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Sized types and guarded recursion are two techniques used to ensure the productivity of
recursively defined elements of coinductive types. Productivity means that each finite part of
the output only depends on a finite part of the input, and it is necessary to ensure consistency of
the type system. Programming with coinductive types becomes less convoluted when employing
these techniques instead of traditional approaches relying on strict syntactic checks. In this
work, we show how guarded recursion can be simulated in Agda using sized types.

Sized types [5] are types annotated with an abstract ordinal indicating the number of possible
unfoldings that can be performed on elements of the type. Sized types are implemented in Agda
and can be used in combination with coinductive records [1] to specify coinductive types.

Guarded recursion [7] is a different approach where the type system is enhanced with a
modality, called “later” and written ., encoding time delay in types. The later modality comes
with a general fixpoint combinator for programming with productive recursive functions and
allows the specification of guarded recursive types. These types can be used in combination
with clock quantification to define coinductive types [2].

To simulate guarded recursion via sized types, we formalize the syntax of a simple type
theory for guarded recursion in Agda, which we call GTT. Then we prove the syntax sound
w.r.t. a categorical semantics specified in terms of sized types1.

The Syntax of GTT

The language GTT is a variant of Atkey and McBride’s type system for productive copro-
gramming [2]. In Atkey and McBrides calculus, all judgments are indexed by a clock context,
which may contain several different clocks. They extend simply typed lambda calculus with
two additional type formers: a modality . for encoding time delay into types and universal
quantification over clock variables ∀, which is used in combination with . to specify coinductive
types.

The judgements of GTT depend on a clock context which can only be empty or contain a
single clock. The types of GTT include the . modality and a modality 2, which is a nameless
analogue of Atkey and McBride’s universal clock quantification. The 2 type former maps a
type in the singleton clock context to one in the empty clock context. Guarded recursive types
are defined using a least fixpoint type former µ. We also have a weakening operation on types,
which maps a type in the empty clock context to one in the singleton clock context, and a
similar operations on contexts. Clouston et al.[4] also studied a guarded variant of lambda
calculus extended with a 2 operation, which they call “constant”. GTT differs from their
calculus in that our judgments are indexed by a clock context and it has the benefit of allowing
a more appealing introduction rule for the 2 modality.

We only allow clock contexts in GTT to contain at most one clock variable, because Agda’s
support for sized types is tailored to types depending on exactly one size, or on a finite but

1The full Agda formalization can be found at https://github.com/niccoloveltri/agda-gtt.

https://github.com/niccoloveltri/agda-gtt
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precise number of sizes, which makes it cumbersome to work with types depending on clock
contexts containing an indefinite number of clocks.

The terms of GTT include operations box and unbox, which are the introduction and
elimination rules for the 2 modality. In Atkey and McBride’s system, these rules correspond
to clock quantification and clock application respectively. In the rule for clock quantification,
they add a side condition requiring the universally quantified clock to not appear free in the
variable context. In GTT, we achieve this by requiring box to be applicable only to terms over
a weakened context.

GTT also has a delayed fixpoint combinator dfix. This term takes as input a productive
recursive definition, represented by a function of type .A → A, and returns an element of .A.
Using dfix we can define the usual fixpoint operator, returning a term of type A instead of .A.

Categorical Semantics of GTT

For the denotational semantics, we use a variation of the topos of trees [3]. Instead of natural
numbers, we take the preorder of sizes as the indexing category of the presheaves. Types and
contexts of GTT in the empty clock contexts are interpreted as sets, while types and contexts
in the singleton clock contexts are interpreted as antitone sized types. The simple type and
term formers are interpreted using the standard Kripke semantics.

Following Møgelberg’s interpretation of universal clock quantification [6], we model the 2

modality by taking limits. For the semantic later modality, we adapt the definition in the topos
of trees to our setting. Given a presheaf A, the action of I A on a size i is given by taking the
limit of A on all sizes strictly smaller than i. The semantic fixpoint operator is defined using
self-application. The productivity of this construction relies on sizes being a well-ordered set.
This gives rise to a consistent interpretation of GTT.
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