
CONGRUENCE IN UNIVALENT TYPE THEORY

LUIS SCOCCOLA

Introduction. The main purpose of congruence closure procedures is to automate the appli-
cation of basic properties of equality, such as transitivity and congruence (i.e., x = y implies
f(x) = f(y)). The only current implementation of a full congruence closure procedure for
intensional type theory, Selsam & de Moura (IJCAR 2016), adds an axiom to the type the-
ory that is inconsistent with univalence. This axiom is used when proving the congruence
lemmas. We describe an approach for automatically synthesizing congruence lemmas that is
compatible with univalence.

Congruence using heterogeneous equality. The main difficulty with congruence in de-
pendent type theory is that the “obvious” congruence lemmas don’t type check. For example,
given f : (a : A) → B(a), the expression congrf : (a, a′ : A) → (a = a′) → f(a) = f(a′)
doesn’t type check, since f(a) : B(a) whereas f(a′) : B(a′). One way to fix this, is to use
heterogeneous equalities, a weakening of McBride’s “John Major equality”.

Definition 1. Heterogeneous equality is defined as an inductive family

heq : (A,A′ : U)→ A→ A′ → U
with one constructor reflheq : (A : U)→ (a : A)→ heq(A,A, a, a).

One can use this to write congruence lemmas that type check, congrf : (a, a′ : A) →
heq(A,A, a, a′) → heq(B(a), B(a′), f(a), f(a′)), but these cannot be proven without modify-
ing the type theory. The solution of Selsam & de Moura is to assume the following axiom

ofheq : (a, a′ : A)→ heq(A,A, a, a′)→ a = a′.

Using this axiom, they prove a congruence lemma hcongrn for each n ≥ 1. The idea is that
hcongrn is the congruence lemma for dependent functions with n arguments.

Incompatibility with univalence. Recall, from [2], the pathover type family.

Definition 2 (Licata & Brunerie (LICS 2015)). Given a type B : U and a type family
X : B → U , define the type family

pathoverB : (b, b′ : B)→ (b = b′)→ X(b)→ X(b′)→ U ,
by path induction. We denote the type pathoverB(b, b′, e, a, a′) by a =B

〈e〉 a
′.

The types heq and pathover are related as follows.

Lemma 3. For any a : A and a′ : A′ we have

heq(A,A′, a, a′) '
∑

e:A=A′

pathoverId:U→U (A,A′, e, a, a′).

From this, it follows that the axiom ofheq implies UIP (uniqueness of identity proofs),
and thus, that it is inconsistent with univalence.

Congruence using pathover. In order to synthesize congruence lemmas for type families
with arbitrarily many parameters, we must define a pathover type for each such family.

It is conceptually clearer to describe this generalization, and the congruence lemmas, in
terms of the category of contexts of our type theory. Given a context Γ and inhabitants
a, b : Γ, one can define an equality context a = b by context induction and path induction ([1,
Proposition 3.3.1]). Similarly, given a context extension Γ.Γ′, inhabitants a, b : Γ, a′ : Γ′(a),
b′ : Γ′(b), and an equality e : a = b, one can define a context of pathovers a′ =〈e〉 b

′.
1



REFERENCES 2

Now, given two context extensions Γ.Γ′ and ∆.∆′ and a map f.f ′ : Γ.Γ′ → ∆.∆′ between
them, we can use path induction to prove the following congruence lemma

a, b : Γ, a′ : Γ′(a), b′ : Γ′(b), e1 : a = b, e2 : a′ =〈e1〉 b
′ `

congrf ′(a, b, a′, b′, e1, e2) : f ′(a, a′) =〈congrf (a,b,e1)〉 f
′(b, b′).

Notice how the type of the congruence lemma for f ′ uses the congruence lemma for f .

Main result 4. We give an algorithm to automatically state and prove congruence lemmas
for any dependent function.

The main complication is in correctly characterizing the identity types of contexts. This
becomes apparent in the following example.

Example 5. The congruence lemma for cons : (n : N)→ A→ vecA(n)→ vecA(succ(n)) is

congrcons(n,m, x, y, xs, ys, e1, e2, e3) : cons(n, x, xs) =〈congrsucc(e1)〉 cons(m, y, ys)

where e1 : n = m, e2 : x = y, e3 : xs =〈e1〉 ys, and congrsucc : (n,m : N) → (n = m) →
succ(n) = succ(m). We see that, although cons takes as input x : A, the type of its codomain
does not depend on x, and thus the pathover returned by its congruence lemma should not
live over the path e2 : x = y.

This means that we need a representation of contexts that takes dependency into account.
We represent contexts as inverse diagrams. This is the final ingredient in the procedure.
Since the description of the full procedure requires some setting up, we illustrate how it works
with an example.

Example 6. We first identify the domain and codomain contexts of cons, and represent them
as inverse diagrams

vecA

A N,

vecA

N
Analyzing the type of cons, we see that cons lives over the context morphism succ

(n : N).(x : A, xs : vecA(n)) (n : N).(xs : vecA(n))

(n : N) (n : N).

succ.cons

succ

So, inductively, we produce the congruence lemma for succ

congrsucc : (n,m : N)→ (n = m)→ succ(n) = succ(m).

Finally, we use path induction, and induction on the inverse diagrams, to correctly charac-
terize the identity types of the domain and codomain of cons. Giving, for example,

(e1 : n = m, e2 : x = y, e3 : xs =〈e1〉 ys)

for the domain. Putting these things together, we get the congruence lemma of Example 5.

References

[1] Richard Garner. “Two-dimensional models of type theory”. In: Mathematical Structures
in Computer Science 19.4 (2009), 687–736. doi: 10.1017/S0960129509007646.

[2] The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations
of Mathematics. Institute for Advanced Study, Princeton, NJ, 2013. url: http : / /

homotopytypetheory.org/book.

https://doi.org/10.1017/S0960129509007646
http://homotopytypetheory.org/book
http://homotopytypetheory.org/book

