
pi:   pressure at node i; i ∈ V 
 
Formulation: 
 

Minimize       Σ(i,j)∈Ac  g(i,j) (xij, pi, pj)               (1a) 
       Σ{j|(i,j)∈A} xij - Σ{j|(I,j)∈A} xji = Bi      i ∈ V      (1b) 
       Xij ≤ Uij                        (i,j) ∈ Ap      (1c) 
       pi

2
 – pj

2 = Rij xij
2    (i,j) ∈ Ap      (1d) 

       pi
L

 ≤ pj ≤ pi
U                  i ∈ V      (1e) 

       (xij, pi ,pj) ∈ Dij     (i,j) ∈ Ac      (1f) 
       xij, pi ≥ 0       (1g) 

 
Constraints (1b)-(1c) are the typical network flow constraints representing node mass balance and 
arc capacity, respectively, where . Equation (1d) respresents the gas flow dynamics in ∑

∈
=

Vi
i 0B

  



each pipeline of the network in steady state. Equation (1e) denotes the limits of pressure in each 
node.  In constraint (1f), Dij represents the feasible operating domain for compressor station (i,j). 
 
For a single centrifugal compressor unit (i,j), its operating domain Dij, as a function of the 
variables xij (flow through the arc (i,j)), pi (inlet pressure) an pj (outlet pressure), is given by the 
following set of equations. 
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Here the variables (hij, qij, sij) are the adiabatic head, volumetric flow and speed of the compressor 
and are related to (xij, pi, pj) by the following equations: 
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where the following parameters are assumed to be known with certainty: 
 

AH, BH, CH, DH  Constants, which depend on the type of compressor (typically estimated by 
the least squares method). 

Ts Gas temperature 
Z Gas compressibility factor 
R Gas constant 
M =(k-1)/k, where k is the specific ratio 
SL Speed lower bound 
SU Speed upper bound 
RL Surge (lower limit of qij / sij ) 
RU Stonewall (upper limit of qij / sij ) 

 
 
The following auxiliary variables are introduced: 
 

qij Inlet volumetric flow rate in compressor (i,j); (i,j) ∈ Ac 
hij Adiabatic head compressor (i,j); (i,j) ∈ Ac 
sij Compressor speed. 

 

  



Physically, the operator directly knows how to set up the compressor in terms of the variables hij, 
qij, and sij; however, given the mapping from (hij, qij, sij) to (xij, pi, pj), it is preferable to work on 
the later from the network optimization perspective because mass flow rate (xij) is observed at 
every node. Figure 1 illustrates this domain in the (xij, pi, pj) space for a fixed value of xij. 
 
For a detailed explanation about centrifugal compressor station and previous work, see Ríos-
Mercado (2002). 
 

 

Figure 1.  Domain of a compressor unit with xij fixed at 6000 lbm/min 

 
 
As we can appreciate, from Figure 1, the domain of a centrifugal compressor is non-convex. 
Besides, it is well known that the behavior of each compressor is non-linear. Furthermore, the 
feasible domain in (1d) is a non-convex set and the objective function is also non-convex. These 
features make this problem particularly nasty.  
 
2.3  Extension to a MINLP Model 
 
In the previous section, a NLP formulation was presented under the assumption that the number 
of compressor units to be operating within in each station is known in advance.  Let us now 
assume that this is not known, so this number of individual units is treated as a variable. We 
introduce the following: 
  
Nij:   Upper bound on the number of compressor units in station (i,j); (i,j) ∈ Ac 
nij:   Integer variable that denotes the number of compressor units to be operating at station  

  (i,j); (i,j) ∈ Ac 
 
Then, assuming the compressor units are all identical and hooked up in parallel within each 
station (see Fig. 2), constraints (1f) are replaced by (2) and (3). 
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   Figure 2.  Representation of a compressor station 

 
It is important to highlight that the mass flow rate that pass through a single centrifugal 
compressor unit, when considering nij identical units within the station, can be equally split into 
the number of centrifugal compressors working at each compressor station. The flow trough each 
unit becomes xij/nij so ( )jiijij ppnx ,,/  must satisfy the feasible operating domain for a single 

compressor unit Dij as represented in (2). A more detailed description can be found in Wu (1998). 
 
In addition, the total fuel consumed at station (i,j) is given by: 
 

( ) ( ) ( ) 





= j,ij,iijijjiijj,i pp,

n
xgnn,p,p,xg           (4) 

 
where g(i,j) (xij, pi, pj) is the fuel used by a single unit. So the objective (1a) is replaced by (4).  The 
new MINLP model becomes to minimize (4) subect to (1b)-(1e), (1g), (2) - (3). 
 
There are some algorithms for solving MINLPs (Floudas, 1995) such as the outer approximation 
with equality relaxation and penalty augmented (Viswanathan and Grossmann, 1990) that only 
allow for binary discrete variables. In this case, the model would have to be modified in the 
following way. A binary variable nijk which is equal to one if the k-th compressor of compressor 

station (i,j) is working, and 0 otherwise is introduced. Then we add the equation ∑  

; and allow nij to become a real variable. 

=
k

ijijk nx

Acji ∈∀ ),(

  



 
 
3. DATABASE DESIGN  
 
The purpose of designing and seting up a database with problem instances is twofold. First, it is 
necessary for testing our proposed algorithms. Second, it will provide a more efficient and 
reliable test for benchmarking different algorithms. As far as we know, there is no such database 
for this type of problems. So one of our contributions is to design and build this database, which 
we now describe. 
 
The first step in setting up a database application is to define what the system network must 
accomplish. The database will be very important for the scientific and technological activity in 
our research. 

 
To define our database we need to specify: 
 
1. The system input. The information that will be entered into the computer. 
2. The system processing functions. The calculations the computer must carry out and the ways 

information is to be transferred among database files. 
3. The system output. The way in which the data will be displayed on the screen and printed on 

files. 
 
There are three different kinds of topologies: (a) simple or gun-barrel (Figure 3), (b) tree (Figure 
4), and (c) cyclic (Figure 5). Characteristics of the database: It is comprised of 17 different 
topologies (3 type A, 7 type B, and 7 type C). There are 2 more topologies taken from real-world 
pipeline companies in Louisiana and Texas.  
 
Figure 3 shows an example of an instance definition. All these instances are available at: 
http://yalma.fime.uanl.mx/~pisis/ . 
 
In Figures 4 and 5, a green node (shown with an incoming arrow next to it) represent a supply 
point, a red node (shown with an outgoing arrow next to it) represents a demand points, and a  
white node is a transshipment node. A pipeline is represent by a single directed arc joining two 
nodes, and a compressor is represented by a boxed directed arc joining two nodes. 
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ñol. 

//Short Network without loop, of 6 nodes and 2 compressor 
 
gasoductos: 
1 2     50        3    0.0085 
3 4     50    3    0.0085 
5 6     50    3    0.0085 
 
compresor: 
2 3  TIPO-9 1 
4 5  TIPO-9 1 
 
propiedades: 
0.95 0.6248  519.67 1.287 
 
nodos: 
1 600 800 600 
2 600 800 0 
3 600 800 0 
4 600 800 0 
5 600 800 0 
6 600 800 -600 

 

 
Figure 3.  Example of a simple topology. 

Figure 3.  Example of a tree topology. 

Figure 4. Example of a cyclic topology. 

 

 



 
4. PREPROCESSING 
 
When we first attempted to use a generalized reduced gradient (GRG) algorithm (Bazaraa, 
Sherali, and Shetty, 1993) for solving the NLP model, we noticed that practically all instances 
tried (either the NLP or the MINLP model) (were not solved due to numerical difficulties of 
many kinds. This motivated our work in preprocessing techniques. 
 
In short, pre-processing techniques can be defined, in a general way, as elementary operations 
that transform a problem formulation  into an equivalent model that may lead to better 
algorithmic properties before attempting to solve it.  By  applying the pre-processing techniques, 
one expects that the optimization algorithm avoids many of these numerical difficulties.   
  
There are many preprocessing techniques available in the literature. Among these, we have used 
the following three:  
 

• Variable bounding:  This is done to reduce the feasible region or search space, 
preventing the algorithm to examine boundedless domains. This typically reduces the 
computational effort. 

 
• Initial variable value assignment:  It is known that an optimization algorithm such as 

gradient search method moves from a feasible solution to another feasible solution. So 
starting from a feasible solution or as close to a feasible solution as possible helps in 
reaching a feasible point more quickly, and hence may lead to a better algorithmic 
performance.  In this vein, we have observed that initial default values make the 
algorithm perform poorly in our problem. So, to deal with this we sort to assigning initial 
values to all variables selecting a value within variable bounds 

 
• Scaling: This is intended to have all coefficients in each constraint with the same or 

similar order of magnitude. This technique becomes important because optimization 
algorithms work internally with matrices. When matrices entries differ greatly in 
magnitude, many numerical difficulties can be introduced making the execution to fail or 
to report a non-feasible solution where there is one indeed. Scaling involves a careful 
selection of units for variables. 

 
. 
5. COMPUTATIONAL EVALUATION 
 
5.1 Evaluation of Preprocessing Techniques 

 
The first part of this experiment was to evaluate the impact of using the preprocessing techniques 
(discussed in Section 4) in this problem.  In order to do this, we constructed the model by using 

  



GAMS (Brooke, Kendrick, and Meeraus, 1992) and use a GRG built-in optimizer called 
CONOPT  (Drud, 1992). This was implemented in a Sun Ultra 10 under Solaris 7 OS. 
 
We apply the method under different scenarios (depending on the preprocessing techniques used) 
on the three different kinds of topologies (as depicted in Figures 4, 5, and 6) using different 
compressor types.  For each compressor type, many instanvces using different flow values were 
tested. In scenario E1, variable bounding is used.  In scenario E2, both variable bounding ad 
initial value assignment are used.  In scenario E3, in addition to E2, scaling is used as well, so all 
three pre-processing techniques are applied. 
 
 

Type of 
compressor 

Number of 
instances tested 

Number of local 
optimal solutions 

   E1          E2           E3 
 Snarlin-k1 12 11 12 12 
Rakeey-k1 10 10 10 10 
Rakeey-k2 17 14 17 16 
Hamper-k1 19 12 16 17 
Bellvan-k1 10 10 10 10 
Bellvan-k2 10 10 10 10 
Bellvan-k3 17 12 14 17 
Bethany-k1 18 14 14 13 
Bethany-k2 16 12 15 15 
Total 129 105 118 120 

Table 1. Comparison of scenarios in the in simple topologies. 

 
 

Type of 
compressor 

Number of 
instances tested 

Number of local 
optimal solutions 

   E1          E2           E3 
Snarlin-k1 17 17 17 18 
Rakeey-k1 15 14 15 15 
Rakeey-k2 16 7 8 8 
Hamper-k1 11 1     1 3 
Bellvan-k1 9 9 9 9 
Bellvan-k2 9 9 9 9 
Bellvan-k3 17 9 14 14 
Bethany-k1 12 8 9 9 
Bethany-k2 5 5 5 5 
Total 112 79 87 90 

Table 2. Comparison of scenarios in tree topologies. 

 

  



Type of 
compressor 

Number of 
instances tested 

Number of local 
optimal solutions  

   E1          E2            E3 
Snarlin-k1 23 21 23 23 
Rakeey-k1 19 18 19 19 
Rakeey-k2 25 20 23 25 
Hamper-k1 31 15 16 20 
Bellvan-k1 15 15 15 15 
Bellvan-k2 15 15 15 15 
Bellvan-k3 22 22 22 22 
Bethany-k1 20 18 16 17 
Bethany-k2 19 19 18 17 
Total 189 163 167 173 

Table 3. Comparison of scenarios in cyclic topologies. 

 
The results are shown in Tables 1, 2, and 3. In each row, it is shown the number of feasible or 
local optimum solutions found under scenario. As can be seen, the results obtained applying the 
three preprocessing techniques produced very encouraging results in the three topologies. In most 
of the instances tested, local optima was reached.  
 
When comparing the number of iterations used by the algorithm we can see how E3 (using all 
preprocessing techniques) is a better choice in terms of number of local optima found. This was 
verified statically by performing a non-parametric test which was significant at a level α = 95%.  
Detailed results and tests can be found in Villalobos-Morales (2002). 
 
5.2 Solving the MINLP Model: Preeliminary Results 
 
The purpose of the second part at the experiment was to obtain a preliminary computational 
experience and finding out how difficult was to obtain feasible solutions and/or local optima in a 
MINLP model, in order to gain insight into the problem and to later devise a better way to solve 
this problem. 
 
To do this, we implemented the model in GAMS. To solve the MINLP we use DICOPT (GAMS 
Development Corporation, 2000), which is a built-in outer approximation with equality relaxation 
method (Viswanathan and Grossmann, 1990). We only consider a simple topology (Figure 4), 
which consists of 6 nodes (one demand, one supply), and 5 arcs (2 compressors and 3 pipelines).  
For this topology, 9 different instances (with different compressor type each) with data taken 
from real-world units, were tested. The model was run on a Sun Ultra 10 under Solaris 7 OS. 

 
We attempted to solve each of the nine MINLP instances with a flow value of 950 MMCFD and 
applied a preprocessing phase, which consisted of scaling some of the constraints. The results are 
shown in Table 4.  The compressor type is shown in the first column. The model status column 
indicates the stopping criteria used by DICOPT, where “Intermediate non integer” means that the 
solver failed in the MINLP sub-problem but found a solution feasible to the NLP relaxation, 
  



“Integer solution” means that the solver was able to find a feasible solution, “Locally optimal” 
means that a local optimal solution was found, and “Non integer solution” means that the solver 
has a failure and it could not find a feasible solution. The third column shows the numerical value 
of the objective function that represents the fuel consumption cost. The fourth and fifth columns 
shows the number of iterations and CPU time (sec.), respectively. The last two columns show the 
CPU time (sec.) and percentage taken by each sub-problem (CPLEX was used for the MIP 
subproblem and CONOPT for the NLP subproblem). 
 
As we can see, the algorithm found optimal or feasible solution in 5 of 9 instances. This 
illustrates the importance of an appropriate scaling and preprocessing phase. But it also shows 
that further work is necessary at pre-processing to derive models with no numerical difficulties. 
For the instances solved, we can also observe that most of the time was spent on solving the 
MINLP sub-problem. 
 

Type of  
Compressor 

Model 
status 

Objective 
function 

Number 
of 

iterations 

CPU time 
(sec.) 

CPLEX 
(time / %) 

CONOPT2 
(time / %) 

Bellvan-k1 Integer 
solution 

1892084.9 463 1.99 0.06 / 3.02 1.93 / 96.98 

Bellvan-k2 Integer 
solution 

1892084.9 463 2.054 0.08 / 3.9 1.97 / 96.1 

Bellvan-k3 Integer 
solution 

3664136.4 123 0.439 0.03 / 6.84 0.45 / 97.83 

Bethany-k1 Non   
integer 
solution 

1139777.3 91 0.461 0.01 / 2.17 0.45 / 95.73 

Bethany-k2 Integer 
solution 

4569340.9 123 0.469 0.02 / 4.27 0.45 / 95.75 

Snarlin-k1 Locally 
optimal 

979896.9 54 0.079 0.02 / 25.37 0.06 / 74.63 

Rakeey-k1 Locally 
optimal 

756923.9 30 0.085 0 / 0 0.09 / 100 

Rakeey-k2 Integer 
solution 

1396385.2 188 0.849 0.05 / 5.89 0.8 / 94.11 

Hamper-k1 Locally 
optimal 

1683290.2 3 0.021 0 / 0 0.02 / 100 

Table 4. Results of experimentation made on the MINLP model. 

 
 

6. CONCLUSIONS 
 
It is evident the tremendous positive impact that the preprocessing techniques had in the problem 
addressed. The application of those techniques not only found local optima but also reduced the 
resources (number of iterations) used by the computer. This was statically confirmed by using 
non-parametric tests, which were all significant and conclude that E3 (using all three techniques) 
  



was the scenario where the best performance was observed in this type of problem. Results of this 
work have been published (Villalobos-Morales, 2002). 
 
As far as solving NLP is concerned, we are now in the process of evaluating and comparing 
algorithms such as GRG and Lagrangian projection. Our goal is to find the best algorithm 
parameters for which best local optima can be found. 
 
Other issue for further investigation is the choice of a good starting point. For the experiments, 
we set the initial point as the average of the upper and lower bound, for all variables. However as 
we have learned from this work, many variables end up with values far away from these initial 
ones. So, this suggests that other choices for setting these initials values may help getting feasible 
solutions more quickly, and thus faster convergence to local optima can be obtained.  
 
As far as solving the MINLP problem is concerned, we have observed how preprocessing can 
also be very helpful.  We have started obtaining local optimal for one type of problem instances 
(simple topology), but we also observed that NLP solvers still experience in some cases 
numerical difficulties in making progress toward meeting all optimality conditions. Further work 
is under way now to attempt to exploit the current problem structure se we can deal with these 
difficulties successfully. 
 
This is an ongoing research. We are still working on preprocessing to address the numerical 
difficulties obtained when applying the DICOPT algorithm for solving the MINLP. We are also 
in the process of evaluating more MINLP instances that will give us a more complete picture and 
a better understanding for solving this very important problem more effectively.  All programs 
and files used in this work are available from the authors or at the web page:  
http://yalma.fime.uanl.mx/~pisis/ . 
 
Acknowledgments: This research is supported by the Mexican National Council for Science and 
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