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Abstract
We consider a characterization of planar graphs in Homotopy Type Theory (HoTT).

Using basic concepts from HoTT, such as univalence, one can define a type of graphs,
such that equality (in the sense of the identity type) between graphs coincides with iso-
morphism. For planarity, we take inspiration from topological graph theory, in particular,
combinatorial embeddings of graphs into surfaces. A proof-assistant for dependent type
theory with HoTT support (Agda) is used to verify the correctness of this work in progress.

Introduction. In Graph theory, a graph is planar when it can be embedded into the plane.
There are many characterizations of planar graphs [2, 4], e.g. forbidden minors 𝐾3,3 and 𝐾5).
For our definition, we are taking inspiration from Topological Graph Theory [1] where one
works with combinatorial embeddings which represent embeddings of graphs into surfaces up
to isotopy. A graph is planar if and only if it can be embedded into the sphere: if one has an
embedding into the sphere, one can obtain an embedding into the plane, by puncturing the
sphere and applying stereographic projection. We get a representation of planar graphs, up to
isotopy, as a combinatorial embedding into the sphere, and keeping track of where the sphere
was punctured.

In the following, we elaborate some of the concepts needed in order to formalize1 the above
characterization of planar graph in HoTT [3]. In particular, the notion of combinatorial em-
bedding and which of those induce embeddings into the sphere. To start with, we fix a notion
of graphs. In what follows, 𝐺 and 𝐻 are graphs and 𝑥, 𝑦 or 𝑧 are variables for nodes.

Graphs. We concern ourselves about simple and undirected graphs which can be formalized
as the following type2,3,4:

Graph ∶≡ ∑
N∶𝑈

∑
E∶N→N→𝑈

isSet(N) × ∏
𝑥,𝑦∶N

isProp(E𝑥 𝑦) × ∏
𝑥,𝑦∶N

(E𝑥 𝑦 → E 𝑦 𝑥).

Graph Homomorphisms. A homomorphism from 𝐺 to 𝐻 is a pair of functions (𝛼, 𝛽)
where 𝛼 ∶ N𝐺 → N𝐻 acts on nodes and 𝛽 𝑥 𝑦 ∶ E𝐺 𝑥 𝑦 → E𝐻(𝛼 𝑥)(𝛼 𝑦). When both functions are
equivalences5, such a map is called an isomorphism. As is typical of HoTT, the identity type
on graphs is equivalent to the type of isomorphism between graphs6.

Cyclic Orders. A cyclic order on a set A is a ternary relation R on A such that the binary
relation R𝑎 is a total order for every 𝑎 ∶ A and for 𝑎, 𝑏, 𝑐 ∶ A, if 𝑎 ≠ 𝑏, R𝑎𝑏𝑐 implies R𝑏𝑐𝑎.

Combinatorial Embeddings. A combinatorial embedding of a graph is a cyclic order on
the star7 of each node.

CombinatorialEmbedding(𝐺) ∶≡ ∏
𝑥∶N𝐺

CyclicOrder(Star𝐺 𝑥).

1Extra care is taken to choose types such that their identity types coincide with the natural notion of
equivalences of the mathematical objects.

2For any type 𝐴, isSet(𝐴) ∶≡ Π𝑥,𝑦∶𝐴Π𝑝,𝑞 ∶ 𝑥=𝑦 (𝑝 = 𝑞).
3For any type 𝐴, isProp(𝐴) ∶≡ Π𝑥,𝑦∶𝐴 (𝑥 = 𝑦).
4A node is of type N𝐺 and an edge between nodes 𝑥, 𝑦 is of type E𝐺 𝑥 𝑦.
5Equivalence of 𝛼 ∶ N𝐺 → N𝐻 is bijection and for 𝛽 𝑥 𝑦 is bi-implication.
6The natural map Π𝐺,𝐻∶Graph (𝐺 = 𝐻) → (𝐺 ≅ 𝐻) is an equivalence.
7Star𝐺(𝑥) ∶≡ Σ𝑦∶N𝐺 E𝐺 𝑦 𝑥.
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A combinatorial embedding defines an embedding of the graph into a closed surface but
which surface is left implicit by the definition. However, the surface can be reconstructed from
a combinatorial embedding by the notion of a face. We then recognize when the resulting
surface is a sphere by using the fact the sphere is simply connected.

Cyclic Graphs. Identifying Fin𝑛 with the set of {0, ⋯ , 𝑛 − 1}, consider the function
𝑆 ∶ Fin𝑛 → Fin𝑛 which maps (𝑛 − 1 ↦ 0, 𝑖 ↦ 𝑖 + 1). This function is an equivalence. From the
function 𝑆, we construct the graph Cn for 𝑛 ≥ 3 with nodes Fin𝑛 and edges from 𝑖 to 𝑆 𝑖 for
all 𝑖 ∶ Fin𝑛. The type of cyclic graphs is the connected components of (Cn, 𝑆) in the type of all
such structures8. A cycle in a graph 𝐺 is cyclic graph 𝐻 along with a homomorphism 𝐻 → 𝐺.

Corners. On the star 𝑥, a corner is a relation between two edges 𝑒1,𝑒2 which satisfies there
is no other edge in between. The corner is denoted by 𝑒1 ≺Star𝐺(𝑥) 𝑒2.

Faces. A face is a cycle where all consecutive edges are corners and each corner occurs at
most once. For example, the graph (I) below with the indicated combinatorial embedding has
three faces with three, four, and five edges respectively.

Spherical Graphs. A combinatorial embedding of a graph is spherical if any walk9 𝑤1 can
be obtained by deforming along faces any other walk 𝑤2 with the same endpoints. For example
in (IV), the walk 𝑎 − 𝑏 − 𝑐 can be deformed into the walk 𝑎 − 𝑒 − 𝑑 − 𝑐 along the triangular face
𝑎𝑏𝑐 and the face 𝑎𝑐𝑑𝑒.

Planar Graphs. As spherical combinatorial embeddings, (I) (II) and (III) are all equiva-
lent. To distinguish these as embeddings into the plane, we can keep track of a face, designated
as the outer face. We require for technical reasons that planar graphs are connected.

Planar(𝐺) ∶≡ ∑
𝑒∶CombinatorialEmbedding𝐺

Spherical𝐺 𝑒 × Face𝐺 𝑒 × Connected 𝐺.

Conclusions. The predicate Planar is not a proposition, in fact we expect to have elements
representing all embeddings of the graph into the plane, identified up to isotopy. We would like
to compare this approach with other characterizations, of planarity. While we here focus on
planar graphs, it is also possible to consider graphs with rotation system as a way to specify
any closed orientable surface. Constructing surfaces in this way, using higher inductive types,
is another interesting line of investigation.
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8 CyclicGraph ∶≡ Σ𝐴∶GraphΣ𝜑∶𝐴→𝐴Σ𝑛∶ℕ ∥ (𝐴, 𝜑) = (Cn, 𝑆) ∥ .
9A walk from 𝑥 to 𝑦 is a sequence of edges 𝑒1 ∶ E𝐺 𝑥 𝑥1, ⋯ , 𝑒𝑖 ∶ E𝐺 𝑥𝑖−1 𝑥𝑖, 𝑒𝑖 ∶ E𝐺 𝑥𝑖 𝑥𝑖+1, ⋯ , 𝑒𝑛 ∶ E𝐺 𝑥𝑘 𝑦.
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