
Constructing Inductive-Inductive Types via Type Erasure
Thorsten Altenkirch1, Ambrus Kaposi2, András Kovács2, and

Jakob von Raumer1

1 University of Nottingham, United Kingdom
thorsten.altenkirch@nott.ac.uk, jakob@von-raumer.de

2 Eötvös Loránd University, Budapest, Hungary
{akaposi, kovacsandras}@inf.elte.hu

Inductive-inductive types [6, 4] allow the mutual definition of a type and, for example,
a type family indexed over that type. This can be used to encode collections of types which
are intricately inter-related such as the syntax of type theory itself, where we define a type
Con : U of contexts at the same time as a type of types over a context: Ty : Con → U .
Thes types could be populated by an empty context nil : Con, a function for context extension
ext : (Γ : Con) → Ty(Γ) → Con, a unit type former unit : (Γ : Con) → Ty(Γ) and a former for
Π-types of the form pi : (Γ : Con)(A : Ty(Γ)) → Ty(ext(Γ, A)) → Ty(Γ).

Many theorem provers like Coq [2] or Lean [3], which are based on foundations similar to the
calculus of constructions (CoC), do not provide native support for inductive-inductive types.
This raises the question about whether each example of an inductive-inductive type can be
reduced to a (mutual) inductive family, which is supported by these kinds of system.

In the above example of contexts and types, we can achieve this goal by first stripping away
the type dependencies (“type erasure”) and then defining a predicate which states whether an
instance of the erased types is well-formed according to the dependencies we erased (cf. last
year’s talk [1]). The recursor is obtained by defining a relation between erased types and the
types of an arbitrary algebra M, which then can be shown to be functional. In Lean, the main
definitions of such a construction would look like this, with CT being the erased types of contexts
and types, CTw being their well-formedness predicate, and rel being the recursor relation:

inductive CT : bool → Type
| nil : CT ⊥
| ext : CT ⊥ → CT > → CT ⊥
| unit : CT ⊥ → CT >
| pi : CT ⊥ → CT >

→ CT > → CT >

def CTw_arg (b : bool) : Type := if b then unit else CT ⊥

inductive CTw : Π b, CT b → CTw_arg b → Prop
| nil : CTw ⊥ CT.nil ()
| ext : Π Γ A xΓ, CTw ⊥ Γ xΓ → CTw > A Γ → CTw ⊥ (CT.ext Γ A) ()
| unit : Π Γ xΓ, CTw ⊥ Γ xΓ → CTw > (CT.unit Γ) Γ
| pi : Π Γ A B xΓ, CTw ⊥ Γ xΓ → CTw > A Γ → CTw > B (CT.ext Γ A)

→ CTw > (CT.pi Γ A B) Γ

def rel_arg (b : bool) : Type := if b then M.C else Σ γ, M.T γ

inductive rel : Π b, CT b → rel_arg b → Prop
| nil : rel ⊥ CT.nil M.nil
| ext : Π Γ A γ a, rel ⊥ Γ γ → rel > A 〈γ, a〉 → rel ⊥ (CT.ext Γ A) (M.ext γ a)
| unit : Π Γ γ, rel ⊥ Γ γ → rel > (CT.unit Γ) 〈γ, M.unit γ〉
| pi : Π Γ A B γ a b, rel ⊥ Γ γ → rel > A 〈γ, a〉 → rel > B 〈M.ext γ a, b〉

→ rel > (CT.pi Γ A B) 〈γ, M.pi γ a b〉

This raises the question about how to prove that this strategy works for every
possible inductive-inductive type instead of specific examples. Compared to last year’s
contribution [1], considerable progress on this generalization has been made.



Constructing Inductive-Inductive Types Altenkirch, Kaposi, Kovács, and von Raumer

Dissecting the question, we provide answers for the following follow-up questions:

What are inductive-inductive types? We modify the approach of Kaposi and Kovács [5] to
use the contexts of a domain-specific type theory to generate the signatures of inductive-
inductive types. The syntax differentiates between sort constructors and point construc-
tors.

What are inductive families? We use a similar approach to specify inductive families: We
define a syntax of sort contexts and of contexts over a sort context to capture mutual
inductive families which may be parameterized over metatheoretic types.

What assumptions do we postulate? We define notions of displayed algebras and their sec-
tions over contexts describing inductive families, such that we can formally denote the
prerequesite of our reduction: for every such context, there exists an algebra (the con-
structor) which is initial in the sense that every displayed algebra over it has a section
(the dependent eliminator).

How to define type erasure and well-formedness. We define two syntactical translations:
One for the type erasure and, depending on an algebra over it, one for the inductively
defined well-formedness predicate, like the one contained in the above code snippet.

How to define the initial algebra. Assuming algebras over these transformed contexts, we
generate an algebra over the original inductive-inductive context of which we are confident
that we will be able to show its initiality.

The above approach for constructing initial algebras differs from the term model construction
in [5] in that we give a factorization of algebras into erased presyntax and well-formedness
predicates. This can be seen as a first step towards a generic method of initiality proofs for
various type theories presented as quotient inductive-inductive types. This would require to
generalize the above steps to allow equality constructors in the syntax of signatures. We have
formalized all results in Agda: https://github.com/javra/indind-agda

References
[1] Thorsten Altenkirch, Ambrus Kaposi, András Kovács, et al. Reducing inductive-inductive types to

indexed inductive types. TYPES 2018, 2018.
[2] Bruno Barras, Samuel Boutin, Cristina Cornes, Judicaël Courant, Jean-Christophe Filliatre, Ed-

uardo Gimenez, Hugo Herbelin, Gerard Huet, Cesar Munoz, Chetan Murthy, et al. The Coq proof
assistant reference manual: Version 6.1. 1997.

[3] Leonardo Mendonça de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn, and Jakob von
Raumer. The Lean theorem prover (system description). In Automated Deduction - CADE-25
- 25th International Conference on Automated Deduction, Berlin, Germany, August 1-7, 2015,
Proceedings, pages 378–388, 2015.

[4] Gabe Dijkstra. Quotient inductive-inductive definitions. PhD thesis, University of Nottingham,
2017.

[5] Ambrus Kaposi, András Kovács, and Thorsten Altenkirch. Constructing quotient inductive-
inductive types. Proceedings of the ACM on Programming Languages, 3(POPL):2, 2019.

[6] Fredrik Nordvall Forsberg. Inductive-inductive definitions. PhD thesis, Swansea University, 2013.

2

https://github.com/javra/indind-agda

