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Abstract

We often put computation at the core of our theories, showing Strong Normalisation
and confluence of our calculi. Thanks to the Curry-Howard isomorphism we know that
computation corresponds to cut-elimination, or simplification of proofs. In practice it is
also useful because it allows to identify expressions such as 0+n and n. We claim however
that computation does not bring more logical power to our type theories by means of a
Coq formalisation of a translation from Extensional Type Theory to a Weak Intensional
Type Theory with axioms K and functional extensionality. Our result extends to the case
of 2-level type theories, making it relevant in the homotopy setting.

Computation. The basic computation rule is the β-reduction (where square brackets repre-
sent substitution):

(λx. t) u ≡ t[x := u]

In dependent type theories, computation is not limited to β-reduction and includes computation
rules for eliminators of inductive types (or pattern-matching). We can also extend the notion
and think of an equational theory that includes reduction but also η-rules or even more recently
in the case of Coq and Agda, definitional proof-irrelevance of propositions [3].

f ≡ λx. f x p ≡ (π1 p, π2 p)
S n+m ≡ S (n+m) 0 + n ≡ n

(x : P : Prop) ≡ (y : P : Prop) x ≡ ? : Unit

Weak type theories (WTT) are type theories without computation rules. Instead all of
these rules are weak, i.e., assumed as equality axioms (for the type of propositional equality).
For instance, β-reduction is represented by the following equality (where x =T y is the identity
type representing propositional equality of x and y at type T ).

Γ, x : A ` t : B Γ ` u : A

Γ ` β(x.t, u) : (λx. t) u =B[x:=u] t[x := u]

And the same goes for other equation rules. In particular we also make explicit the δ-reduction
stating that a definition id := t can be unfolded. We additionally require axioms K, functional
extensionality and more surprising congruence rules for the other binders:

Γ ` p : t =A t

Γ ` K(p) : p = reflA t

Γ, x : A ` p : f x = g x

Γ ` funext(x.p) : f = g

Γ, x : A ` p : B1 = B2

Γ ` congΠ(x.p) : Π(x : A).B1 = Π(x : A).B2

Γ, x : A ` p : B1 = B2

Γ ` congΣ(x.p) : Σ(x : A).B1 = Σ(x : A).B2

Since our goal is to prove that extensional type theory (ETT) is conservative over WTT—every
valid WTT type that is inhabited in ETT is inhabited in WTT—and since ETT proves these
axioms, we have to assume them in WTT. The axioms congΠ and congΣ do not seem to be
derivable from funext.
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Extensional Type Theory is distinguished from the usual Intensional Type Theory (ITT)
by the reflection rule

Γ ` e : u =A v

Γ ` u ≡ v

turning any provable equality into a conversion (i.e., computation rule in some sense). ITT
trivially embeds into ETT so our result also extends to ITT to WTT.

Translating ETT to WTT. This work builds on previous work [5] of translating ETT to
ITT: the idea is to take a typing derivation in ETT and produce a translation of the term
(which was a decoration of the original term with rewriting of equalities) and a proof that it is
typable in ITT.

This whole work has been formalised in Coq [2]. We proceed in two phases. For the
first one, we take advantage of our previous formalisation by remarking that the way we deal
with conversion in the target is mainly orthogonal to the translation itself. We thus remove
conversion from the target and obtain one form of WTT with some extra axioms. For the
second translation phase we remove these axioms by realising them using K, funext, and the
necessary computation equalities, thus landing in WTT.

Homotopy. For those concerned by the use of axiom K to interpret equality, it is interesting
to remark that the translation is done in a setting general enough that it can be instantiated to
2-level type theories [1]. By 2-level type theories we mean theories equipped with two equality
types, one that is strict (with K and funext), and one that is the usual unconstrained equality
meaning that in particular it can interpret the homotopy—or even univalent—equality (or path
type).

Our translation can thus go from an extensional 2-level type theory (close in definition and
usage to Voevodsky’s Homotopy Type System [4]) to a weak 2-level type theory, that is a theory
with a strict equality but no conversion.

Conclusion. We provide a translation from ETT to WTT that shows the former is conser-
vative over the latter, thus proving that computation/conversion doesn’t add logical power to
type theory, including in a homotopy setting.
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