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CHAPTER

Introduction

Developing high-quality software is a major challenge, particularly as
project size grows. Ultimately, the burden rests on the software engineer,
but over time, programming languages and development tools have
evolved to aid in constructing quality software.

We may measure quality along many axes. For example, reliability,
usability, flexibility, maintainability, portability, efficiency, security are
commonly listed as desired software traits. We shall take a closer look at
a few of them.

Reliability implies that the program gives consistently correct results.
In particular, if given valid inputs, the program should arrive at a correct
result, and furthermore, the program should not present false results as
if they were correct.

Robustness is sometimes considered part of reliability, and implies that
a program deals appropriately with errors and unexpected situations. If
given invalid data, the program should report it properly, and handle
it in some appropriate way. A program should avoid giving seemingly
valid results for invalid input. Any unexpected error conditions (network
outage, disk error, etc) should be detected and handled.

Flexibility is to what degree the program may be adapted to changing
circumstances without having to rewrite large parts of the code. Flexibility
is of particular importance for libraries, which are typically meant for
heavy reuse - but flexibility in application code is useful as well, to
keep up with new user demands, changing specifications (tax rules, for
example) and changing hardware architectures (for numerical software).

Maintainability is how easy it is to find and remove bugs, and do other
large and small modifications over the lifetime of the software. Program
code is brittle if a change in one place is likely to break the code in
other - often unexpected - places. Brittleness can make modifications so

SOFTWARE
QUALITY

BRITTLENESS
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difficult that scrapping the old code and writing new may be easier than
adapting existing code. The other quality factors mentioned above have
an impact on maintainability, but also other factors such as code clarity
and documentation can also be important for maintainable code.

Software quality isn't and either-or proposition, and we may be able
to live with a less-than-perfect score on the various traits. Most users
have learnt to live with some degree of imperfection in software. Over
time, software engineering methodologies have been developed to ease
the task of creating quality software. Unfortunately, project sizes grow
ever larger, making the task more complicated again. In this dissertation
we will look at language features to support a development method
aimed at creating quality software, with particular focus on flexibility,
reliability, robustness and maintainability.

1.1 The Software Quality Toolbox

Let's start by looking at a few techniques commonly used in developing
quality software. Then, in the following sections, we'll see how we shall
expand on these techniques in the rest of this dissertation.

1.1.1 ABSTRACTION

Abstraction is a crucial mechanism in the development of software. By
breaking programs down into small, independent pieces, we make the
programming task more manageable, and gain the ability to indepen-
dently test and verify individual components as well as the possibility of
replacing or updating parts without disturbing the whole program. This
insight is fundamental to our approach.

Abstraction hides or generalises from unnecessary detail, giving a
higher-level overview that is easier to understand and reason about.
Throughout this dissertation we will exploit this to the advantage of the
computer as well as the programmer, as the compiler and development
tools can take advantage of the increased ease of reasoning of abstract
code.

We may abstract through parametrisation — abstracting away from single
concrete cases, making code work on a wider range of cases — and by
specification — defining the what rather than the how. There are several
kinds of abstraction that may be useful:

Procedural or control abstraction is present in basically all languages,
in the form of subroutines, functions, procedures, methods or simi-
lar concepts. Procedural abstraction has two purposes: to abstract
away the details of how something is done, so we may focus on what
is done (or why), and to paramelrise operations, so we can easily reuse
the same operation on different values. For example, we can use a
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gcd function without caring how it computes the greatest common
divisor, and we would definitely like to be able to compute gcd of
arbitrary numbers and not just, say, 4.

In Chapter 2| we shall look at a way to make definition and use of
procedural abstractions more flexible.

Data abstraction separates the abstract properties of a data type from

its concrete representation and implementation. An abstract dala
type (ADT) provides an interface of operations for manipulating
objects of that type, and all information about data representation
is hidden behind the interface.
In object orientation, data abstraction is achieved through classes,
which bundle a single type together with operations (methods) for
manipulating objects. Abstract classes or interfaces achieve another
layer of abstraction, where multiple classes that implement the
same interface can be used interchangeably.

Error abstraction abstracts over the way errors and exceptional situ-
ations are handled in a program. Exceptions are the most common
form of error abstraction — an exception is thrown when an error
occurs, propagates up the call stack until it is caught by some part of
the program that is capable of handling the exception. Further error
abstraction may be provided using aspect orientation, for example by
declaring common exception behaviour for particular classes or
operations in an aspect, separated from the normal control flow.

In Chapter[s} we introduce alerts, which provide a new form of error
abstraction, where exceptional behaviour is declared as part of the
interface of an operation.

1.1.2  SEPARATION OF CONCERNS

The term separation of concerns was coined by [Dijkstral[1982], and refers to
focusing one’s attention on one aspect of a problem — without ignoring
the existence of other aspects, though. It is a scientific thought process,
and it also becomes a programming practise when the time comes to
formulate one’s thoughts into software.

Though separation of concerns is related to abstraction, it is perhaps
more fundamental. The abstraction mechanisms mentioned above offer
some degree of separation of concerns - by separating the what from the
how, but we can go further. A cross-cutting concern [Douence et al} 2001]
touches many parts of a program, irrespective of module and abstraction
boundaries. Error handling, logging and resource access / locking are
typical cross—cutting concerns; they must be dealt with everywhere and
cannot easily be modularised and hidden away in a separate part of the
program.

ABSTRACT DATA
TypES

EXcEePTIONS

Cross-CUTTING
CONCERNS
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Aspect-oriented programming [Kiczales et al} 2oo1} [Steimann, pood|
is a programming model for dealing with cross-cutting concerns, where
the concerns are separated into advice, which describes how the concern
is to implemented; and pointcuts, which describe the join points — where
the advice should be applied. The join point model of systems like
Aspect] [Kiczales et al} 2oo1] allow selection of join points based on both
static and dynamic criteria.

Lack of separation of concerns leads to tangled code; code which deals
with many concerns at the same time. Tangled code may be cluttered
and difficult to read (though, some degree of tangling may make it easier
to see everything that's going on), but is first and foremost a flexibility
and maintainability problem - making it difficult to adapt the code to
changing circumstances. For example, if error handling is tangled with
normal code, switching error handling policies will require touching
large parts of a program.

We will deal with separation of concerns in a wider sense than aspect
orientation. In the following chapters, we'll look at separating concerns
along the following axes:

Specification, Implementation and Use: For example, implement-
ing an in-place sorting operation, but using or specifying it like a
function returning a fresh value. This is of particular interest in nu-
merical applications, where the most efficient implementation style
doesn't necessarily match the most natural way of using mathemat-
ical abstractions. This is the subject of Chapter} Another example
is separation of an implementation deals with errors from how code
that uses the implementation deals with errors (Chapter|g).

Normality and Exceptionality: Separating code dealing with the nor-
mal computation (e.g., solving the actual problem) from code deal-
ing with errors and other unexpected occurrences.

Implementation and Optimisation: Separating code optimisations
from the basic implementation code, so that we may quickly adapt
the code to different architectures, and also avoid code clutter
and subsequent maintainability issues. According to [Knuth|[1974],
‘premature optimization is the root of all evil'; with various hardware
architectures placing different demands on software, and software
systems growing ever more complex, this is even more true today.
The desire for separating out optimisation lies behind axiom-based
transformation, discussed in Chapter[g]and Section

1.1.3 SPECIFICATION

A specification states the requirements, behaviour and effects of an ab-
straction. Specification may be done informally, through documentation
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written in a natural language, or formally, using a formal specification
language such as cast [Astesiano et al, 2oo2]. The specification may
appear together with the program code, as comments or embedded spec-
ifications — or as a separate document, or a combination, as in Javadoc
comments which are present both in the code and extracted for use in a
separate document.

Specification has multiple purposes:

+ It defines the behaviour of an abstraction, and through that, guides
the process of forming the abstraction. For example, if a proce-
dure abstraction is difficult to specify, that may indicate that the
abstraction boundary has been poorly chosen.

+ It may be used for formal verification of the correctness of an
implementation of an abstraction, and in the verification of code
that uses the abstraction.

+ It can be used as a basis for testing that code behaves according to
the specification.

+ It serves as documentation of how the code is expected to behave.

The ability to verify or test code is important not just while the code

is being developed, but perhaps even more so to determine that later
modifications don't break the expected behaviour.

The Eiffel programming language has pioneered design by contract [Meyer,

1992], where requirements, effects and invariants are stated directly in
the code. This gives a specification of code interfaces, where the im-
plementation and clients of an abstraction enter into a sort of confract —
provided that a client fulfils the requirements of the contract, we can be
assured that the implementation will uphold the postconditions stated in
the contract. The compiler can insert automatic checks so that pre- and
postconditions are checked at run-time.

Systems like Larch [Guttag et al} 1985] allow for complete specification
of programs. Specifications are developed separately, and linked to
the program code through interface languages tailored to particular
languages. With the aid of a theorem prover, an experienced programmer
can make a formal proof of an implementation. This is usually considered
too complicated and time-consuming for mainstream software however,
and is more useful for critical applications or in limited domains, such as
hardware circuits, OS kernels or secure systems [Wing and Gong, [1990l.

Concepts provide a way to specify component interfaces together with
axioms describing the semantics. Unlike Larch, the specification is tied
directly to the abstractions in the program code. We shall discuss the
use of concepts and axioms in more detail below, and in Chapters
Similar ideas are realised as type classes in Haskell [Bernardy et al} |2008;
Hall et al| 1996], where types that support a given set of operations
belong to a type class. Function parameters may then be typed by classes
and be generic in all the types belonging to a type.

FormAL &
INFORMAL

DESIGN BY
CONTRACT

SPECIFICATION &
VERIFICATION

CONCEPTS
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KINDs oF TESTING

TeEST-DRIVEN
DEVELOPMENT

An initial specification is
one in which objects
are equal iff they can

be proven equal using

the equations of the
specification. We will
deal mostly with loose
specifications, however.

SELF-CHECKING
CobE

AxiomM-BASED
TESTING

1.1.4 TESTING

Software testing is a way to check reliability and robustness empirically. Unit
testing is the testing of individual components independently of the rest of
the program and is currently standard practise in software development.
Other types of testing include functionality testing and integration testing.
Unit testing checks that a component performs correctly according to its
specification, integration testing checks that components work together
(e.g., even if all components work correctly according to their specification,
they may not work correctly together, because the specifications may be
faulty), and functionality testing checks that a program actually performs
the tasks it should perform. We will limit our discussion to unit testing.

In test-driven development [Beck| 2oo2] and agile methods like ex-
treme programming (XP) [Beck] 1998, program development is centred
around tests, particularly unit tests. For each new feature to be imple-
mented, tests are written before the implementation code - reducing the
temptation to skip testing after implementation, and providing an easy
way to check whether the new implementation is acceptable. In this way,
unit tests serve as a sort of program specification. Tests are written with
the help of unit testing frameworks like JUnit [Beck and Gamma) 2009]
and integrated into the build process and development tools.

Another way to approach testing is specification-based testing, where
tests are derived either manually or automatically from a program speci-
fication. In the approach of|Antoy and Hamlet| [2000], an initial specifica-
tion is used alongside the implementation. A representation mapping [Hoare,
1972| translates between the abstractions of the specification and the
concrete data structures of the implementation. All objects in the system
contain both a concrete value and an abstract value (in the form of a
normalised term over constructors in the specification), and the equations
from the specification can be evaluated by treating them as rewrite rules
on the abstract value terms. Self-checking functions are made by doing
an additional abstract evaluation according to the specification, and -
using the representation mapping — comparing the result of normal
execution and evaluating the specification. In this way, a whole program
can be described and evaluated in two distinct ways — using program
code and algebraic specification — providing good protection against
programming errors. This is also the disadvantage of the approach - the
implementation work must basically be done twice. The overhead of the
abstract evaluation and comparison can probably be lowered by running
the testing code in a separate thread on a multicore system.

The approach of DAISTS [Gannon et al,, [1981] and similar, later systems
like Daistish [Hughes and Stotts, 1996, QuickCheck [Claessen and Hughes,
2000| and JAX [Stotts et al, 2002] is to use program specification for unit
testing. Axioms from the specification are used as test oracles, which
are fed with test data. The oracles are evaluated using the test data and
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the implementation to be tested - e.g., executing the two sides of an
equation and comparing the results. This is the approach we will explore
in later chapters of this dissertation. Unlike the self-checking approach,
this works with loose specifications which may not give a full description
of program behaviour. Self-checking gives only as good test coverage as
the program being tested, which means library testing has to be done
with carefully written test programs. With the DAISTS approach, coverage
depends on the test data and the completeness of the specification. Using
random test data seems to be a reasonable approach [Hamlet| 1994] -
perhaps combined with some carefully chosen boundary values. Test
coverage — how many axioms are actually tested, and how much of the
implementation code is exercised by the tests — can be measured by a
profiling tool. Ideally, information from the coverage analysis can be fed
back into the test data generation, so that coverage can be maximised.

Formal specification is also useful in other forms of testing not dis-
cussed here - for instance, in protocol testing [Lai, 2oo2].

1.1.5 TooL SuPPORT

Today's programmers expect considerable tool support in their program-
ming and maintenance work. Integrated development environments
(IDEs), such as Eclipse (IBM) and NetBeans (Sun) typically provide lan-
guage sensitive editors, compilers, unit testing frameworks, debuggers,
code inspectors, refactoring tools and code generators for boilerplate
code. Any new language focusing on maintenance and development
convenience will have to provide some form of integrated environment
with support tools. Stroustrup and Reis|[2005| claims that development
of new programming languages will be too costly, and that the way to do
language development instead should be done through extensions and
restrictions of existing, well-supported languages. Though, with modern
language tools, such as GLR parsers [van den Brand et al, 2001} [Visser
1997/, transformation tools [Bravenboer et al, 2006, and IDE building/ex-
tension tools [Kalleberg and Visser, 2007; Klint et al, 2008] this may not
be so much of an issue.

Integrated editors typically support — as a minimum - syntax high-
lighting and automatic indentation. Other desirable features are semantics-
aware search and replace / rename, tool-tips with declaration information,
help system integrated with documentation comments, auto-completion
of names, and auto-generation of boilerplate code such as hashcode
and equals in Java. Refactoring support may include features such as
moving code between classes and abstracting code into functions. The
editor will also typically integrate with debuggers, testing frameworks,
version control, modelling tools and so on, forming a fully integrated
development environment.

IDEs

INTEGRATED
EpiTors
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We will not discuss IDEs much here, development of such tools to
support our development methods is future work. An IDE idea which
we may explore in the future is interactive refinement of code, where the
programmer may give a fairly loose, prototype-like high-level implemen-
tation at first, and then gradually refine it into an efficient implementation
by filling in details such as which data structures to use [Chang et al)
2009|. For example, a program may initially be developed using only
library modules specified as concepts. One may even be able to derive
missing implementation code from a specification. The IDE may then
present various choices to the programmer that fit with the selected con-
cepts, and the programmer may explore the possible configuration space
in interaction with the development environment, integrating feedback
from trial runs.

1.2 Domain, Background & Motivation

Although the techniques discussed here are applicable to software de-
velopment in many domains, our choices have been influenced by the
problems of developing high-performance, numerical software. The
scientific programming and high-performance computing (HPC) com-
munities are faced with particular problems that make the adoption of
modern programming techniques especially difficult.

First and foremost, performance is everything. Scientific programmers
will go to great lengths to squeeze every last bit of performance out of
a supercomputer. The reasons for this are clear; while computers are
now quite cheap, high-end supercomputers are still expensive and are
typically shared by many people. And, when computations take many
days, a few percent speedup can translate into many hours of saved time
- reducing both waiting time and resource usage. Furthermore, lower
resource use can be applied towards solving ever larger problems.

While today’s supercomputers often use mainstream processors, the
hardware architecture is still quite different from a standard desktop com-
puter, with sophisticated communication networks between processors,
and multi-layered memory hierarchies. Some supercomputers employ
special hardware in addition to or instead of regular processors. For
example, the IBM RoadRunner is equipped with Cell processors (also
found in the Sony PlayStation 3), in addition to normal AMD Opteron
processors. Cray’s XT5 series of supercomputers can be equipped with
vector processing units and reprogrammable chips - field-programmable
grid arrays (FPGAS).

Each vendor will usually supply high-performance compilers spe-
cially adapted to their systems. Even so, different systems need careful
programming in order to make full use of them, and porting numerical
applications from platform to platform can be a tedious task.
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The work described here fits in to a larger, long-term project aimed at
developing better software methodologies and tools for programming
numerical software. In particular, a numerical library has been developed,

Sophus, in which the underlying mathematical principles of seismic simu- SOPHUS
lation and partial differential equations have been mapped to high-level

abstractions [Haveraaen et al} 1999|, specified using algebraic specifica-

tion. The library has been implemented in C++, and has been relying on

ad hoc tools to support its programming style.

This is the reasoning behind our choice of C++ as a basis for much
of this research, even though languages like Haskell, Scheme or OCaml
might have been more convenient. C, C++ and Fortran are the main
languages supported by supercomputer vendors and high-performance
compilers, and of these, C++ has the best support for user-defined In some cases, such as
abstractions. for the Cell processor,

Unfortunately, while C++ is great for developing abstractions within f;fl’port fo;(’ﬂfer

. . . . . guages has been
the language, it is a poor choice for experiments with language extension, poor to non-existent.
as it has no extension facility itself, and building or extending a C++
frontend is in itself a huge project [David, 2oogl. This led to the decision
to design a new language, Magnolia, both as a basis for this research,
and as a flexible basis for further research projects. By giving Magnolia
semantics fairly close to C++, we can keep full control over resource
usage and experiment with HPC-oriented optimisations (which would
be difficult in a functional language), and by having the compiler emit C
or C++ code, we can remain compatible with existing high-performance
compilers.

Developing a new language does require some justification though, WHEN TO DEVELOP
as it is a huge project, not to be undertaken lightly. For us, designing a A NEw LANGUAGE
new language is not our main purpose, but rather a means to the end of
exploring novel language features and development methods. To some
degree, the language you're working with will always influence your
development method - if we continued with C++, we would likely end
up focusing on generative template programming and object orientation;
if we worked with Haskell, we would seek functional solutions. With
research on programming methodology, language design follows hand
in hand, and fitting the ideas to an existing language may hamper the
research. The same observation was made by [Liskov| [1993] when the
language CLU sprung out of her research on data abstraction in the early
seventies. As the research matures, though, we may be able to apply the
principles in other languages.

1.3 Magnolia

In this dissertation we shall start developing the Magnolia programming
language, to support a development method based on abstraction, speci-
fication, testing and tools. As discussed in the last section, the need for a
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new language - rather than building upon an existing one - grows out of
a desire to have a language that is easily processed by tools, and is exten-
sible so that we can experiment with new language features. Some of the
features we're interested in are so fundamental to the language design
that adapting an existing language would be hard without rebuilding
much of the infrastructure — and we would then have to struggle with
language features and design decisions which may not be appropriate
for us anyway. Some of our experiments have been done in C++ or C,
but processing these languages (particularly C++) is hard, and integrating
new language constructs with the old sometimes gives less than elegant
results.
Magnolia programs are organised around the following fundamentals:
* A signature is a set of declarations of operations (procedural abstrac-
tions) and types (data abstractions).
* An implementation is a signature together with definitions for its
declarations (operation bodies, data structures).

* A concept is a signature together with axioms specifying the behaviour
of the types and operations. A concept can also provide default
definitions for some or all of its operations.

An implementation models a concept if it shares the same signature (or
a superset of it) and contains definitions consistent with the axioms
of the concept. A single concept may have multiple independent and
interchangeable implementations. A signature morphism maps between
signature differences in concepts and implementations.

Operations can be either functions, which are pure and may not per-
form parameter updates — or procedures, which may update parameters.
Procedures may be either pure or impure — an impure procedure is
allowed to access state outside of its parameters — such as doing I/0 or
user interaction. Through functionalisation and mutification we can treat
procedures as functions and vice versa — this is the subject of Chapter|o]

Data abstraction comes in the form of abstract types (in signatures
and concepts) and data structures (in implementations). Types and data
structures may be parametrised, and parameters may be constrained
according to concepts. An implemented type has a data structure, a
data invariant and an equivalence relation. Access to data structures
is only available to implementation code upholding the data invariant
and equivalence relation — normally, this is code defined in the same
module. This corresponds to the data hiding / encapsulation idea in
object orientation — though we make data invariants and equivalence
tangible entities that should be defined for all types.

1.3.1 THE MAGNOLIA DEVELOPMENT METHOD

Program development with Magnolia should start with domain engi-
neering — exploring which concepts are fundamental to the problem
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being solved. We may then select appropriate abstractions for dealing
with those concepts, giving us a specification, consisting of concept dec-
larations with associated abstract data types, operation signatures and
axioms.

The specification tells us which abstract data types are needed — we
then need to provide data representations and operations for them:; i.e.,
provide implementation code that models the concepts. Code should be
written using concepts rather than concrete implementations in depen-
dencies - the idea being that different modules implementing the same
concept should be interchangeable. For each implementation we must
choose the most appropriate way of modelling the concepts - this may
be different for different implementation of the same concept, and the
programmer has a fair degree of freedom in this choice. Axiom-based
testing is used to check the implementation, and program development
proceeds iteratively.

Concerns such as error handling and optimisation should be kept sep-
arate in both design and implementation, and dealt with by appropriate
abstractions and language features. In particular, premature optimisation,
and optimisation by breaking abstraction barriers should be avoided.

Program configuration consists of picking the right set of implemen-
tation modules among those that model a program’s concepts - for
example, choosing between sequential and parallel implementations
depending on available hardware. Since the implementations are known
to satisfy certain axioms, the compiler is free to apply high-level optimi-
sations consistent with the axioms. Such optimisation opportunities are
typically missed in traditional compilers, which rely on program analysis
to uncover program properties.

The Magnolia language itself is discussed in more detail in Chapter [¢]
Here we will just give quick overview of the most important features, to
provide some background for the following chapters.

1.3.2 CONCEPTS

Concepts and axioms make the integration of specification and imple-
mentation in program development easier. A concept consists of types,
operations and axioms. For example, the following concept specifies a
monoid:

concept Monoid(type T) extends Semigroup(T) {
// function T binop(T, T); -- from Semigroup
function T neutral();
axiom Identity(T x) {
assert binop(x, neutral()) == x;
assert binop(neutral(), x) == Xx;

}3

DomAIN
ENGINEERING &
SPECIFICATION

[MPLEMENTATION

TESTING

SEPARATION OF
CONCERNS

CONFIGURATION

11
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It inherits all the properties of the semigroup concept, - including the
binary operation binop — and specifies that the constant operation neutral
should be available on the type T. It also gives a single axiom Identity,
stating that binop(x, neutral) = x and binop(neutral, x) = x for all x € T.
The full expressive power of the language is available to specify axioms
and axiom conditions — but some use cases require simpler axioms, like
conditional equations used in generating rewrite rules.
We may provide an implementation of rationals:

type rational = struct { int num; int denom; };
define rational _+_(rational a, rational b) = ...;
define rational zero = ...;

and state that our implementation models the Monoid concept, with + as
the binary operation and zero as the neutral element:

model Monoid(rational) {
define rational binop(rational a, rational b) = a + b;
define rational neutral = zero;

}

The body of the model declaration gives renamings — a signature morphism
mapping between names used in the implementation and those used in
the concept.

Stating that the implementation Rational models Monoid implies that
it satisfies the Identity axiom, and any axioms from the Semigroup concept.
Once we extend our selection of concepts with other algebraic classes, we
may instead state that Rational models Ring, which has more operations,
and also gives us laws like distributivity and commutativity, etc. We can
also create more implementations of Ring, and whenever we need a data
type with ring operations, we can use Ring.T and obtain generic code
that will work with any ring implementation.

1.3.3 AxioM-BASED TESTING

By having a full-featured implementation language and allowing un-
restricted expressions in axioms, full formal verification of program
correctness may not be possible. Instead, we fall back to using the
program specification as a basis for testing.

Testing based on algebraic specification has been known since the
DAISTS system [Gannon et al,, 1981] in the early eighties, in which con-
ditional equations over the functions defined in a program were used
as test oracles. Combined with a simple test data description language,
DAISTS provided a tool for specification based unit testing. Experiments
with DAISTS were promising, and in recent years similar ideas have
been explored; for instance, Daistish for C++ [Hughes and Stotts| 1996],
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QuickCheck [Claessen and Hughes, 2000| for Haskell, JAX [Stotts et al)
2002| and JAXT [Haveraaen and Kalleberg} 2008] for Java.

Axiom-based testing is based on the idea that axioms are Boolean
expressions that will evaluate to true for all possible values of the axiom
variables, if the axiom holds for the current implementation. Generating
a test oracle from an axiom is a straight-forward conversion of the axiom
into a Boolean function. For example, for the Identity axiom:

forall type T where Monoid(T)
function bool Identity_oracle(T x) =
binop(x, neutral()) == x & & binop(neutral(), x) == x;

The above oracle function is a template that will work for any type T
in an implementation that models Monoid. The names from the concept
(binop, neutral) are replaced with names from the model declaration (e.g,,
+ and zero for Rational) when the code is processed. This oracle returns a
bool - a more sensible version would return one of three possible values:
true/success, false/failure and unknown (in case of conditional axioms when
the condition fails and the axiom is never tested).

1.3.4 PARTIALITY, FAILURE AND GUARDING

A partial operation is one that is undefined for some input values. For ex-
ample, division by zero is undefined, making division a partial operation.
Similarly, some operations can fail unexpectedly, for example, due to disk
or network error. How we wish to deal with partiality can differ from
case to case, even with the same operation. With division by zero, we
may sometimes be able to sensibly approximate the result by dividing
the derivatives instead. In other cases we may want to abort the program,
or ask the user to supply a corrected value.

In program code, partiality and failure conditions are typically dealt
with either by specifying that an operation should never be called with
inappropriate arguments, or by signalling an error using some mecha-
nism like exceptions or an error return code. In robust code, improper
arguments should be reported as an error, or undefined behaviour may
result. However, error checking and reporting can lead to an excess of
code for dealing with errors, obscuring the code doing actual work, and
leading to maintainability issues.

On the specification side, partiality can be similarly dealt with by
making operations total, and having them yield a special error result
on failure. This also leads to clutter and makes specifications more
complicated. Another approach is guarded algebras [Haveraaen and Wagner]
2000|, where partial operations can be guarded by some condition that
ensures that the operation is total as long as the condition holds. Axioms
are then implicitly guarded by the assumption that the guard conditions
hold.

TesT ORACLES

PARTIAL
OPERATIONS

GUARDS &
PRECONDITIONS
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We can model this approach in implementations by using preconditions.
Precondition checks can be automatically inserted in the code, to ensure
that all arguments are properly checked. We are still left with the problem
of what to do if a precondition check fails - in the specification world, we
may be able to pretend that the guards always hold, but in the real world,
things go wrong from time to time. The most common approaches are
exceptions |[Goodenough) 1975 and error return values. Exceptions have
the advantage that the default behaviour is to propagate errors, making
it unlikely that an error goes undetected. Error handling code can still
be quite intrusive, though. With return values, the default is to ignore
the error, which is in most cases not a very robust choice.

In Chapter 5} we will introduce alerts, which provides a way to specify
how errors should be handled regardless of how they are reported.
Preconditions can trigger alerts directly, and handlers can deal with the
error in a sensible way, for example by substituting a default value.

1.4 Method and Outline

The results in this dissertation have been arrived at through the following
research method:

Identify and explore a problem or problem area

—

Propose a solution

Implement the solution to verify its feasibility

H N

Evaluate the solution to determine its effectiveness. With a bit of
luck we may also find that the solution solves other problems.

5. Iterate, with feedback from earlier stages.

The first and second steps may be switched, particularly in the case where
have a solution to one problem, and would like to explore its usefulness.
The work on axiom-based testing and optimisation is (at least partly)
based on this inverted method.

Note, though, that as this work forms part of a larger, long term
research project, providing a proper evaluation at this point is premature.
In particular, any complete evaluation of a development method or a
programming language should include experience gained through real-
world development and user experiences, both of which are beyond the
scope of this work.

We will finish this introduction with an overview of the remaining
chapters. As the papers in this dissertation are a result of cooperation, |
will point out what I am responsible for.

Chapter 2] is about how procedures and functions can be related through
the use of functionalisation and mutification. By mapping between
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algebraic and imperative signatures, we can easily link implementa-
tion code with algebraic specifications in the form of concepts. This
work stems from the problem of how to combine an algebraic pro-
gramming style with the efficiency demands of high-performance
computing; though it also neatly provides increased separation of
concerns and is useful in generic programming.

The chapter is a reprint of Interfacing Concepts: Why Declaration Style
Shouldn’t Matter (LpTA'09), co-authored with Magne Haveraaen. I
am the main author with the work being supervised by Magne
Haveraaen, who also came up with the original idea. The work
builds on earlier work on mutification, by [Dinesh et al/[l2000.

Chapter 3] is a reprint of Axiom-Based Transformations: Optimisation and

Testing (LDTA'08), also co-authored / supervised by Magne Haveraaen.
The chapter explains how axioms, part of the concept proposal for
C++0x, can be used as a basis for code transformation, optimisation,
and testing.
To some degree, this paper is an answer to the problem of ‘we have
a nice formal specification — now, what can we do with it?. The
work on optimisation deals with the problem of achieving high
performance from code that makes extensive use of abstraction.
The work on testing is a continuation of initial work by |Haveraaen
and Brkid 2005, and is further expanded in Chapter[y] (testing) and
Chapter [7| (transformation).

Chapter 4] takes a closer look at axiom-based testing for C++. The chap-
ter is a reprint of The Axioms Strike Back: Testing with Concepls and Axioms
in (++ (GPcE'09), written together with Valentin David and Magne
Haveraaen. The paper is a team effort, with me being responsible for
design work and writing, Valentin doing implementation and C++
details, and Magne supervising and working on data generation.

Chapter 5| introduces the alert and alert handler constructs for dealing
with failure and partiality. The paper was presented at GpcE'06
as Stayin’ Alert: Moulding Failure and Exceptions to Your Needs, and was
largely a team effort with design and planning done in together
in meetings. I focused on design, Karl Trygve Kalleberg on related
work, Valentin David did the prototype implementation and Magne
Haveraaen supervising and supplying ideas.

The remaining chapters (and this introduction) are solely authored by

me:

Chapter 6] describes Magnolia and the Magnolia implementation as
it was when this dissertation was finished. The implementation
is mainly my work, and I am also responsible for much of the
design, with Magne Haveraaen and Valentin David as the main

15
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other contributors (especially when it comes to concepts). Further
implementation and design is a team effort.

Magnolia is a spin-off from the other research in this dissertation,
motivated by the need to implement and experiment with new
language constructs.

Chapter |7| describes an experimental extension to Magnolia for creating
language extensions and controlling the compilation process. The
chapter is a preprint of Yet Another Language Extension Scheme (SLE '09),
and may differ from the final published version.

Chapter 8] puts the dissertation into context by reviewing selected re-
lated work in the areas of language development, abstraction and
specification; as well as discussing issues of language design, and
outlining directions for future work. More detailed related work
discussions are spread out in the various chapters.

Chapter|g| is the conclusion.



CHAPTER

Playing with Signatures

The same algorithm may often be realised in several different ways. For
example, sorting can be seen as reordering a sequence, or as producing a
new sorted sequence from an input sequence. The former maps naturally
to an imperative procedure, while the latter maps naturally to how we
would specify sorting in an algebraic specification. In this chapter, we
introduce mutification and functionalisation, which allow us to map back
and forth between imperative and algebraic code.

The imperative style is often more efficient, especially with numerical
software that deals with large amounts of data. Our technique allows
algorithms to be implemented imperatively, but used algebraically in
both program specification and code. The algebraic style code can then
be translated — or mutified — automatically to imperative style code. The
ability to link imperative-style code to an algebraic specification will
prove quite important in the coming chapters.

This paper was presented at LptA'09, although the basic idea dates
back more than ten years, originally envisaged as a way to write math-
intensive code in familiar notation while still achieving good perfor-
mance [40].

17
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Interfacing Concepls
Why Declaration Style Shouldn’t Matter

ANYA HELENE BAGGE MAGNE HAVERAAEN
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ABSTRACT

A concept (or signature) describes the interface of a set of abstract types
by listing the operations that should be supported for those types.
When implementing a generic operation, such as sorting, we may
then specify requirements such as ‘elements must be comparable’ by
requiring that the element type models the Comparable concept. We
may also use axioms to describe behaviour that should be common
to all models of a concept.

However, the operations specified by the concept are not always
the ones that are best suited for the implementation. For example,
numbers and matrices may both be addable, but adding two num-
bers is conveniently done by using a return value, whereas adding
a sparse and a dense matrix is probably best achieved by modi-
fying the dense matrix. In both cases, though, we may want to
pretend we're using a simple function with a return value, as this
most closely matches the notation we know from mathematics.

This paper presents two simple concepts to break the notational
tie between implementation and use of an operation: functionalisa-
tion, which derives a set of canonical pure functions from a proce-
dure; and mutification, which translates calls using the functionalised
declarations into calls to the implemented procedure.

This is a reprint of: Bagge, A.H., and Haveraaen, M. 2009. Interfacing Concepts: Why Declaration
Style Shouldn't Matter. In Proceedings of the Ninth Workshop on Language Descriptions, Tools
and Applications (York, UK, March 28 - 29, 2009). LDTA '09. To appear in Electronic Notes
in Theoretical Computer Science (www.elsevier.nl/locate/entcs), Elsevier B.V. Printed by
permission.
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using a library, and the
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2.1 Introduction

Concepts is a useful feature for generic programming, allowing program-
mers to specify the interface and behaviour of abstract data types. The
concept feature was introduced to C++0x (the upcoming C++ standard
revision) in order to give clearer error messages in templated code, and to
provide a way to more easily glue together generic code. Similar features
are available in other programming languages.

In this paper we will look at concepts in the context of the Magnolia
programming language, an experimental language loosely based on C++.
Concepts form an integral part of Magnolia, and the programmer is
encouraged to specify code dependencies in terms of concepts, and use
concepts to specify the interface of implementation modules. Concepts
are used to hide implementation details, so that one module may be
replaced by another modelling the same concept. Even ‘standard’ data
types like numbers and strings are handled through concepts, allowing
for the possibility of replacing or using different implementations of basic
data types.

If we are to hide away different implementations behind a common
interface, we must consider that different situations call for different
programming styles. Operations on primitive data types, for example, are
conveniently handled using return values, whereas the corresponding
operation on a big data structure may be better handled by updating it.

Also, the needs of a library implementation may differ from the
needs of the code that uses it. For example, a mathematical problem
may be easily expressed with function and operator calls, whereas a
communication protocol could be better expressed as a sequence of
procedure calls. As a library user, however, you are locked to the style
the library writer chooses to support — and your preferred style may be
less convenient to implement, or less efficient, and thus not supported.

C++ is an example of a language where the proliferation of notational
variants is especially bad (or good, depending on your point of view) —
with both member and non-member functions, operator overloading,
and a multitude of parameter passing modes (value, reference, const
reference, pointers). Functional languages like ML and Haskell are less
problematic since the languages are already restricted to functional-style
declaration forms.

Generic and generative techniques are hampered by a proliferation of
declaration forms (prototypes, in C++ terminology) for implementations
of the same abstract idea. For instance, implementing generic algorithms,
such as a generic map operation for arrays, is made more difficult when
the declaration forms of the element operations vary — so we end up
with a multitude of different map implementations, e.g., one for arrays of
numbers and one arrays of matrices.
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For C++0x, the problem of having many different declaration forms
for what is essentially the same operation is solved by allowing the
implementer to add explicit glue code in the concept map (a declaration
that some given types model a given concept). In constrained template
code, the user will use the declarations from the concept and need
not know anything about how the implementation is declared. Note,
however that this convenience is available in constrained template code
only.

In this paper, we show how this is solved in Magnolia by separating [MPLEMENTATION
the implementation signature from the use signature, allowing different call & Usk
styles to be used independently of the implementation style. By letting SIGNATURES
the compiler translate between different call styles, we gain increased
flexibility for program processors — of both the human and software
variety. We call these translations functionalisation and mutification.

We will start out by giving an intuition about our method, before we
define it more formally later in the paper. We illustrate our points with
examples in Magnolia, which has functionalisation and mutification as
basic, built-in features.

Magnolia supports imperative procedures, which are allowed to update MAGNoOLIA
their arguments, and pure functions, which are not. A sample Magnolia
procedure declaration looks like this:

procedure fib(upd int n);

The procedure fib takes a single parameter, an updatable integer, which is
used both for input and for returning a result.

Functionalisation takes a procedure declaration, and turns it into a FUNCTIONALISATION
function declaration. The functionalisation of fib is:

function int fib(int n);

- a function with an integer parameter, returning an integer. This is
the declaration that would typically be used in a concept. A different
declaration of the £ib procedure - like this, for example,

procedure fib(obs int n, out int r);

— which observes the parameter n and outputs the parameter r, yields the
same functionalisation.
Functionalising the procedure declaration gives us a function we
can call from Magnolia expressions, but no implementation of that
function. This is where mutification comes into the picture. Mutification =~ MUTIFICATION
takes an expression using a functionalised procedure, and turns it into
a statement that calls the procedure directly. Here we show a call for
each of the declarations above, the functional form (in the middle) can
be transformed to either of the procedural calls shown.

21
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y = X; _ . . . .
call fib(y): — y = {ibx); — call fib(x,y);

Why would we want to implement an algorithm with one declaration
form and use it with another? As explained above, the implementation
side is often dictated by what fits with the problem or algorithm - in-
place sorting and updating matrix operations, for instance, will require
less memory and may run faster than versions that construct new objects.
There are several reasons why an algebraic style is useful on the user
side:

Flexibility: Multiple implementations with different characteristics can
be hidden behind the same interface. This is particularly useful
in generic code and when building a basis of interchangeable
components.

Ease of reasoning: Not just for humans, but also for compilers and
tools. For example, axiom-based rewrite rules [7; 90; [T47] allow
programmers to aid the compiler's optimisation by embedding
simplification rules within a program. Such rules are much harder
to express with statements and updating procedures.

Notational clarity: certain problems are most clearly expressed in an
algebraic or functional style, which is close to the notational style
of mathematics, a notation developed over the centuries for clarity
of expressions. Many formal specification languages, e.g., the Larch
Shared Language [68] and cast [T15] use the functional style due to
its clarity. A program written in an algebraic style is easy to relate
to a formal specification.

Using a single declaration form makes it possible to state rules such as
“+ and x are commutative for algebraic commutative rings”, and have it
apply to all types satisfying the properties of commutative rings (i.e., all
types modelling the concept CommutativeRing) — independently of whether
the implementation uses return values or argument updates.

We may in principle choose any declaration form as the common,
canonical style - we have chosen the algebraic style for the reasons above,
and because it is less influenced by implementation considerations (such
as the choice of which argument(s) should output the result). As we
shall see, this choice does not mean that we must enforce an algebraic
programming style.

We will now proceed with a deeper discussion of the matter. The
rest of this paper is organised as follows: First, we introduce the nec-
essary features of the Magnolia language (Section [2.2). Then we define
mutification and functionalisation, and explain how they are applied to
Magnolia programs (Section [2.3). We continue by discussing some limita-
tions and pragmatic considerations, and the benefits and possibilities of
the approach (Section [2.4).
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2.2 The Magnolia Language

This section gives a brief overview of the Magnolia Programming Lan-
guage. Magnolia is based on C++, with some features removed, some
features added, and some changes to the syntax. We have designed it
to be easier to process and write tools for than C++ (this is actually our
main reason for using a new language, rather than working with C++),
while being similar enough that we can easily compile to C++ code and
use high-performance C++ compilers.
The following features are the ones that are relevant for this paper:
Procedures have explicit control over their inputs and outputs: they
are allowed to modify their parameters, according to the parameter
modes given in the procedure declaration. The available modes are
observe for input-only arguments, update for arguments that can be
both read and written to, and output for output-only arguments.
These modes describe the data-flow characteristics of the procedure
- which values the result may depend on, and which variables may
be changed by the procedure. The parameter passing mode (e.g,,
by value, by reference, by copying in/out) is left undefined, so the
compiler is free to use the most efficient passing mode for a given
data type. Procedures have no return values, the result is given by
writing to one or more arguments. Procedure calls use the call
keyword, so they are easy to distinguish from function calls.

Functions have a single return value, which depends solely on the
arguments. They are not allowed to modify arguments. Operators
can be overloaded, and are just fancy syntax for function calls.

Functions and procedures are known collectively as operations.

Data types are similar to C++ structs and classes, though there are no
member operations - everything is treated as non-members. There
is no dynamic dispatch or inheritance yet, and we won't consider
that in this paper.

Concepts describe the interfaces of types by listing some required opera-
tions, axioms on the operations and possibly other requirements. A
set of types is said to model a concept if the operations are defined
for those types and the requirements are satisfied. For example, the
following defines a simple ‘Indexable’ concept:

concept Indexable(A,I,E) {
E getElt(A, I);
A setElt(A, I, E);

axiom getset(A a, I i, E e) {
assert getElt(setElt(a, i, e), i) == e;
}

FEATURES

We have avoided using
operators in the
example to keep the
syntax simple
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Indexable has three types, and array-like type A, an index type I
and an element type E. The concept defines two functions, getElt
and setElt, and a simple axiom relating the functions.

Generics: Generic programming is done through a template facility sim-
ilar to C++'s. Type parameters may be constrained using concepts,
so that only types modelling a given concept are acceptable as
arguments.

No Aliasing: Aliasing makes it difficult to reason about code, because
it destroys the basic assumption that assigning to or updating one
variable will not change the value of another. Functional languages
avoid this problem by simply banning the whole idea of modifying
variables. We feel disallowing modification is too high a price to
pay, particularly when working with numerical software and large
data structures, so Magnolia has a set of rules designed to prevent
aliasing while still having most of the freedom of imperative-style
code:

+ No pointers or references. Any data structures that need such
features must be hidden behind a ‘clean’ interface. The pro-
grammer must take responsibility for ensuring that the imple-
mentation is safe.

* There is no way to refer to a part of a data structure. For
example, you can't pass an element of an array as a procedure
parameter — you must either pass the entire array, or the value
of the element. Thus, changing an object field or an array
element is an operation on the object or array itself (unlike in
C++, where fields and elements are typically I-values and can
be assigned to directly). This is why the setElt operation in
the Indexable concept above is declared as a function returning
an array, and not returning a reference to an element as is
typical in C++.

+ If a variable is passed as an upd or out argument to a procedure,
that variable cannot be used in any other argument position
in the same call.

2.3 Relating Functions and Procedures

We will now establish a relationship between Magnolia functions and
procedures, so that each procedure declaration has a set of corresponding
function declarations given by functionalisation (Definition [1), and every
expression has a corresponding sequence of procedure calls given by
mutification (Definition ).



2.3. Relating Functions and Procedures

2.3.1 FUNCTIONALISATION OF DECLARATIONS

Definition 1 Functionalisation, F, maps a procedure declaration to one or more FUNCTIONALISATION
function declarations. This makes procedures accessible from expressions, at the sig-

nature level. Since a procedure can have multiple output parameters, and a function

can only have one return value, we gel one function for each output parameler of the

procedure (numbered 1 o i):

Fi(Proc(n,q)) = Fun(n;, Out(q);, In(q)) (2.1)

For clarity, we use abstract syntax in the definitions, with PrRoc (name, proc-parameter-
list) being a procedure declaration, and FUN (name, return-type, fun-parameter-list)
being a function declaration. In and Out gives the input and output parameters of a

procedure, respectively: We're using list
comprehension
— notation (similar to set
In(q) [t | <m' t> came {ObS' upd}] notation), as in Haskell
Out(q) = [t| (m,t) < q,m € {out, upd}] or Python.

where m is the parameler mode and 1 is the parameter type.
We can then obtain the list of functions corresponding to a procedure:

F(Proc(n,q)) = [Fi(Proc(n,q)) |i =1...len(Out(q))] (2.2)

Note the similarity between functionalisation and standard techniques for
describing the semantics of a procedure with multiple return values. This
is the link between the semantics of the procedure and the functionalised
version, and the key in maintaining semantic correctness between the
two programming notations.

For example, the following procedures:

procedure plus(upd dense x, obs sparse y);
procedure plus(obs int x, obs int y, out int z);
procedure copy(obs T x, out T y);

functionalise to the following functions:

function dense plus(dense x, sparse y);
function int plus(int x, int y);
function T copy(T x);

which is what would be used in a concept declaration. We keep the
namespaces of functions and procedures, as well as their usage notations
(expressions versus calls), distinct, thus avoiding overloading conflicts. For
multi-output procedures, the functions get numbered names — Magnolia
also allows the programmer to choose the function names, if desired.
Note that the inverse operation - obtaining a procedure from a PROCEDURALISATION

function - is not straight-forward, since there are many different mode
combinations for the same function declaration. However, we could
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MUTIFICATION

define a canonical proceduralisation, P, in which every function is mapped
to a procedure with one out parameter for the return value and one obs
parameter for each parameter of the function:

P(Fun(n,t',[ty,..., 1;]) = Proc(n, [(obs, 1;),..., (obs, 1), (out,t')]) (2.3)

2.3.2 MUTIFICATION

Definition 2 (Mutification of Assignment) Mutification turns a sequence
of function calls and assignments into a procedure call. Given a procedure p =
Proc(n, q):

M (AssioN(y, Arpiy(f, x))) = i ; CatL(Proc(n, q), x’), where F(Proc(n, q)) = f,

and (x’,i) = unzip (q where x = | x )

26

[ (obs,s) — (x,Nor)ifx & y
where x = | x
(obs,s) — (t, TMPVAR(L, X)) ifx € ¥

(out,s) — (| y,Nop)
(upd,s) — (y, AssIGN(y, | x)),

wherey = |y ]
andy; =y <= j=kfordly,yccy (4

The pattern AssigN(y, AppLy(f, X)) recognises a sequence of assign-
ments, one for each upd or out argument of p. The list of functions
called, f, must match the functionalisation of p, in sequence. Dummy
assignments can be inserted to accomplish this, if no suitable instructions
can be moved from elsewhere. All variables (y) assigned to must be
distinct.

We then construct a new argument list x’ and a list of setup statements
i by examining the formal parameter list of p, picking (|) an argument
from x in case of obs, picking from y in case of out, and picking from y
and generating an assignment AssiGN(y, x) in case of upd. Nop denotes
an empty instruction, TMPVAR creates a temporary variable, and AssiGN
denotes an assignment. To avoid aliasing problems, a temporary is
needed to store the value of an obs argument which is also used for
output.

Generating assignments for upd arguments is necessary, since the
variables y may have different values than the corresponding variables
in the original argument list. This may generate redundant AssiGN(y,y)
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instructions when y is already in an update position - these can trivially
be eliminated at a later stage.
For example, if we have a procedure p(outt,,updt,, obsts) and f,, f, =

F(p):

£1@3, 2); R b = 3;
=f 2@3, 2); call p(a, b, 2);

[oui ]
I

2.3.3 FUNCTIONALISATION OF PROCEDURE CALLS

Given a canonical mapping of function declarations to procedure declara-
tions (i.e., proceduralisation, as sketched in Section , we can functionalise
procedure calls — transform them to function calls and assignments.
This means we lose control over some aspects of the program, such as
the creation and deletion of intermediate variables. However, since we
argue that expression-based programs are much easier to analyse and
process by tools, it would be useful to obtain something as close to a  TRANSLATING TO
pure expression-based program as possible — even if we will eventually =~ EXPRESSIONS
mutify it again to obtain imperative code. Thus, the choice of language
form to work on becomes one of convenience. Our experience is mostly
with high-level optimisations that take advantage of algebraic laws -
which is a prefect fit for algebraic-style Magnolia. The same can be seen
in modern optimising compilers, which will typically transform low-level
code to and from Static Single Assignment (SSA) form depending on
which optimisation is performed.

Definition 3 (Functionalisation of Procedure Calls) For a procedure

p = Proc(n,q):
F(Carr(p,x)) = [Fi(Carr(p,x))|i = 1..len(Out(q))] (2:5)
Fi(Carr(p, x)) = AssiGN(y;, Aepry (Fi(p), x')) (2.6)

where y = Outg(x) and X" = Ing(x). The ordering of assignments is immaterial,
since the requirements on procedure call arguments ensures thal the variables y are
distinct from x’.

To functionalise a procedure call CALL(11, q), we build a new argument list x” of
all the input arguments, then generate one assignment for each output argument. Ing
and Outg select the input and output arguments of an actual argument list with
respect to a formal parameler list q:

(x, (m,1)) < (x,q) if m € {obs,upd}]
(x, (m,t)) — (x,q) if m € {out,upd}]

For example, given a function int f(int), we may use the canon-
ical proceduralisation to obtain and use a procedure p(obs int,

Ing(x) = [x|
Outy(x) = [x|

27
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out int). Since (2.3) only gives us single-output procedures, we will
only get a single assignment for each call to p. Using (2.5) above, we can
functionalise the following statements:

call p(5, x); X
call p(x, y); y

£(5);
f(x);

Data-flow analysis will allow us to transform the code toy = £(£(5)),
possibly eliminating the x if it is not needed.

2.3.4 MUTIFICATION OF WHOLE PROGRAMS

Mutification has strict assumptions about the instructions it operates on,

so we may need to perform instruction reordering and manipulation to

make a program suitable for mutification:

Nested expressions must be broken up. This is done by moving a
sub-expression out of its containing expression and assigning it to
a temporary variable. When functionalising a program, the reverse
operation (expression inlining) can be applied to make as deeply
nested expressions as possible, thus enabling easy application of
high-level transformation rules.

Calls in control-flow statements must be moved outside. Mutifi-
cation can't be applied directly to calls in conditions, return-
statements and so on. Introducing a temporary, as above, we
replace the call with a reference to the variable (taking care to
recompute the value of the variable for each loop iteration in the
case of loops).

Multi-valued procedures should be specialised. If we can't fill up
all the outputs of a multi-valued procedure, we create a sliced
version, with only the needed outputs, and with any unnecessary
computations removed.

Instructions should be reordered to take advantage of mutification
to a multi-valued procedure call. In general, if the instruction i,
does not depend on the result of i;, and does not change variables
in i;, it can be moved in front of i,.

If reordering fails and slicing is also impossible - for example, if
the procedure implementation isn't available — we must insert a
dummy call with a throw-away result.

Instructions may be made independent of each other by introduc-
ing a temporary. For example, if we want to move the second
instruction in front of the first, we can store the value of y in a
temporary variable:

28
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B . int t = y; int t = y;
e — x = £ — ¥ =90
’ y = 9(3); x = £(t);

Dig up your old compiler book! Instruction reordering and schedul-
ing is well-known from compiler construction, and similar tech-
niques can be applied here. For example, reordering assignments
to take advantage of a multi-valued procedure call is not unlike re-
ordering instructions to take advantage of parallel execution paths
in a processor.

Many familiar optimisation techniques like constant propagation,
value numbering, common sub-expression elimination, dead vari-
able/code elimination and so on can readily be applied to Magnolia
programs, either by first converting to a SSA (static single assign-
ment) form, or by using simple data-flow analysis [T18]. Pure
functions and explicit information about input and outputs of
procedures makes it a lot easier to apply optimisations.
Figure j.1| shows an example program before and after mutification,
using the actual intermediate output of the mutification stage of the
compiler.

2.4 Discussion

2.41 WORKING WITH CONCEPTS AND AXIOMS

The main benefit we have seen so far (apart from the somewhat fuzzily
defined notational clarity) is in the relationship between code and speci-

fication, particularly with the concept feature. ALGEBRAIC
* Most operations defined in a concept will have an algebraic-style = SPECIFICATION &
declaration (with the exception of certain things like 1/0). There is STYLE

no need for deciding whether to define a functional-style interface,
or an OO-style interface or an imperative-style interface.

+ Axioms defined in concepts map directly to algebraic specifications.
In C++, axioms for imperative-style concepts are typically writ-
ten using the comma operatorlin C++ (sequential composition of
expressions):

axiom getset(A a, I i, E e) {
setElt(a,i,e), getElt(a,i) == e;
3

+ In most cases, there is a built-in well-defined mapping between
procedure declarations and the function declarations used in a
concept. As long as program code is written against the concept
interfaces, axioms are easily related to program code. In C++, small
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procedure fib(out int f, obs
{
if(n < 2)
f = n;
else
f = fib(n-1) + fib(n-2);

procedure fib2(upd int n)

{
if(n < 2)
e1;e
n = fib2(n-1) + fib2(n-2)
}

FiGURE 2.1: Left: Two different variants of a recursive Fibonacci procedure. Right: Re-
sults of mutifying the two procedures (actual intermediate output from the compiler).
Note that £fib2 - using an upd parameter - requires fewer temporaries than fib,
which uses an out/obs combination. The notation _+_(a,b) is simply a desugared
function-call variant of an operator call a + b, and call _+_(a,b) is an updating

int n) procedure fib (out int f, obs int n) {

bool a_0;

call _<_(a_0, n, 2);

if(a_0)
f = n;

else
int c_0;
c_0 = n;
call _-_(c_0, 2);
int b_0;
call fibonacci::fib(b_0, c_0);
int d_0;
d_0 = n;
call _-_(d_0, 1);
call fibonacci::fib(f, d_0);
call _+_(f, b_0);

}

procedure fib2 (upd int n) {
bool e_0;
call _<_(e_0, n, 2);
if(e_0)

else
int £_0;
f 0 = n;
call _-_(£.0, 2);
call fibonacci::fib2(£_0);
call _-_(n, 1);
call fibonacci::fib2(n);
call _+_(n, £.0);

}

procedure call, similar to a += b in C++.

30



2.4. Discussion

wrappers are often required to translate between the declaration
style in the concept and that of the implementation. This indirection
makes it much harder to relate axioms to actual program code, for
example for use as rewrite rules [147l.

Axiom-based rewriting [7] is a convenient way to do high-level opti-
misation by using equational axioms as rewrite rules - similar to how
algebraic laws are used to simplify arithmetic expressions. With code
based on pure, well-behaved functions and no aliasing, this is very simple
to implement, and rules can be applied without any of the complicated
alias analysis that are part of modern compilers.

Note that while this work complements the concept feature, it is by
no means dependent on it, and will work equally well without.

2.4.2 LIMITATIONS OF MUTIFICATION

Mutification and functionalisation have some limitations. We are basi-
cally hiding imperative code behind an interface of pure functions, and
if we are to do this without costly overhead, what we're hiding must be
reasonably pure. This means that:

* Procedure results can only be influenced by input arguments.

+ A procedure can have no other effect on program state than its
effect on its output arguments.

* Objects used as function arguments must be clonable - i.e., it must

be possible to save and restore the complete state of the object.
The two former limitations rule out procedures operating on global
variables. The latter rules out things like stream I/O and user interaction.

Global variables are problematic because they interfere with reasoning
- introducing unexpected dependencies or causing unexpected side-
effects. This breaks the simple algebraic reasoning model that allows us
to move code around and modify it without complicated analysis. Global
variables can be handled in some cases by passing them as arguments,
either explicitly or implicitly (having the compiler add global variables
to declarations and calls). At some point we will reach an outermost
procedure in the call tree which will have to either get all globals as
arguments from the run-time system, or be allowed to access globals
directly. If the global state is large, passing it around can be impractical,
particularly since mutification will require that the state can be cloned
when necessary. However, global variables are generally frowned upon
anyway, and create problems with reentrancy and multi-threading, so
this may not be a problem in practise.

The clonability requirement comes from the need to sometimes in-
troduce temporaries while applying mutification, which is necessary to
protect against aliasing, and also useful to avoid unnecessary recomputa-
tions. Some objects are however unclonable, e.g., because they represent

GLOBAL VARIABLES

CLONABILITY
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some kind of interaction with the real world (reading and writing to a file
or terminal, for example). Such objects are considered impure. They can
only be used as upd arguments, and transformation on code involving
impure objects must preserve the order of and conditions under which
the objects are accessed. This is similar to how a C compiler would treat
volatile variables in low-level code like device drivers.

Impure objects are best handled using procedures, though in principle
we can mutify function calls involving impure objects as long as no
copying is required.

2.4.3 PERFORMANCE

We have no performance data on Magnolia yet, but we have experi-
mented with a simple form of mutification to reduce overhead in the
Sophus numerical software library [40; [79]. Sophus is implemented in
C++ in an algebraic coding style - i.e., preferring pure function calls over
argument updates. Mutifying the code of the Seismod seismic simulation
application, we saw a speedup factor of 1.8 (large data sets) to 2.0 (small
data sets) compared to the original non-mutified algebraic-style code.
Memory usage was reduced to 60%.

2.4.4 RELATED WORK

Fluent languages 1531 combine functional and imperative styles by separat-
ing the language into sub-languages, with procepures which are fully
imperative, oBservERs, which do not cause side-effects, FuncrioNs, which
do not cause and are not affected by side-effects, and pures which are
referentially transparent (no side-effects, and return the same value on
every evaluation). The invariants are maintained by forbidding calls
to subroutines with more relaxed restrictions. Our mutification, on the
other hand, takes responsibility for protecting against harmful side-effects,
allowing calls to procedures from functions.

The Euclid language [122] is designed with verification in mind, and
has the same distinction between procedures and side-effect free func-
tions as Magnolia, and also forbids aliasing. The aliasing rules are similar
to Magnolia, but also deal with pointers and passing array components
and dereferenced pointers as arguments, which is forbidden in Magnolia.

Mutification bears some resemblance to the translation to three-
address code present in compilers [Tl. Our approach is more high-level
and general, dealing with arbitrary procedures instead of a predetermined
set of assembly/intermediate-language instructions.

Copy elimination [58] is a method used in compilation of functional
languages to avoid unnecessary temporaries. By finding an appropriate
target for each expression, evaluation can store the results directly in the



2.5. Conclusion

place where it is needed, thus eliminating (at least some) intermediate
copies.

Expression templates [153] avoid intermediates and provide further op-
timisation by using template meta-programming in C++ to compile
expressions (particularly large-size numerical expressions) directly into
an assignment function. This allows the user to write algebraic-style
expressions, but an extra burden is placed on the implementer who must
manually code all operators into the expression template system.

2.5 Conclusion

We have presented a programming method and formal tool, which
decouples the usage and implementation of operations. Through func-
tionalisation and mutification, we make imperative procedures callable as
algebraic-style functions and provide a translation between code using
function calls and code using procedure calls. This decoupling brings us
the following benefits:

* Reuse - having a unified call style simplifies the interfacing of
generic code with a wide range of implementations. Signature
manipulation may also help integrate code from different sources.
This is by no means a complete solution to the problem of reuse,
but a small piece in the puzzle which may make things easier.

* Flexibility - multiple implementations with different performance
characteristics can be accessed through the same interface.

+ Notational clarity of functional style — algebraic notation is similar
to mathematics and well suited to express mathematical problems.

+ Link to axioms and algebraic specification. The algebraic notation
can be directly related to the notation used in specifications, thus
bridging the gap between practical programming and formal specifi-
cations. This enables the use of axioms for high-level optimisations
and for automated testing [7].

¢ The procedural imperative style with in situ updating of variables
provide better space and time efficiency, particularly for large data
structures.
The notational and reasoning benefits are similar to what is offered
by functional programming languages, without requiring immutable
variables.

Our initial experiments with mutification were done on C++, because
the excellent, high-performance compilers available for C++ make it
a good choice for performance-critical code. Languages like C++ are
however notoriously difficult to analyse and process by tools. The idea
behind Magnolia is to cut away the parts of C++ that are difficult to

C++ TEMPLATES

DecouprLING USE
&
[MPLEMENTATION
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process or that interfere with our ability to reason about the code, and
then add the features necessary to support our method. The Magnolia
compiler will produce C++ code, allowing us to leverage both good
compilers and good programming methodology.

This paper expands on earlier work [40] on mutification by (1) allowing
the imperative forms to update an arbitrary number of arguments (previ-
ously limited to one), (2) allowing functionalisation of procedure calls, (3)
providing a formal treatment of functionalisation and mutification, and
(4) doing this independently of the numerical application domain which
was the core of [40]. Functionalisation and mutification was originally
motivated by code clarity and efficiency concerns, with the benefits to
generic programming becoming apparent later on.

More work remains on determining the performance improvement
that can be expected when using imperative vs. algebraic styles, and the
productivity improvement that can be expected when using algebraic vs.
imperative style. Both these aspects are software engineering considera-
tions. Further work on formally proving the effectiveness and correctness
of mutification is also needed.

A prototype implementation of Magnolia, supporting functionalisa-
tion of declarations and mutification of calls, is available at:

http://magnolia-lang.org
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CHAPTER

Working with Axioms

Bringing specification together with implementation creates interesting
possibilities. Axioms give meaning to operations in a program in a way
that is easier to reason about than implementation code, providing the
compiler with information that enables high-level transformation of code.
Also, as axioms are typically formulated in an entirely different way
from implementation code, we get some redundancy in the semantic
description of a program, which we can exploit for testing purposes.

In the previous chapter, we saw how we could use an algebraic sig-
nature style, even for procedures which update their parameters. This is
particularly handy when specifying operation behaviour using axioms.
The paper in this chapter, presented at LDTA 2008, is based on the concept
extension to C++. Unfortunately, C++ does not support functionalisa-
tion and mutification, nor does it guarantee side-effect free expressions.
Axioms for operations with side effects may be expressed using C++'s
control-flow sensitive operators, such as the comma operator. Although
we can still do rewriting and testing with axioms under these conditions,
we may need more analysis when doing rewrites. This chapter assumes
mostly algebraic-style C++, which will of course work nicely with a
realisation of the same idea in Magnolia.

In the next chapter, we will explore the use of axioms for testing
in more detail. In Magnolia, axiom-based transformations can be im-
plemented by mapping axioms and axiom classes to transforms in the
compiler - this is discussed later, in Section Chapter
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ABSTRACT

Programmers typically have knowledge about properties of their
programs that aren’t explicitly expressed in the code - properties
that may be very useful for, e.g, compiler optimisation and au-
tomated testing. Although such information is sometimes written
down in a formal or informal specification, it is generally not ac-
cessible to compilers and other tools. However, using the idea of
concepts and axioms in the upcoming C++ standard, we may embed
axioms with program code. In this paper, we sketch how such ax-
ioms can be interpreted as rewrite rules and test oracles. Rewrite
rules together with user-defined transformation strategies allow us
to implement program or library-specific optimisations.

3.1 Introduction

In the coming C++0x standard [64], it is proposed that axioms be part
of the new concept construct. The idea of concepts is to let programmers
place restrictions on template parameters. For instance, a generic sorting
function may specify that its argument should be an Indexable object with
LessThanComparable elements. Without concepts, one would have to just
go ahead and use the indexing and less-than operators, and then the
compiler would give an incomprehensible error message if someone tried
to use the sorting function with an unsuitable data structure.

This is a reprint of: Bagge, AH., and Haveraaen, M. 2008. Axiom-Based Transformations: Op-
timisation and Testing. In Proceedings of the Eighth Workshop on Language Descriptions, Tools
and Applications (Budapest, Hungary, April 5, 2008). LDTA 08. Electronic Notes in Theoretical
Computer Science 238/5 (2009). DOI: 10.1016/j.entcs.2009.09.038
www.elsevier.nl/locate/entcs © 2009 Elsevier B.V. Printed by permission.

When we refer to
'C++' in this paper, we
refer to the
concept-enabled
proposed standard.
Note that concepls have
recently been removed from
the proposed final
standard.
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Concepts can also be organised in a hierarchy — allowing well known
algebraic concepts to be mapped to C++ concepts [60] in a structured
way.

Using a concept map, one can specify that a class or group of classes
satisfies a given concept, and possibly also map between the names and
signatures of the concept and those of the class. For example, “my class is
LessThanComparable, with "!(x >=y)" as the less than operator”. The idea of
axioms in the proposed standard is in the early stages. There is a defined
syntax for it, and a few examples, but the specification of behaviour is
fairly limited.

The compiler is allowed, but not required, to replace expressions
with equivalent expressions according to axioms — for optimisation
purposes, for example. Earlier, the compiler had little opportunity to
make assumptions about user code, for instance, it could not apply the
many simplifications available for built-in operators to expressions with
user-defined operators. Such rules may now be stated as concepts, but
there is still no way to give hints to the compiler as to which axioms
may be useful, which side of the equality is preferable, how rewrite rules
should be applied, etc.

Axioms may serve many purposes in a software system:

1. Recording knowledge about template arguments for generic classes

and methods.

2. Proving that one set of axioms implies another set of axioms - for
example, that a class belonging to a concept C1 may be used where
a concept C2 (with the same or a smaller signature) is required — and
also program verification — proving that a class satisfies its stated
properties.

3. Semantics-preserving rewrites of the code, e.g., for optimisation
purposes.

4. Testing that a class satisfies its stated properties.

Item (1) is more or less where the proposed standard stands today;
with axioms as a form of structured documentation of the requirements
on concepts. Item (2) may not be applicable to C++, partly because C++
syntax and semantics is very difficult to analyse, partly because many
requirements cannot be expressed as axioms. We will focus on items (3)
and (4) in this paper, based on our previous experience with user-defined
rewrite rules for C++ [11] and axiom-based testing [74; [75].

The rest of this paper is organised as follows. We start by introducing
axioms, then discuss the use of axioms for rewriting (Section and
testing (Section [3.4). We will then sketch some implementation issues
(Section [3.5), and finish with a discussion and conclusion (Section [5.6).
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RequiresClause? "axiom" Identifier " (" ParamDecls ")" AxiomBody

-> AxiomDef
"{" Axiom* "}" -> AxiomBody
ExpressionStmt -> Axiom

"if" "(" Condition ")" ExpressionStmt -> Axiom

FIGURE 3.1: Proposed C++0x Standard Syntax for Axioms (in spr2 notation). The
RequiresClause allows for additional concept constraints on axiom parameters — we will
ignore it in this paper.

RequiresClause? "axiom" Identifier " (" ParamDecls ")

GroupClause? AxiomBody -> Declaration
":" {GroupName ","}+ -> GroupClause
"{" (Axiom|Statement)* "}" -> AxiomBody
"assert" "(" Expression ")" ";" -> Axiom

F1GURE 3.2: Our syntax for Axioms (in spr2 notation).

3.2 Concepts and Axioms

The proposed C++ standard syntax for axioms is shown in Figure
Each axiom definition can contain multiple axioms, and the axioms
themselves are expression statements with the ‘==" operator. For example,
here’s a concept Monoid with an Identity axiom (taken from Gregor et al.
l64D):

concept Monoid<typename Op, typename T> : Semigroup<Op, T> {
T identity_element (Op);
axiom Identity(Op op, T x) {

op(x, identity_element(op)) == X;

op(identity_element(op), X) == X;
i
We may then specify that a class Vector satisfies the Monoid concept, with Vecor:plus is a class
Vector::plus as the operation and Vector::zero as the identity element: W]rapper aFtQUﬂd the

. plus operation,
concept_map Monoid<Vector::plus, Vector>{ necessary to use it
Vector identity_element(Vector::plus) { conveniently as a

template argument.

Vector::plus() is an object

P} of this class, usable as
For our work, we have chosen a slightly different syntax (see Figure[3.2). ° function as it has an

.. . . erloaded
Our syntax extends the original syntax by allowing axiom groups (see gf;;sraﬁm This is a

Section [3.2.1), by allowing any statement to be used within the axiom usual way of doing
body (used in testing, see Section [5.4), and by marking the actual axiom things in C++ and we

with the keyword assert. Also, we allow axioms to be declared outside $"all refrain from
commenting on the

intuitiveness of it..

return Vector::zero;
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GroupDef -> Declaration
"axiom_group" GroupName (GroupBody | ";™) -> GroupDef
"{" GroupDecl®* "}" -> GroupBody
"using" Name ";" -> GroupDecl
AxiomDef -> GroupDecl
TemplateSpec GroupDecl -> GroupDecl

F1GURE 3.3: Syntax for Axiom Groups. A GroupDef defines or extends a named axiom

group.

The GroupName is an identifier or a qualified (nested) name. The GroupBody

lists the axioms or axiom groups that form the group. Name should be the name of
an axiom, group or concept.

CONSTRAINED
TypEs

Such tagging is also
Important in
specification and proof
systems like CASL
(1151,
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of concepts, so that one may attach simple axioms directly to a class,
instead of having to declare concepts and concept maps for it.

A standard C++ concept map is only ‘active’ when the mapped class
is used as a template argument that has been constrained to a concept.
E.g., Vector will only be considered a Monoid when it is used as a Monoid in
generic code. This restricts the use of axioms, and we will instead assume
that the existence of a concept map means we can use concept axioms
for the classes and operations in the map.

Using the assert keyword makes it easier to allow a wider variety of
statements in the axiom body, and to allow for other kinds of axioms
than just equality. It also simplifies making the axioms executable as test

code (Section [3.4).

In our syntax, the above monoid concept becomes:

concept Monoid<typename Op, typename T> : Semigroup<Op, T> {
T identity_element (Op);
axiom Identity(Op op, T x) : simplify {
assert(op(x, identity_element(op)) == x);
assert(op(identity_element(op), X) == X);
P}

The axiom group 'simplify’ identifies the Identity axiom as usable for a
simplification rule, where the right-hand side is assumed to be simpler
(Iess resource-intensive) than the left-hand side.

3.2.1  Axiom Grouprs

Axiom groups are used to identify which axioms are useful as rewrite
rules, and to distinguish between different types of rules - e.g., simplifi-
cation rules, reordering rules like associativity/commutativity, or rules
that should be applied early or late in the transformation process.
Axiom groups are defined using the axiom_group construct (Fig-
ure [3.3), or by listing the group name in the group clause of an axiom
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definition. The axiom_group definition is open-ended and can be ex-
tended later on. Here's a sample axiom group simplify, containing the
Identity axiom from the Monoid concept (having the same effect as in the
example above):

axiom_group simplify {
template<typename Op, typename T>
using Monoid<Op,T>::Identity;
}

The template declaration has the effect of universally quantifying the
operator and type for the monoid, adding the identity axioms from all
monoids.

The using directive allows us to add a single axiom, all axioms from
a given concept (e.g., using Monoid), or all axioms from another axiom
group (using my_simplify;). Axioms may also be defined directly in the
axiom group.

Listing an axiom in a group definition is equivalent to listing the
group name in the axiom definition. We allow both possibilities to cut
down on the amount of code that needs to be written for a simple axiom.
We recommend using the axiom definition for fairly standard groupings
that follow straight-forwardly from the axioms - commutativity for
example — and using separate axiom group definitions for transformation
system-related grouping - ordering rewrites in stages, for example. A few
suggested axiom groups are:

ac — associative-commutative - a (possibly non-terminating) reordering
of an expression

simplify — right-hand side is preferred over left-hand side; repeated
application should terminate

propagate — introduction and propagation of properties across expressions

3.3 Rewriting with Axioms

The jump from having axioms to using them for optimisations isn't far.
The proposed C++ standard already suggests that compilers may use
axioms for simplifying code, and there already exists a proof-of-concept
for axiom-based optimisation [147], based on ConceptGCC. Similar ideas
have been used successfully in systems like Tampr [22] and CodeBoost [T11.

3.3.1 BASIC REWRITING

Let's start with a brief explanation of how rewriting works, for those
unfamiliar with the concept. A conditional rewrite rule consists of a match
pattern, a replacement pattern and a condition. If the condition is always

AxioM GROUPING

REWRITE RULES

4
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true, it can be omitted. The patterns may have variables (sometimes
called meta variables, to distinguish them from C++ variables).
For example, consider the following rewrite rule:

9 (x)) = hix)

g(f(x)) is the match pattern, h(x) is the replacement pattern, and x is a
variable. If the rule is applied to the expression g(f(42)), the result will
be h(42). Variables in the replacement pattern should be a subset of the
variables in the match pattern and condition.

We may derive a rewrite rule from any axiom formed from a con-
ditional equation, simply by choosing one side of the equation as the
match pattern, and the other as the replacement pattern. If we choose
the other way around, we get the inverse rule. In case of a simplification
rule, going one way is preferred, but in the case of a commutativity rule,
either rewrite direction can be useful. The axiom's parameter list defines
the variables of the rule.

Rules are applied to expressions. If we wish to apply a rule to a whole
program (i.e,, all expressions in the program), we must use a rewriting
strategy (discussed below). A rule may either succeed, if it matches and its
condition is true, or it may fail. If it succeeds, the rewrite is performed
and we are done. If it fails, we may try other rules if we are applying
a group of rules, until we find one which succeeds. A typical rewrite
strategy would visit all expressions in a program, and repeatedly apply
rules until no rules succeed.

It is important to note that rewriting is not merely syntactic, it also
takes into account the types and signatures of the expressions. For
example, a rule derived from this axiom

axiom Commute(int a, int b) : ac {
assert(a + b == b + a);

}

will apply to an expression 5+ 4, but not to 4.2 + 6.9, which uses the
floating-point plus operator.

Rewrite rules are typically given names, in our system the name
follows from the axiom name. Rule names share the same name space
as axiom group names. Rules are allowed to have the same name - in
that case they form a group and will be applied together (i.e,, tried in an
arbitrary order until one succeeds or all have failed).

We can expect a rewrite system based on C++ axiom to be both non-
confluent (i.e, applying rules in a different order gives a different result)
and non-terminating. Rewrite strategies together with axiom groups
provide a pragmatic solution to this, and allow us to carefully control the
application of rules.
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"strategy" Identifier "(" ParamDecls ") ;"' -> StrategyDecl
"strategy" Identifier "(" ParamDecls ")" StrategyBody

-> StrategyDef
"{" Statement* "}" -> StrategyBody

FIGURE 3.4: Syntax for strategy definitions - this may be parsed as a definition
of a function returning a value of type ‘strategy’ A limited set of statements
and operators (Figure for the strategy language usable in the StrategyBody.

3.3.2 REWRITE STRATEGIES

We can get pretty far basing an optimisation tool on just one or a few
fixed rewriting strategies, and linking each strategy to a particular axiom
group. For example, a possible default optimisation strategy would be to
do a bottom-up simplification (using the simplify group) of the program
tree, modulo ac rules. Axiom-based optimisation could then be turned
on by a compiler option like -frewrite-rules.

We can do better, of course. User-defined strategies allow detailed
control over when and how various rewrites are applied. Boyle showed
in the TamPRr system [22] that such control was needed to obtain many of
the goals of program optimisation from rewrite rules.

Basing ourselves upon an existing program transformation language
like Stratego [25], we can make its strategy-building constructs available
within C++-like syntax (see Figure [5.4), and then either compile our
rewrite rules and strategies to Stratego code, or execute them using a
Stratego interpreter. The above default strategy may be encoded like this:

strategy simple_opt() {
bottomup (repeat(simplify || (ac && simplify)));
}

where bottomup does a bottom-up traversal of the program tree, and
repeat applies is argument until it fails. The choice combinator || tries its
left argument, then its right argument if the left fails (corresponds to <+
in Stratego), and the sequence combinator & applies its arguments in
sequence and succeeds only if both succeed (corresponds to ; in Stratego).
The two group applications simplify and ac will apply the actual rewrite
rules at the current position in the program tree. See Figure [3.5 for an
overview of strategy combinators.

Strategies like simple_opt may then be made available to the user as a
compiler or transformation tool option, e.g. -frewrite-using=simple_opt.

3.3.3 INTEGRATING WITH OTHER OPTIMISATIONS

Often an optimisation rule may only be applied at a particular level of
abstraction. Inlining, for example, will commonly expose some oppor-

STRATEGO
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true do nothing - always succeeds
false do nothing - always fails
all(s) apply s to all children of the current node.

sl || s2  apply either s1 or s2, trying s1 first
sl & s2  apply s1 then s2

a apply rewrite rules name a
G apply any rule from axiom group G
Gla] apply any rule named a from axiom group G

repeat(s) apply s repeatedly until it fails.

FIGURE 3.5: Some suggested strategy combinators and builtin strategies.

tunities for rule application, while hiding others. For example, in an
expression a + f(b) we may be able to inline or do partial evaluation of
f and figure out that it returns a zero - thus allowing us to eliminate the
+ (using a rule derived from Monoid::Identity). But if we inline the plus
(e.g., in the case of vector addition), our rule would no longer match.
Exposing an inliner interface to the strategy language would be quite
useful. In our earlier work on user-defined rules [I1] in C++, we added
inlining rules for simple functions to open up optimisation opportunities
that may otherwise have been lost. For example, we might have a rule

axiom GetElement(T a, T::index_type i) : inline {
assert(af[i] == a.data[int(i)]);
}

inlining the code of the user-defined []-operator. Since this is just a
simple duplication of the implementation of [], getting the compiler’s
inliner to do the job would be more general and preferable.

Substitution of expression assignments may also be helpful. For
example, consider the rule a * x +y == axpy(a, x,y) that combines a
multiply and an addition into a single operation. We may not be able
to tell that the rule can be applied if the operations occur in different
statements (possibly far apart in the code):

Vector a, b;
a=>5%a;
b = a + b;

But if the expression assigned to a is substituted in the last statement,
b=5%a+ b;

we may be able to transform to a more efficient

b = axpy(5, a, b);

Combined operations like axpy are common in numerical libraries like
BLAS, when working on large data structures like vectors and matrices.
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Supplying such rules together with a library saves the programmer from
having to remember all the optimised special-case forms - and also
means that new optimisations can be added later without having to
rewrite existing code.

3.3.4 PROPERTIES AND PROPAGATION

Certain axioms may depend on certain properties being fulfilled. For
example,

axiom SortSort(T a) : simplify {
if(sorted(a))
assert(sort(a) == a);

}

This axiom can be used to eliminate unnecessary sorting of an already
sorted data structure. It is perhaps not very likely that a programmer will
ask for an array to be sorted again just after it was sorted, but by using
data-flow analysis, we may track this kind of information throughout
the program.

To do this, we need to figure out when an array is sorted (we'll simply
call it an ‘array, even though it might as well be any ordered data
structure). A just-sorted array is sorted:

axiom Sorted(T a) : propagate {
assert(sorted(sort(a)));

}

Furthermore, removing an element from an array results in an array that
is still sorted (well, at least it does for our kind of array):

axiom SortedRemove(T a, T::index_type i) : propagate {
if(sorted(a))
assert(sorted(a.remove(i)));

}

The propagate group is used to identify axioms that may be suitable for
data-flow propagation of properties. Any Boolean predicate like sorted
above is usable as a propagated property. Note that without propagation
axioms we are unable to assume that any modification (e.g, call to a
non-const function) of an object preserves its properties.

Properties may be used as a basis for choosing a more efficient
algorithm. For example, the axiom

axiom SortedSearch(T a, T::value_type e) : speedup {
if(sorted(a))
assert(linsearch(a, e) == binsearch(a, e));

PROPAGATION
Ax10MS
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allows us to choose binary search over linear search of a sorted array.
We have chosen the axiom group speedup for this axiom, as it’s a slightly
different concept from expression simplification. Conceivably, our opti-
misation strategy may put more work into proving that a speedup rule
can be applied, than it needs for a simplification rule.

Tracing properties of objects is often useful in numerical programming,
where certain operations can be drastically faster if it is know that the
operands have special properties, like symmetry in matrices, for example.

3.4 Axioms for Testing

Once we have axioms and rewrite rules based on them, we'll want to
check that our implementation satisfies the axioms. In particular, before
we apply optimisation rules to a program, it is a good idea to check that
the rules won't change the meaning of the program. While axioms may
be used for formal program verification, this is difficult to achieve in
a general-purpose language. We can however take a more pragmatic
approach, and use the axioms as a basis for testing.

Using axioms as test oracles is straight-forward — fill in test data for
the free variables, and see if the axiom evaluates to true [50} [74; [75]. It is
a pity this kind of specification-based testing isn't made more apparent
in the upcoming standard, as it would be a good motivation for actually
writing axioms in programs.

Providing basic support for testing is quite simple — we only need
to make the instantiated (after concept mapping) axiom code available
as callable functions. The testing code may then be called from a test
program, or from a testing framework (like JUnit [T05] for Java).

For example, referring to the Identily axiom for Monoid, we may test
that it holds for integers, by calling it with a few different integer values:

for(int i = -2; i <= 2; i++) {
Monoid::Identity(std::multiplies<int>(), i);
Monoid::Identity(std::plus<int>(), i);

}

Here, std::multiplies and std::plus refers to predefined class wrappers for

built-in operators. They are necessary because of how the monoid

concept is defined (with the operation as a template parameter) - the

operator parameter is not really a free variable in the axiom.

3.4.1  Axioms WitH CoMPLEX TESTING CODE

Axioms used for testing can be written in any (computable) logic. For
testing purposes, it therefore makes sense to allow arbitrary C++ code
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inside an axiom definition — though this is not allowed in the proposed
C++ standard. For instance, we may state that two arrays are equal if
they have the same number of elements, and that the elements are equal

axiom ArrayEqual (Array a, Array b) {
bool eq = a.size() == b.size();
if(eq)
for(int i=0; i<a.size; ++i)
eq &= al[i] == b[i];
assert(eq == (a==b));
3

The first lines are needed to iterate through the data set and accumulate
information about its components. The assert keyword helps to identify
which part of this statement sequence is actually the test which defines
the axiom. It could be given its C library meaning — abort the program if
the test fails — or we could make a more elaborate implementation that
counts the number of failures and successes and records the axioms that
fail. It may even be useful to allow assert to have additional parameters,
e.g., for adding extra information about the test.

Although just allowing simple expressions in axioms is nice, being
able to write support code for an axiom provides us with more expressive
power. It is also possible to live without “helper” code - then we would
need to encapsulate the helper code as a Boolean function, possibly
making simple axioms more complicated.

Note that while the above axiom may seem trivial, properly testing
the implementation of equality is important in order to be sure that
other axiom tests relying on it work correctly.

3.4.2 TESTING EXCEPTION BEHAVIOUR

It is also useful to state as an axiom that a method should throw an
exception under specific conditions:

axiom DivZeroThrows(T x, T y) {
if(y.iszero(Q))
try { div(x, y); assert(false);}
catch(DivisionByZero) {assert(true);}

}

The first assertion tests the lack of an exception being thrown. The second
confirms the expected catching of an exception. If helper statements are
not allowed, this axiom also needs to be encapsulated.

3.4.3 LIMITATIONS ON TESTING

The tests derived in this fashion are clearly only as good as the axioms
they are based on. If the axioms are wrong, the tests will also be wrong

HELPERS
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(though one is likely to discover this if the implementation one is testing
is correct).

Tests based on the equalities and other comparisons rely on the
comparison being correctly implemented. Also, if the two sides of an
equality are faulty, but give equal results, this will go unnoticed. In
practise, though, comprehensive testing with varied test data and multiple
axioms is likely to uncover that something is wrong, even if circumstances
conspire against some of the axiom tests.

Effective testing requires good test data. This is something we haven't
considered here — we have relied on the programmer supplying appropri-
ate test data. The danger here is that a programmer’s assumption of what
constitutes good test data is often wrong — the bugs are hiding where one
least expects them to be. We will revisit this subject later (Section [3.6).

3.5 Implementation Issues

The biggest hurdle facing any implementation of a C++ extension is
implementing support for the base language. Existing C++ frontends are
either far away from supporting the full C++, or are difficult to extend,
making the cost of prototyping new language features high.

Support for concepts and axioms has been implemented in the exper-
imental ConceptGCC compiler [63]. At least one attempt to implement
axiom-based rewriting (based on ConceptGCC and the C++40x proposal)
has been made [147] (and they note that rule application and pattern-
matching on the internal GCC representation is indeed quite challenging).

We have not implemented the features described in this paper, but
we do have previous experience implementing axiom-based rewriting
for C++ [111 and deriving C++ tests from axioms [75]. In this section we
will briefly sketch how a prototype may be implemented for C++.

3.5.1 TRANSLATING AXI0MS TO RULES

The syntax used in axioms differs from actual C++ code — people write
a + o, not opl(a, identity_element(op)). This means that to apply rules to
user code, we must first translate the rules according to concept map
mappings, inlining any concept map functions (like identity_element). For
example, the Identity axiom

op(x, identity_element(op)) == x;
instantiated for Vector::plus and Vector becomes,

Vector::plus() (x, identity_element(Vector::plus())) == Xx;
then if we inline Vector::plus() and identity_element(), we get

X + Vector::zero == Xx;
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which is what we would expect to see in user code.

Overload resolution from the C++ frontend can be used to figure out
the signature of operations in the rule (e.g., integer addition as opposed
to floating-point addition) - this information is then used in building
the match pattern for the rule. Axiom parameters become variables in
the match pattern. We used this idea in our previous implementation of
user-defined rules.

Note that rewrite rules can be applied to generic template code when
the template parameters are constrained by concepts. Without concepts,
you'd have to instantiate the template to see which classes are used
before you could apply rewriting. Template code making use of concepts
will already be written in the same terms as the axioms (e.g., using op
and identity_element), so less work has to be done to adapt the rules.

3.5.2 OVERALL TRANSFORMATION PROCESS

The overall processing of axioms as rules may proceed as follows. First, we
need to parse and perform semantic analysis on the program, giving an
abstract syntax tree (AST) annotated with type and signature information.
The frontend’s overload resolution should also be applied to axioms
(either now, or after concept mapping) so that the full signature of
functions etc. in calls are available for matching in rules.

The axioms and strategy definitions are then picked out from the
program tree. Axioms may then be compiled to rules that apply at the
concept level, and after applying concept maps, to rules at the class/user
level. Testing code is generated after applying concept maps.

Once the rules are available, we apply them according to our built-
in or user-defined optimisation strategy. Rule application should be
combined with inlining and data-flow analysis for maximum benefit.

3.6 Discussion

Embedding optimisation rules in programs is not a new idea. User-
defined rules in CodeBoost [I1] were inspired by the rewrite rules in
the Glasgow Haskell Compiler [90]. The CodeBoost implementation was
more advanced, however, and supported both conditions and multiple
strategies (through a simpler version of the axiom groups introduced in
this paper). Conditional rewrite rules is well known from transformation
languages such as Stratego [25] and eLaN [21], both of which also support
strategies, and from term rewriting in general.

The CodeBoost user-defined rules were limited to rewriting, and
although we derived optimisation rules from a formal algebraic speci-
fication, the actual coding of the rules was done by hand and related
directly to C++ classes. Concepts in C++ let us bridge the gap between
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the specification (written in terms of algebraic ideas like monoids, fields,
rings etc.) and the concrete implementation as C++ classes. Writing the
relevant parts of our specifications in concept syntax, with axioms, will
make the axioms automatically available for use by tools. There is still a
piece missing in the puzzle, though - tying the information from concepts
and axioms together with some form of structured documentation. No
doubt someone is already working on this problem.

Support for axiom-based rewriting for ConceptGCC [147] follows the
C++ standard proposal more closely than we do here. Rule application
in [T47] is for now restricted to contexts explicitly constrained by concepts
(see Section [3.2), and transformation is restricted to a single strategy
(leftmost-outermost reduction). The goal is to have a framework for
concept based optimisation that may eventually replace type-specific
built-in simplifications in the compiler. We do not aim to compete with
this implementation, though we hope that some of our ideas will be
useful for their work.

Axiom-based rules as described here is limited to operating on ex-
pressions, and will not be fully effective if the transformation system
isn't able to combine expressions from multiple statements (e.g., nest-
ing expressions as much as possible). There is a trade off here between
rule-based optimisations, and optimisations like common sub-expression
elimination — duplicating some common sub-expressions may open up
for rule applications but can also lead to duplicated work.

Our initial experiments with rules had quite promising results. A
small number of rules from the specification of the Sophus numerical
library was used (together with general simplification rules) to optimise
the C++ implementation of Sophus, giving 5-10 times speedup (the latter
after the source code was simplified to take advantage of the rules) as
well as reduced memory use. Some of the speedup was due to other
optimisations in the system - running without rule-based optimisations
gave up to 2 times speedup.

Applying axiom-based rules to existing program code may not give
quite as good results, since programmers often have done many of the
same optimisations by hand already. We expect the full benefit to be
more apparent with previously unoptimised programs written in a high-
level style, and when delivered together with a performance sensitive
library, such as for numerical software — an idea also known as active
libraries [36].

Using axioms as a basis for testing is known from systems like
pAIsTs [50]. Compared to unit-testing frameworks like JUnit [T05] — and
the xUnit family of frameworks for other languages - the advantage of
axioms is the separation of test code from test data. This means that one
may easily test one axiom with many different data values, and use the
same values to test many different axioms. Comprehensive testing can be
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done by building libraries of axioms and test data, and testing all axioms
against all suitable data. Theories, available in JUnit 4.4 allow universal
quantification [126], and may be called from testing code like axioms in
this paper. JUnit 4.4 also allows automatic application of available test
data to tests.

QuickCheck [34] is a testing system for Haskell where a programmer
can state laws (like C++ axioms) as Haskell functions. The quickcheck
testing function generates random test values, and tests that a law holds.
Conditional laws are also allowed - in that case more test values will
be generated as necessary to test the law sufficiently. The algebraic data
types in Haskell makes generating random data structures fairly simple,
and the programmer can supply generator functions to fine-tune the
data generation. There is no link between QuickCheck and rewrite rules
in the Glasgow Haskell Compiler (mentioned above).

Partition testing is another testing approach where one attempts to
divide the input domain into regions and test only one value from each
region (and some boundary values). This does not necessarily give better
results than random testing, though [72]. Both partitioning and random
data generation will likely require some help from the C++ programmer.
This is an area that should be explored further in order to make full use
of axiom-based testing.

3.7 Conclusion

Concepts and axioms, which are being introduced in the upcoming
C++0x standard, are language features that may prove quite useful for
both documentation, automated testing and program optimisation. To
reap the full benefit of axioms, we have introduced a few additional
language features:
+ Axiom groups for classifying axioms according to how they may be
used

* Strategies for specifying how and when axiom-based rules should be
used

* Callable axioms / axiom groups to make axioms usable for testing

* Properties which may be propagated according to axioms, and used
in axiom conditions
Allowing a wider range of statements in axiom bodies, and allowing
axioms to occur outside concepts, gives us some added usability benefits
over the proposed standard.

Our main contribution over our own and others’ previous work in
this area, is setting it in the context of the upcoming C++ standard,
and tying together the ideas of specification-based optimisation and
specification-based testing.

QuickCHECK FOR
HASKELL

DAtA GENERATION

PrOPOSED
FEATURES

51



3. WORKING WITH AXIOMS

Acknowledgements
Thanks to Valentin David for useful comments and help with the intrica-

cies of C++ and grammars, and thanks to the referees for many useful
comments and tips.

52



CHAPTER

Axiom-Based Testing

The previous chapter introduced concepts and axioms, and also discussed
the idea of generating automated tests from axioms. This chapter dis-
cusses axiom-based testing in more detail. As before, the discussion is in
the context of concept-enabled C++. Axioms from the concepts are used
to generate test oracle code, and then test cases are generated for each
set of types that model a concept.

Generating test code is surprisingly straightforward, and our tool
can even generate code for non-concept C++. But, there is a discon-
nect between the usual object-oriented or imperative C++ coding style,
and the expression-oriented style suitable for equational axioms. Our
proposed extensions from the previous chapter might alleviate this, by
allowing arbitrary code to be placed inside axioms, at the cost of making
axiom-based rewriting more difficult. There is also the problem that C++
functions can have arbitrary side effects, which may interfere with testing
and hinder reuse of generated test data.

Both these problems can be avoided in Magnolia, since we can easily
write axioms as pure expressions without side effects, and map them to
imperative-style implementation code using mutification.

As discussed in this chapter, there are several systems that do unit
testing based on algebraic specification. discussing this in the context
of C++ concept is particularly useful as there has been much debate
about the usefulness of axioms in concepts. A fruitful idea for continued
research would be to apply functionalisation to solve issues with side
effects, and to use guarding to deal with undefinedness and exceptions.
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4.1

Modern software engineering practises encourage the use of unit testing
to increase software reliability. Test-driven development (TDD) [13] dic-
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ABSTRACT

Modern development practises encourage extensive testing of code
while it is still under development, using unit tests to check indi-
vidual code units in isolation. Such tests are typically case-based,
checking a likely error scenario or an error that has previously been
identified and fixed. Coming up with good test cases is challenging,
and focusing on individual tests can distract from creating tests that
cover the full functionality.

Axioms, known from program specification, allow for an alter-
native way of generating test cases, where the intended functionality
is described as rules or equations that can be checked automatically.
Axioms are proposed as part of the concept feature of the upcoming
C++0x standard.

In this paper, we describe how tests may be generated automat-
ically from axioms in C++ concepts, and supplied with appropriate
test data to form effective automated unit tests.
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tates that software should be extended by writing tests for a new feature
first, before implementing the feature. The tests provide a specification of
the behaviour of the new feature, and provide an easy way to check the
implementation throughout development and refactoring.

Less extreme methods call for tests for all program units, and for
regression tests to be written to ward off the reappearance of known
bugs. Such methods may be practised rigorously, or in an ad hoc manner.
Common to all is that they rely on the programmer to invent good test
cases that cover both likely, unlikely and even ‘impossible” errors. The
programmer must also be careful that the tests exercise the full expected
feature set, or the implementation will seem OK when all it does is
implement the bare minimum to pass the tests (as is common in TDD,
where the tests are the actual specification of expected behaviour).

411  AX1OM-BASED TESTING

We suggest writing tests based on axioms that formally specify expected
behaviour, rather than relying on ad hoc test cases. Axiom-based testing
was introduced in the early eighties in the paists [50] system, which used
formal algebraic specifications as a basis for unit testing. In DAISTS, a test
consists of axioms in the form of conditional equations, which serve as
a test oracle, an implementation with an equality operator; and a set of
test data. A simple coverage analysis is done of the test runs to ensure
that all the axioms and program code are exercised by the tests.

Asroor [44] applied the ideas of axiom-based testing to object orien-
tation, with automated testing for Eiffel. Axioms were specified in an
0O-like style, rather than the functional notation used in DpA1sTS.

The Daistish system [86] brought these ideas to C++. Unlike Astoor,
Daistish used a functional notation for axioms, giving a notational gap
between the conditional equational form of the axioms and the methods
of C++.

Traditional unit testing, as popularised by agile methods in the last
decades, is practically oriented, and does not rely on formal methods.
Mainstream software engineers have focused on development methods
like TDD and extreme programming [14], while much formal methods
research has focused on formal specification and verification — which
have been difficult to apply to mainstream languages and mainstream
development.

Research on axiom-based testing has continued, however, and axioms
are have been introduced as part of the new concept proposal for the
upcoming C++ standard [16;163] - giving a mainstream language built-in
syntactic support for axioms. The cascart system [162] provides a tool for
testing Java components based on algebraic specification. Axiom-based
testing has been employed in the Sophus numerical C++ library [75],
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and also in the JAX [142] (Java Axioms) testing approach and JAXT [77]
tool. Axiom-like features have also been added to recent versions of
JUnit [126]. Gaudel and Gall [52] provide a survey of the use of algebraic
specification in testing.

Axiom-based testing from concepts has two main parts that instru-
ment the implementation being tested:

+ axioms, in the form of conditional equations, and

+ suitable test data points.

Running an axiom-based test consists of evaluating the condition
and (if it succeeds) the two sides of the equation using the test data, and
comparing the results, typically with the help of the equality operator.
For example, to test the following commutativity axiom x +y = y + x,
we may substitute 4 for x and 5 for y, evaluate 4 + 5 and 5 + 4, and then
verify that 9 = 9. A good test data set for this case would also include
negative numbers and zero.

If the results are to be reliable, the axiom must correctly express the
desired feature. Earlier it was considered crucial that the code for the
equality operator had to be correct [51]. We have discussed this previ-
ously [75], concluding that with testing the equivalence and congruence
properties of the equality operator, it can be treated alongside any other
function being tested. Another problem appears if the equality operator
used in a concept axiom is not implemented. This is known as the oracle
problem, and can be handled by techniques based on behavioural equiv-
alence [32; 51l, i.e., two values are considered equal if they cannot be
distinguished by any operation in the system. The astoot [44] system is
based on behavioural equivalence, though in practise the user must still
define equivalence, either through an axiom, or by an equals operator in
the implementation. Chen et al. [32] describe a system for testing object-
oriented programs, and provide a technique for determining behavioural
equivalence based on white-box heuristics. In this paper, though, we will
assume that an equality operator has been implemented for every type
that occurs in the left- or right-hand side of an axiom.

Concepts and axioms are still a work in progress as far as C++ stan-
dardisation is concerned. Previous work on C++ axioms has mainly
focused on their use for optimisation [7; [147l. Our contributions in this
article include:

+ a technique for using C++ axioms for testing, and

+ a tool to support this technique.

The rest of the paper is organised as follows. In the next two sections
we introduce C++ concepts and axioms, and show how to generate
test oracles and test code from them. In Section |4.4] we discuss how to
generate test data, both random and user-selected. We finish off with a
discussion and conclusion in Sections [4.5] and
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4.2 Concepts

Concepts [16;63] allow restrictions to be placed on template arguments. A
concept describes a specification for types. It lists the members (functions,
associated types, etc) that are required for some types to model the
concept, and the axioms that apply to those members. For example, the
following Monoid concept requires the existence of an identity_element
and an operator, and gives an Identily axiom (adapted from [16]):

concept Monoid<typename T>
: Semigroup<T> {
T op(T, T);
T identity_element();
axiom Identity(T x) {
op(x, identity_element()) == Xx;
op(identity_element(), x) == Xx;
3

Axioms are simple conditional equations (or inequalities), universally
quantified over the axiom parameters. Multiple equations may be given
inside an axiom — they are combined by logical and. More complicated
axioms, e.g., with existential quantification cannot, be expressed directly.
The sides of the equations are full C++ expressions, allowing use of things
like the comma operator and calls to any accessible function.

To state that a set of types model a concept, we use a concept map. The
concept map can specify a mapping between the implementation names
(from the class) and the names used in the concept, and can also be used
to add extra code necessary to model the concept. Any functions not
mentioned explicitly in the concept map is taken from the context -
in many cases the body of a concept map is quite short, or empty. In
the concept map below, we state that the FiniteInt class of bounded
integers models the Monoid concept, and give an operator that returns
the addition of elements and an identity_element function that returns
the FiniteInt::zero identity element.

template<int size>
concept_map Monoid<FiniteInt<size> >{
FiniteInt<size> op(const FiniteInt<size>& a,
const FiniteInt<size>& b) {
return a+b;
}
FiniteInt<size> identity_element() {
return FiniteInt<size>(0);

3}

Without the concept map body, we would have to provide op and
identity_element for FinitelInts directly.
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concept Indexable<typename A, typename I,
typename E>
: std::EqualityComparable<A,A>,
std::EqualityComparable<E,E> {
requires SameShape<A, I>;
const E& operator[](const A&, const I&);
E& operator[] (A&, const I&);

axiom ArrayEqual(A a, A b, I i) {
if (a == b)
afi] == b[il;
}
3

FIGURE 4.1: The concept Indexable has indexing operators and an axiom Ar-
rayEqual that states that two if Indexables are equal, then their elements are
equal. A is an indexable type, I is the index type, and E is the element type.
A and T are required to be of the same shape, i.e, the values of type I are the
allowable indices for the type A. SameShape is a trivial concept used to state
that the indexable and index type are of compatible shapes/dimensions.

Concepts may also be declared auto, in which case an implicit concept
map is provided for any set of types that have the relevant functions
declared. We feel it is best to avoid axioms in auto concepts - since they
may end up specifying behaviour for functions without the programmer
being aware of it (though, a few standard cases like having equality,
comparison or assignment operators can probably safely be made auto).
We will therefore only generate tests for the cases where the programmer
has explicitly used a concept map to declare that the implementation
models a concept.

4.3 From Axioms to Test Code

There are two steps involved in generating tests from concepts. First, we
generate a test oracle for each axiom in each concept. The test oracle is a
function having the same parameters as an axiom, and returning true or
false depending on whether the axiom holds for the given arguments.

For example, consider the Indexable concept in Figure |4.1} intended for
data structures such as arrays. It has the usual indexing operators you
would expect, and an axiom ArrayEqual. The axiom can be transformed
into callable code by creating a normal C++ template class for the concept
(Indexable_oracle), and making the axiom a Boolean function within
that class — see Figure

Auto CONCEPTS
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template <typename A,typename I,typename E>
requires Indexable<A, I, E>
struct Indexable_oracle
{
static bool ArrayEqual(A a, A b, I i)
{
if (a == b)
if (!(afi] == b[i]))
return false;
return true;
}
1

FIGURE 4.2: Oracle code from the ArrayEqual axiom. The oracle returns
immediately upon failure, otherwise we continue, as there may be more than
one equation in the axiom.

The second step is to generate test cases for each type that models a
concept. This is done by finding all the concept maps within the program,
and generating code for each of them. The test case will use data iterators
(see Section to iterate through a set of data values for each argument
to the axioms, and then call the test oracle for each combination of data
values. Success or failure of the oracle test is then reported to the testing
framework.

For example, consider an ArrayFI class — an array indexed by finite
(bounded) integers. A simplified version of the class is shown in Figure[4.4]
It is supplied with two concept maps, relating the implementation to
the SameShape and Indexable concepts. The first stating that any ArrayFI
of size size has the same shape as a FiniteInt of size size - this is
needed to fulfil the SameShape requirement of the Indexable concept. The
second states that ArrayFI is Indexable with index type FiniteInt and
element type E. Note that the concept maps are templated, working on
any integer size and element type E.

The test case (seen in Figure consists of an Indexable_testCase
class specialised for ArrayFI<size, E>, FinitelInt<size> and E. The
class contains a test function, ArrayEqual, which iterates over the data
generators and calls the generic test oracle derived from the axiom. The
two outer loops generate arrays (*a_0 and *c_0), while the inner loop
generates indexes (*d_0). The test oracle (from Figure will check
that the array code behaves as expected for an Indexable structure. The
HasDataSet provides a mapping from a type to a data generator for
that type (reasonable defaults for this are generated automatically - see

Section [4.4).
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template <int size,typename E>
requires Indexable<ArrayFI<size, E>, FinitelInt<size>, E>
struct Indexable_testCase<ArrayFI<size, E>, FinitelInt<size>, E>
{
static void ArrayEqual() {
typedef HasDataSet<ArrayFI<size, E>>::dataset_type dt_0;
dt_® b_0 = HasDataSet<ArrayFI<size, E>>::get_dataset();
for (DataSet<dt_0>::iterator_type a_0 = DataSet<dt_0>:: begin(b_0)
; a_0 != DataSet<dt_0>::end(b_0); ++a_0) {
typedef HasDataSet<ArrayFI<size, E>>::dataset_type dt_1;
dt_1 d_0 = HasDataSet<ArrayFI<size, E>>::get_dataset();
for (DataSet<dt_1l>::iterator_type c_0 = DataSet<dt_1>:: begin(d_0)
; c_0 != DataSet<dtl>::end(d_0); ++c_0) {
typedef HasDataSet<FiniteInt<size>>::dataset_type dt_2;
dt_2 f_0 = HasDataSet<FiniteInt<size>>::get_dataset();
for (DataSet<dt_2>::iterator_type e_0 = DataSet<dt_2>:: begin(£f_0)
; e_0 != DataSet<dt_2>::end(£f_0); ++e_0)
check(Indexable_oracle<ArrayFI<size, E>,
FiniteInt<size>,
E>::ArrayEqual (*a_0,*c_0, *e_0),
"Indexable", "ArrayEqual");
L

F1GURE 4.3: Concrete test code generated from a concept map. HasDataSet is used
to select an appropriate data set for each data type. check is a hook for reporting
results to a testing framework.

431 REUSABLE TESTS

A convenient effect of having concepts and their axioms separate from
the classes that implement them is that they can be freely reused for
testing new types that model the same concepts. If you already have
a Stack concept with carefully selected axioms, you get the tests for free
when you implement a new stack class.

Having libraries of standard concepts for things such as algebraic
classes [60] (including monoid, ring, group and others that apply to numeric
data types), containers (indexable, searchable, sorted, ..) as well as
common type behaviours [62] (CopyAssignable, EqualityComparable, ...) cuts
down on the work needed to implement tests. A well thought-out library
is also far less likely to have flawed or too-weak axioms than axioms or
tests written by a programmer in the middle of a busy project.

4.3.2 CONCEPT COMBINATIONS

Some combinations of classes can create interesting interactions between
concepts. For example, the FiniteInt type we used in the implemen-
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template<int size, typename E>
class ArrayFI {
private:
E data[size];
public:
E& operator[](const FiniteInt<size>& i) {
return data[i];
}
bool operator==(const ArrayFI& a){
for(int i = 0; i<size; ++i)
if (data[i] != a.datalil])
return false;
return true;
}
int getSize() const {
return size;
}
1
template<int size, typename E>
concept_map SameShape<ArrayFI<size, E>,
FiniteInt<size> >{

}

template<int size, typename E>
concept_map Indexable<ArrayFI<size, E>,
FiniteInt<size>, E>{

}

FIGURE 4.4: The ArrayFI class, parameterised with a size and an element type.

tation of ArrayFI satisfies the Monoid concept from Section |4.2|(as well
as several other algebraic concepts that are too lengthy to include in
this paper). If we extend our ArrayFI with element-wise operations, an
instance ArrayFI<FiniteInt> can ‘inherit’ the Monoid concept from the
FiniteInt. For this to work, we need to provide a concept map

template<typename A>
requires DefaultIndexable<A>,
Monoid<DefaultIndexable<A>
r:element_type>,
std::CopyConstructible<A>
concept_map Monoid<A> {
A op(const A& a, const A& b) {
return Shape<A>::map(



4.3. From Axioms to Test Code

Monoid<DefaultIndexable<A>
::element_type>::op,
a, b);
b
A identity_element() {
return Shape<A>::build(
Monoid<DefaultIndexable<A>
::element_type>
:iidentity_element());

The Indexable concept may be used in several different ways on the
same array type with different index and element types. As we want the
compilation process to automatically deduce which way to index our data
structure, we need to provide a default pair of index type and element
type to each Indexable through the following concept Defaultindexable:

concept DefaultIndexable<typename A> {
typename index_type;
typename element_type;
requires Indexable<A, index_type,
element_type>;

Then, for example, ArrayFI would only need a small concept map
like the one below to inherit all the axiom:s.

template <int size, typename E>
concept_map DefaultIndexable<
ArrayFI<size, E>> {
typedef FiniteInt<size>
index_type;
typedef E element_type;
}

Based on the above concepts and the concept maps, an ArrayFI-
<size, FiniteInt> would have test code for the ArrayEqual axiom (in-
stantiated from the template code in Figurel4.3), and for the Monoid: : Identity
axiom. And, as ArrayFI<size, FiniteInt> is itself a Monoid, we can
use it as the element type for a new Indexable Monoid ArrayFI<sizel,
ArrayFI<size2, FiniteInt> >, and so on. Such constructions are im-
portant in some problem domains [80] and allow us to do some simple
integration testing with axioms as well.
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4.3.3 TEST DRIVERS / SUITES

So far we have generated test oracles from axioms, and test cases that
generate test data and call the oracles. To actually perform the testing,
we need to call the test cases as well. There are three ways to do this: we
may call the code manually, we may generate code that calls all known
test functions, or we may use a combined approach.

By default, our tool will generate a main function filled with calls to
all non-template test functions. Guessing at sensible template parameters
is difficult in the case of unconstrained template parameters and when
there is a large or infinite number of choices (as in the case of the nested
arrays above). We therefore rely on the user to choose which templated
tests to run, as explained in Section [4.4]

If we want fully automatic test program generation, we could analyse
existing application code and find suitable template instantiation argu-
ments there. Or, in cases where template parameters are constrained by
concepts, we could generate calls with all classes that fulfil the concept
constraint (with a cut-off in place to avoid infinite nesting). This would
allow quite exhaustive exercising of code, including combinations that a
programmer would likely never think of.

Even if the tool does not automatically generate full test suites, it could
help the programmer by generating code templates. With integration
into an 1DE — such as Eclipse — test suite building can be done in a guided
manner.

4.3.4 Ax1omMs FOR OBJECT-ORIENTED CODE

The axiom examples we have used so far have mostly been in a functional
style where results are returned and there are no side-effects on argu-
ments. Realistic C++ code will often be written in a more object-oriented
style.

Object-oriented style favours side-effects on the first argument. To
capture side-effects in concepts, some functions will have to have ref-
erence type arguments. If the first argument is a reference, then the
function can be defined in the concept map as a method defined in a
class. If the first argument is not a reference, or it is a const reference,
then the function is defined as const method. Non-const methods -
methods that may change the object - is the norm in C++ programming,
which means that function declarations in concepts will often have refer-
ence parameters. The side effect of those functions have to be captured
somehow by the axiom. The comma operator can be useful for testing
side effects. An example is the following axiom:

axiom CopyPreservation(T x, U y) {
&=y, x) ==y;
}
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This axiom states that after assigning y to x, the value of x should be
equal to y. The comma operator has the effect of first assigning y to x,
and then yielding the value of x.

Figure |4.5| shows the traditional bounded stack example also used for
paists [50], Daistish [86] and jax [142]. The BoundedStack concept is written
in a functional syntactic style, but the reference of the first parameter
on pop and push captures the object-oriented style. These two stack
operations modify the current object, rather than return a new modified
stack.

In our stack axioms, we have intentionally not specified what happens
when we attempt to push onto a full stack or pop an empty stack. In
a traditional bounded stack, pushing onto a full stack has no effect. By
leaving this behaviour undefined, we leave the door open for alternative
solutions (handled by non-axiom test cases, for example).

However, if we wish to specify that an exception should be thrown
when attempting to push onto a full stack, we would need a small helper
function to do the push, catch the exception and return true or false -
see Figure [4.6] With some small changes [7] to the proposed C++ syntax,
we could avoid the use of the helper function.

This state-modifying style of axioms has some consequences for test
code generation, since the test oracles will modify the test data. For this
reason, the test oracles avoid reference arguments, ensuring that the data
is copied into the oracle function. This may not be sufficient for all data
structures, though. We are still unsure of the best way to handle this, as
we would like to keep data generation as simple and efficient as possible.
Fortunately the const/non-const status of parameters will give a clue
as to when this may be a problem - for example, the equals operator is
safe, since EqualityComparable specifies that it has const arguments. We
could then try to force copying of test data which is passed as non-const
arguments in axioms. Alternatively, one could simply expect the test
driver to generate fresh data for every oracle invocation.

4.4 Generating Test Data

Creating a test oracle from the concept axioms and a concept map is
straightforward, as described in the previous section. Such a test oracle
will normally have parameter variables (free variables) that need to be
instantiated by suitable values in order to actually perform testing.

We have three cases to consider when we want to provide data for a
free variable:

¢+ The parameter has a known, primitive C++ type.

* The parameter has a known, user-defined type. In this exposition
we will not investigate the issues arising if the known type can be
subclassed.

BOUNDED STACK
ExXAMPLE

DaAta
MODIFICATION IN
ORACLES

65



4. AX1IOM-BASED TESTING

66

concept BoundedStack<typename S> {

requires std::DefaultConstructible<S>,
std::EqualityComparable<S>;

std::EqualityComparable E;

E top(S);

E pop(S&);

void push(S&, E);

bool full(S);

bool empty(S);

axiom PushTop(S s, E e) {
if(!'full(s))
(push(s,e), top(s)) == e; }
axiom PushPop(S s, E e) {
if(!'full(s))
(push(s,e), pop(s)) == e;
if(full(s))
(push(s,e), pop(s), s) == s; }
axiom Emptyl() {
empty(SQ)) == true; }
axiom Empty2(S s, E e) {
if(!full(s))
(push(s, e), empty(s)) == false; }
axiom Equall() {
SO ==5350; 1}
axiom Equal2(S s, E e) {
if(!full(s))
(push(s, e), s) !'=SQO; }
axiom Equal3(S sl1, S s2) {
if(lempty(sl) && (sl == s2))
sl.top() == s2.top(Q);
if(lempty(sl) && (sl == s2))
(pop(sl), s1) == (pop(s2), s2);
}
3

FIGURE 4.5: An example of a bounded stack concept capturing side effect of
OO programming style, with a selection of axioms. The comma operator (,)
is used to first evaluate a call for the side effect (left side), then choosing the
value we're interested in (right side). S() constructs a new stack.
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bool PushFull_help(S s, E e) {
try { push(s, e); return false; }
catch(...) { return true; }

}
axiom PushFull(S s, E e) {
if(full(s))
PushFull_help(s, e) == true;
}

FIGURE 4.6: Checking for exceptions. The function PushFull_help will re-
turn true if pushing onto a full stack throws an exception, and false otherwise.

* The parameter type is a template argument to the test oracle. In
this case, the template may have additional constraints, e.g., that a
parameter models a given concept, see Section

For the last case we will rely on concept maps to identify candidate
types. Though some authors [34] claim that fixing the test data set for
one such candidate will be sufficient, we believe test data sets should
exercise several of these in order to check that the stated requirements
are sufficient constraints on the template arguments.

We provide test data through associating test data generators with
each class. For the primitive types, we can use a random generator library,
to obtain an arbitrarily large selection of test data. User defined classes
should provide a test data generation interface, allowing our testing tool
to feed generated test data to the test oracles. A test data generator for
a class template may call upon the data generators for the argument
classes.

For a known type, whether primitive or user-defined, we see several
strategies for providing test data.

1. User selected data sets.
2. Randomly chosen generator terms.

3. Randomly chosen data structure values.
The first is the classical approach to testing and the one (implicitly) ~ USER SELECTED
favoured by test driven development. Here the tester decides, e.g., that Data
integer values -1, o, 1 and 3 are of prime importance, or that stacks SQ),
SO .push(1) and SQ .push(1).pop() are specifically important. Such
selected data sets are useful for regression testing, where specific data sets
that have exposed problems in the past are rechecked with each revision
of the code. The data sets can also be targeted for other purposes, e.g.,
path coverage of the implemented algorithms.
The second is favoured by Claessen & Hughes in their QuickCheck Ranpom TErmS
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system [34] and by Prasetya et al. for their Java-based testing system [123].
The idea is to let random expressions or sequences of (public) methods
compute data values of the appropriate type. By choosing a suitable
enumeration of terms this will always be possible and give good data
coverage. For example, testing integer-like types (with axioms such as
associativity, commutativity, distributivity) we may use expressions o, 0 +
1,(—1+0)*2,... and for stacks sequences like S s ; s.push(1+-2);
s.push(3]4); s.pop(); may be used.

The third approach requires the tester to have access to the data
representation (data field attributes) of a type. For primitive types such
as floats, this means setting the bit patterns of a floating point number
directly. For a user-defined class this implies that each data field is given
a random value of the appropriate type, subject to the constraints of
the implementation. For instance, having a rational number class where
we represent rational numbers as pairs of integers (a nominator and
a denominator, the denominator different from zero), we may choose
random pairs of integers for the attributes, discarding any pair where the
denominator part would be equal to o. Such direct setting of attribute
values may give access to a larger range of test values than allowed by
method 2, and is needed if all or some of the data fields are publicly
available. Setting data attributes directly requires a filtering mechanism
that identifies all bad data combinations, i.e., a complete data (class)
invariant. If the data invariant has narrow requirements on the data, e.g.,
that the stack has a length field required to be equal to the length of the
linked list representing the data on the stack, independently generating
random integers and random linked lists will probably turn up too few
good combinations for this technique to be worthwhile.

Harvesting the data produced by an application program is related to
the second method, in that it provides values computed by the public
methods of the classes, though harvesting ensures a statistical distribu-
tion of data much closer to those that appear in practise. One way of
harvesting application data would be to insert the test oracles directly as
assertions into an application, using the available data values as parame-
ter arguments to the oracle. This would only be safe for stateless data
types or copy-assignable data types, otherwise we risk that the oracle
itself modifies the state of the application.

Currently, random test data generation seems to be favoured by the
literature [65} [72]; [73]. Studies of testing efficiency seem to indicate that
random testing outperforms most other test set designs. For any fixed
data set size, a carefully chosen data set will normally be better than a
random data set, but a slightly larger, often cited as 20% larger, random
data set is often just as good [73]. Random data generation offers an easy
route to expand the data set to any reasonable size.

Similarly to the data invariant, a conditional axiom itself represents a
filtering mechanism. A conditional axiom contains an if-statement, and
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only those data combinations that satisfy the condition will really be
tried. Assume that we want to test the transitivity axiom for equality on
a user-defined rational number type.

if (a==b & b == ¢) a == c;

With the representation of rationals as pairs of integers sketched above,
we may compute the equality of 3 and 2 by the Boolean expression
nl*d2 == n2*dl involving integer equality. Choosing arbitrary combi-
nations of integers for nominator and denominators, chances are rather
slim we ever will get to the truth part in the transitivity axiom. As in
QuickCheck we will provide a warning in such cases, encouraging the
user to provide data sets where a significant amount of data reaches the
body of the condition. On the other hand, only choosing obviously equal
nominator and denominator pairs, skews the data set towards trivially
satisfying an axiom, and not providing good tests for the algorithms in
general.

Claessen & Hughes also point out that different uses of a data type
may benefit from different data distributions. The observation being that
the data set of integers which best checks that the integers form a monoid,
may not be the ideal data set for array sizes when generating finite array
test sets. We see this observation on targeted generation of data sets as
very important, and expect the locality we have by associating the data
generators with each class will provide this flexibility.

Once the test oracles and the test data machinery are in place, it is
easy to run the tests by iterating through the corresponding data set for
each of the free variables of each test oracle. However, this easily leads to
a combinatorial explosion in the testing size. A test set of 100 elements
is quite reasonable, but when we test axioms with several free variables
this may become a problem. Take the transitivity axiom. It has three free
variables, hence we will test it for one million elements altogether. This
may be OK for integers, but what about one million finite arrays? We
can deal with this by providing the data generators with a parameter
related to the number of arguments in an axiom. Our test generator tool
can then fill in this parameter automatically based on the number of free
variables in an axiom.

4.41  ASSOCIATING A DATA SET WITH A TYPE

Any type that is part of a universal quantification on an axiom needs
to have a test data set associated with it. Our tool expects the user to
configure the data generation with a concept map, where relevant types
model a concept HasDalaSel.

For any type, the user must then provide a concept map for Has-
DataSet with a function get_dataset, which provides the iterators needed

Data
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to obtain values of the type. The for-loops in Figure show how
get_dataset is used to obtain test data. The exact mechanics of iterators
and data source (predefined values, random or generated by some other
scheme) is up to the user, but the library provided with the testing tool
provides a general implementation which can be used as a basis for
generating predefined and random values.

4.5 Discussion

There is no reason to believe that writing axioms (or test cases) is any
less error-prone than programming in general. Failure of a test can just
as well indicate a problem with the axioms or the equals operator as a
problem in the implementation. It is important to be aware of this while
programming, so that bug-hunting is not exclusively focused on imple-
mentation code. The same issue arises with hand-written tests, though,
so this is not specific to axiom-based testing. Also, since axioms have a
different form than implementation code (equation versus algorithm), it
is unlikely that a bug in an axiom and in the implementation will ‘cover’
for each other so that neither are detected. It is still possible, though;
having several axioms covering related behaviour will make this less
likely.

Building libraries of well-tested concepts with axioms will increase
confidence in the completeness and correctness of the axioms, and re-
duces the training needed to make effective use of axioms. Not everyone
can be expected to know all the laws governing integer arithmetic - but
using an existing axiom library and simply stating that “my class should
behave like an integer” is easy.

4.5.1 Equarity TESTING

Axiom-based testing (at least with equations) relies on a correct imple-
mentation of equality. In many cases, problems with equality will be
uncovered in testing, but it is possible to write an implementation of
equality that tries to hide most errors - for example, by simply returning
true for all arguments (which may be detected when testing inequalities,
unless a != operator has been provided with the same problem).

We expect the equals operator to be a congruence relation — an equality
relation that is preserved by all functions. This means that it has the
usual reflexivity, symmetry and transitivity expected of an equivalence
relation, with the additional requirement that all equal objects are treated
the same by all functions, ie. f(a) = f(b) if a = Db for all a, b, and f. A
straightforward bitwise comparison of two objects will often lack this
property. In some cases, such as with floating-point numbers, a usable
equals operator will not be truly transitive (due to a small amount of ‘fuzz’
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when comparing, to cover up round-off errors) - this has little impact on
our use, however.

The EqualityComparable concept in the standard library provides axioms
for the equivalence relation of the equality operator and also ensures
that inequality operator is the negation of the equality.

It may not always be desirable that the equality operator is a congru-
ence. In the cases we want this property, the relevant axioms should be
tool generated, since they will involve every method belonging to the
class being tested.

A ‘bad’ equality operator, returning arbitrary results, will almost
certainly be caught during testing since it is basically tested by every
axiom in the system relevant for the particular type. Trivial cases like
equality always returning true is easily caught by testing based on
equality axioms, while more subtle bugs may only show up in general
testing, and will be more difficult to trace to the equality operator.

Note that having an equality operator is not strictly necessary. Any
type that is EqualityComparable is observable in our test oracles, i.e., can be
tested on equality. But any type that can be projected on an observable
type becomes observable. A projection or context is a term with place-
holder for a variable [164l. This kind of test oracle generation has not
been developed in our tool yet and we for the moment require tested
types to be EqualityComparable.

Note, though, that even if equality is not generally available for a type,
it can be provided in a concept map, thus making it available in any
template context where the type is constrained to EqualityComparable.

452 ALGEBRAIC AXIOMS AND IMPERATIVE CODE

As discussed in Section a particular problem occurs for code written
in an object-oriented or imperative style, relying on side-effects on
arguments. Although this is a poor fit for algebraic-style axioms, side-
effects can be captured by using the comma operator. Another issue
is that the concept itself must specify whether side-effects occur or not,
through the use of non-const reference arguments. If an implementation
has chosen a different approach, a mapping between the two styles
may be given in a concept map, possibly at the expense of an extra
temporary. A solution to this problem is provided by mutification [8],
which automatically maps between algebraic and imperative/OO-style
code.

In the astoor [44] system, algebraic specification of object-oriented
programs is done in the roBas formalism which supports OO syntax.
Each axiom relates object states or values that are computed through a
sequence of method calls; optionally, observer functions may be called
at the end each sequence to inspect the objects. The system is purely
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algebraic, allowing no side-effects in operations, except for modifying
object state in methods - though a relaxation of this is described by
Doong and Frankl [42;43]. Astoot will automatically generate test drivers
from class interfaces, and also generates test cases from a LoBas alge-
braic specification. Automated tests can be augmented by manual test
generation.

As the C++ axiom proposal allows arbitrary expressions, the Astoor
/ LoBAs-style can easily be used with C++ axioms; though, without
disciplined use within same restrictions, there is a danger that side-effects
will interfere with testing, as discussed in Section

The ideas of astoor have been developed further by Chen et al,, and
applied to axiom-based testing of object-oriented code at the level of
class clusters and components [32; 33].

4.5.3 AXIOM SELECTION AND ALGEBRAIC SPECIFICATION

Early work by Liskov and Zilles [102] discuss techniques for formal speci-
fication of abstract data types. They point out that specification should
be done by relating the various operations of the abstract data type,
rather than directly specifying the input / output of each operation. The
latter leads to over-specification, providing many unnecessary details
and hiding the essential properties of the data type - for example, by
enforcing some order on the elements of an unordered set. Specify-
ing operations in terms of each other avoids bias towards particular
representations or implementations. In traditional unit testing, there is
always a temptation to over-specify by focusing on testing the input and
output of every operation, though a disciplined developer can still avoid
over-specification.

In the context of C++ concepts, the concept is separate from the
implementation and should avoid putting undue constraints on how
the concept may be implemented. Hence, axiom expressions should be
limited to using the operations provided in the concept (together with
C++'s primitive operations — on Booleans, for example - these can be
considered implicitly defined in every concept).

Among the techniques discussed by Liskov and Zilles, algebraic spec-
ification [54; [67; [69; [102] shows the most promise in terms of usability
and in avoiding over-specification. An algebraic specification consists of
a syntax description and a set of axioms; this maps to the C++ idea of
concepts, which provide axioms together with a syntax description in the
form of associated types and operations.

To ensure that the behaviour of the abstract data type is fully specified
(or sufficiently complete) one can divide the operations into constructors (the
set of which can generate all possible values), transformers (which can
be defined in terms of constructors) and observers (which yield values of
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another type). Left-hand sides for the axioms of a sufficiently complete
specification can then be constructed from the combination of each con-
structor with every non-constructor. Further guidelines for constructing
specifications are discussed by Guttag [66] and Antoy [4l.

Many of the existing axiom based testing approaches, such as jax
and Daistish, rely on sufficiently complete specifications, provided by
complete axiomatisations or initial specifications. This gives extra prop-
erties on which to base tools. For example, the approach of Antoy and
Hamlet [5] uses initial specifications, which are evaluated alongside the
implementation, as a direct implementation [69] of the specification. All
objects in the system contain both a concrete value and an abstract value
(in the form of a normalised term over constructors in the specification),
and the equations from the specification can be evaluated by treating
them as rewrite rules on the abstract value terms. A representation mapping
translates between the abstractions of the specification and the concrete
data structures of the implementation. Self-checking functions are made
by doing an additional abstract evaluation according to the specification,
and - using the representation mapping — comparing the result of normal
execution and evaluating the specification. In this way, a whole program
can be described and evaluated in two distinct ways — using program
code and algebraic specification — providing good protection against
programming errors. This is also the disadvantage of the approach - the
implementation work must basically be done twice. The overhead of the
abstract evaluation and comparison can probably be lowered by running
the testing code in a separate thread on a multicore system.

Axioms written in C++ concepts will normally be loose and incom-
plete, making many of these testing techniques void. The approach
described in this paper will work equally well with an incomplete specifi-
cation (though, it will of course not be able to test unspecified behaviour).
Our experience with developing and testing Sophus [75; 801 shows that
such axioms are very useful.

4.5.4 EXPERIENCES WITH AXIOM-BASED TESTING

There is currently no large body of code around that uses C++ axioms,
since the standard proposal is not yet finished and compiler support is
still not mature. A version of the Matrix Template Library [136] (m11) with
concepts and axioms is in development and we plan to apply our tool to
it as soon as it is ready.

We have experience with axiom-based testing from the Sophus nu-
merical software library [75]. This predates C++ axioms, so the tests
were written by hand, based on a formal algebraic specification. In our
experience, the tests have been useful in uncovering flaws in both the
implementation and the specification, though we expect to be able to do
more rigorous testing with tool support.

TESTING WITH
INITIAL
SPECIFICATIONS

The prototype
ConceptGCC compiler
works well in some
cases, but is not
complete yet.
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The JAXT tool [77; 921 provides axiom-based testing for Java, by gen-
erating tests from algebraic specifications. The axioms are written as
static methods and are related to implementation classes through in-
heritance and interfaces. For any class with axioms, the JAXT tool will
generate code that calls the associated axioms. A team of undergraduate
students successfully wrote JAXT axioms for parts of the Java collection
classes, discovering some weaknesses in the interface specifications in
the process [109].

The jax [142] method of combining axioms with the JUnit [15]; [T05]
testing framework has provided some valuable insight into the usefulness
of axiom-based testing. The jax developers conducted several informal
trials where programmers wrote code and tests using basic JUnit test
cases and axiom testing, and found that the axioms uncovered a number
of errors that the basic test cases did not detect.

Initial experiences with parsts [50] were positive and indicated that
it helped users to develop effective tests, avoid weak tests, and the
use of insufficient test data. With Daistish [84l, the authors did trials
similar to those done with jax, with programming teams reporting that
their axioms found errors in code that had already been subjected to
traditional unit testing. Testing also uncovered numerous incomplete
and erroneous axioms — the Daistish team note that this is to be expected
since the programmers were students learning algebraic specification.
This is probably a factor, but some axiom errors can be expected even
from trained programmers.

Further experiences and case studies are summarised by Gaudel and
Le Gall [52].

4.5.5 TooL IMPLEMENTATION

Our implementation is based on the Transformers C++ parsing toolkit [19}
148] and the Stratego program transformation language [25]. We have
extended Transformers with the new syntax for concepts and axioms, and
written a tool, extract-tests, that reads C++ with concepts and gener-
ates testing code from the concepts and concept maps in the code [10].

As part of our concepts extension to Transformers, we also have an
embedding of the Concept C++ grammar into Stratego, so that Stratego
transformation rules can be written using concrete C++ syntax. This
makes it easy to modify the code templates for the generated code, for
instance, changing the test oracles to report success / failure to a testing
framework. As an example we use a backend for test oracles that instead
of returning a Boolean, throws an exception for the curte library [138]
with the line number of the axiom, so we get test results reported within
the Eclipse 1DE.

Together with the tool, we have a utility library with basic data
generation support, and hooks into a testing framework. This library
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provides a concept for test data generators. Each type to be tested is Dara GENERATION
expected to have an associated data generator specified through a concept LIBRARY
map. This allows the user to specify which generator to use, to create any
new kind of generator, and finally to combine streams of generated data.
Since compiling Concept C++ is usually slow, and since generating
code directly for pure C++ is complex, the tool is delivered with a Concept
C++ to C++ tool translation. Though this tool is not complete, it can still
give a sufficient translation to be able to work on a big part of Concept
C++ with a standard pure C++ compiler.

4.5.6 FuTturRe WORK

We have identified several areas for improvement throughout this paper.
Areas of particular research interest are:
+ Perform proper trials to gauge the effectiveness of axiom-based
testing and its impact on development.

+ Testing of multi-threaded applications is notoriously difficult [T32],
and it would be interesting to see if axiom-based testing could be

applied here.

+ As discussed in Section |4.4} there are many open issues with data
generation. These will likely only be resolved once we apply the
method to realistic-sized projects (like MTL).

There are also much engineering work to be done (in no particular order):

+ A library of common concepts with axioms should be written. There
has been some work on this already [60l. Such concepts should
eventually make their way into the C++ standard, for consistency
and interoperability.

+ Our tool is still experimental, and would need many improvements
to be ready for production use. In particular, the underlying frame-
work needs to be developed to handle the kind full-featured C++
code found in mainstream application.

* The tool should be extended with the ability to generate meta-
axioms for testing, e.g., congruence axioms for the equality operator
or axioms checking the preservation of class invariants in all meth-
ods.

* Generate oracles that can test equality on observable types that
have no direct equality comparison operator.

4.6 Conclusion

The use of axioms and “informal formal methods” has seen a surge in
popularity recently. We have presented a method for doing axiom-based
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testing in the context of proposed concept and axiom features for C++,
along with a tool to make generation of such tests automatic.

Both the C++ standard, and programming tools such as compilers are
still in development and should be considered ‘unstable’. However, our
initial experiments with simple test cases show promise, and experiences
with axiom-based testing from other languages (both our own and
others’) encourage us to push forward with tool development and larger-
scale experiments.
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CHAPTER

Handling Failure and Exceptions

Proper handling of failures and unexpected situations that arise is im-
portant in creating reliable software. Alerts, presented in this chapter,
provides a unified approach to reporting and handling failure. In par-
ticular, alerts can enforce checking of return codes, and provide local or
global handlers for different error situations.

Alerts can also associate errors with particular argument values, thus
providing precondition checks integrated with the alert handling system.
Improper checking of arguments is a significant source of bugs and
security problems, so this is an important feature.

From a specification point of view, operations that can end in failure
are partial. A convenient way of handling partiality in specification is
through guarding [78], where preconditions — guards — are added to partial
operations. By assuming that the guards always hold, operations can be
treated as total, greatly simplifying the specification.

The paper in the chapter was presented at GPCE'06. A simple version
of alerts for the minimal TIL language [155] was also presented at the First
Domain-Specific Aspect Languages Workshop, as an example of how
a domain-specific aspect language can be implemented using a syntax
extension together with a transformation library [9].
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ABSTRACT

Dealing with failure and exceptional situations is an important but
tricky part of programming, especially when reusing existing com-
ponents. Traditionally, it has been up to the designer of a library
to decide whether to use a language’s exception mechanism, return
values, or other ways to indicate exceptional circumstances. The
library user has been bound by this choice, even though it may
be inconvenient for a particular use. Furthermore, normal program
code is often cluttered with code dealing with exceptional circum-
stances.

This paper introduces an alert concept which gives a uniform
interface to all failure mechanisms. It separates the handling of an
exceptional situation from reporting it, and allows for retro-fitting
this for existing libraries. For instance, we may easily declare the
error codes of the prosix C library for file handling, and then use
the library functions as if C had been extended with an exception
mechanism for these functions — a moulding of failure handling to
the user’s needs, independently of the library designer’s choices.
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5.1 Introduction

Wherever there is software, there are errors and , and these must always
be considered when writing and maintaining programs. Programming
failure handling code is a tedious and error-prone task. Dealing with
every possible exceptional situation leads to cluttered and hard to read
code; not dealing with errors can have costly or perhaps even fatal
consequences.

Some have argued that error handling should be avoided altogether.
Instead, programs should be written so that errors never occur. Algo-
rithms should be formulated so as to remove the exceptional corner
cases, as this improves both the readability and maintainability of the
code. This view is fundamental to the design of spark Ada [12], where the
Ada exception mechanism has been removed in an attempt at making
validation and verification easier. This ideal advocated by such a “keep
errors out” approach is certainly desirable. It is generally preferable to
write algorithms with as few corner cases as possible.

In many cases, however, removing the errors altogether is simply not
feasible [125]. Most modern applications run in multi-user, multi-process
environments where they share resources such as storage and network
with other applications. In these situations, operations on files, network
connections and similar operating system resources can always fail, due
to interaction with other programs on the running system or external
devices.

Errors and exceptional situations need not always be caused by exter-
nal factors, however. Even in situations where resource requirements are
known in advance and guaranteed to be available, exceptional situations
may occur, as none of the mainstream languages support resource-aware
type systems [149].

As an example, consider the implementation of a simple abstract data
type, say, a hash table, that is intended for other developers to reuse. In
the case where the user (the caller) tries to look up a value for a non-
existent key, an exceptional situation has occurred. Some possibilities for
dealing with such a situation are:

* Undefinedness: this situation is outside the specified behaviour of the

hash table. The caller cannot have any expectations as to what will
happen.

* Termination: the program will terminate when this situation occurs.
It is up to the caller to ensure that this does not happen.

* Alert the caller: report that an exceptional condition occurred. Given
proper language mechanisms, alerts allow the user of the hash table
to implement alert handling, such as logging, recovering from or
ignoring the failure.
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Undefinedness requires no language support, and termination can
usually be implemented by a call to an exit function. In languages
supporting Design by Contract (discussed in Section [5.2.1), termination is
automatic if a function fails to satisfy declared conditions either before
or after invocation.

Several different alert reporting mechanisms are in common use.
Goodenough [57] first introduced the exception handling mechanism
that is now found in most modern languages, and is currently the
recommended way of handling exceptional situations. Returning a
special error value, often -1 or null, or setting a global variable is
another common technique, often used in older code and languages.
Other than exceptions, most reporting mechanisms are ad hoc, in that
there is no way to declare which mechanism is used. Conventions do
exist - for example, most posix [IT9] functions report errors by returning
-1 - but they are not declared explicitly in the code, making it difficult
to automate alert handling. We therefore propose that each function
declares its alert reporting. For example, a hash table lookup function
may declare that it returns null if the key was not found:

val lookup(tbl t, key k)
alert NotFound post(value

null);

Handling alerts is no easy task either. Different reporting mecha-
nisms have different default handlers — exceptions, for example, typically
terminate the program if they are not caught, whereas return values
are ignored if they are not explicitly tested. Furthermore, different alert
reports are checked in radically different ways; exceptions are received by
a try/catch clause somewhere in the call hierarchy, return values must
be checked after each return - often tedious and inconvenient. Chang-
ing the report mechanism means changing all handlers. We propose a
way of declaring handlers which is independent of the alert reporting
mechanism, and which can apply at various granularities, from a single
expression to the whole program. For example, the following handler
ensures that NotFound errors from the lookup function is handled by
substituting the string " (unknown) ":

on NotFound in lookup() use "(unknown)";

Our contribution in this paper is a detailed discussion of failure han-
dling mechanisms and the proposal of a language construct for alerts:
Alert reporting may be declared for precondition and postcondition vio-
lations, exceptions, error flags and return codes, simplifying the task of
staying alert for run-time problems. Alert handlers can be defined inde-
pendently of the reporting mechanism, allowing a library implementer
to alert its user in a way convenient for the library, and a library user
to handle the alert in a convenient way at the call site. Alert handlers
can be declared at a per-function and per-call-site basis, but it is also

The word ‘exception’
was coined as a way of
emphasising that
exceptions are not just
for handling errors,
but can be used for
any kind of
exceptional
circumstance.
However, it is easy to
confuse the concept of
handling exceptional
circumstances and the
exception handling
language constructs
found in many
languages. We have
therefore elected to use
the word ‘alert’ for any
reported exceptional
situation, independent
of the alert reporting
mechanism and the
alert handler, which
receives the alert report
and deals with it
appropriately. The
word ‘exception’ on its
own will refer to the
language construct.
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possible to declare policies common to a group of functions, such as
a class or a library. In this way we can relatively easily retro-fit alert
declarations for legacy code, e.g., the posix C library, easing the burden
of checking in all kinds of strange ways for relevant 1/0 errors. Hence
we approach mouldable programming, a way of moulding programming
to our needs, and not being forced to program in strange ways due to
arbitrary choices from language and library designers, or from perceived
expectations from a user community.

This paper is organised as follows. In Section [5.2| we elaborate on the
problem of handling failures and exceptional situations. In Section
we discuss separation of concerns, and granularity. In Section [5.4) we
introduce our alert language extension, and continue by discussing its
implementation in Section In Section [5.6| we discuss related work,
leading up to a concluding discussion of our language extension in

Section [5.7]

5.2 Problem

The problem we are facing, is implementing an alert protocol between
callers and callees that can transmit status information from the callee
about the validity of its computed result back to the caller Goode-
nough [57] points out that this is a way to extend an operation’s domain
(input space) or range (output space). The caller will declare an alert
handler for the types of alerts it wants to handle, and the callee may report
an alert during its computation, thus becoming the (alert) reporter.

5.2.1 ALERT REPORTING MECHANISMS

Current programming paradigms and languages provide a number of
ways for dealing with failure, dating back to the earliest days of pro-
gramming. Hill [8T] discusses possible mechanisms, anno 1969, which
includes specific return values, use of gotos to parametrised labels, call-
backs, global error flags, and passing pointers to variables which will
receive an error status.

RETURN VALUEs Designating at least one value in the domain of the
return type as an error marker is perhaps the most prevalent form of
alerting. This technique is frequently found in operating system APIs,
such as posix and Win32, in many language standard libraries, and in
many frameworks. Functions returning objects often use null as such a
marker, functions returning numeric values for file handles or indexes
often use -1. If the return type only allows for one error marker, an
additional mechanism, such as a global flag, is needed to distinguish
between different kinds of errors.
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The 1EeE floating-point arithmetic standard [56] allows a wide range
of error return values. Some of these automatically propagate through
an expression, like NaN - “Not a Number”. NaN occurs as a result of 0/0,
v/—1, log(—1), etc. A more interesting error value is 4+co0 or —oo, which
is the result of e.g. M/m where a very large number M is divided by a
very small number m, resulting in numerical overflow — a number too
large to be represented as a floating point number. Infinities propagate
through addition, subtraction and multiplication, but disappear after
division. The expression a + 4/(M/m) yields a, as 4 divided by infinity
yields o.

If the return value for failure can also be a valid return value, for
example if division by zero returns zero, we are faced with the so-called
semipredicate problem: it is not possible to know if the return value
signifies a failure or a valid value.

A property of the return value mechanism is that it will only propagate
the alert one level, to its immediate caller. Also, it requires no alert handler
setup or teardown, and thus has no overhead.

GroBAL ERROR FLAGs Many older APIs, such as posix and Win32 use
global error flags, often in conjunction with special return values, to
elaborate on a failed function. In Winz2, the function GetLastError is
used to retrieve the failure code of the previously executed system call.
In posix, the global errno variable serves an identical purpose.

The use of a global error flag variable is not thread safe. Unless special
consideration is taken, multiple threads in the same process will share
the same error flag variable, making it impossible to know which of the
previous threads’ system calls a given error belongs to. This is alleviated
by having global error function, like GetLastError, instead.

LoNnG DistANCE Jumps In C, the functions setjmp and longjmp are
used to transfer control directly from one stack frame to one which is
arbitrarily higher up. This report mechanism is often used to propagate
errors many levels, but can only send an integer value. This is a low-level
C/Unix-specific technique, which is also found as Rt1Unwind in Win32.
Both alternatives rely on low-level machine-specific register set saving
and compiler knowledge. Another drawback is the difficulty of freeing
allocated resources properly before the handlers for such resources leave
the variable scope.

ExcerTioNs Today, the most common way of alerting is to use the
exception mechanism introduced by Goodenough [57], in languages that
provide this, such as CLU [103], C++ [143], Java [59], Ada [146l, ML [114]
and Python [152].

SPECIAL ERROR
RETURNS
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Raising an exception consists of two parts: First, a function, say A, sets
up an exception handler listening for a particular type of exception E,
using a try/catch (Java), handle (SML) or try/except (Python) construct.
It then invokes the function B, either directly or indirectly. B raises
the exception E by invoking the raise (Python, SML) or throw (Java)
language construct, and the search for an appropriate exception handler
starts. Each stack frame is consulted in succession, until one with a
handler for E is found. If no new handler for E is declared in the
functions between B and A on the stack, control is transferred from B to
the handler declared in A.

For the languages above, after the handler in A finishes, execution
continue in A. In other languages, it is possible to either resume after the
raise statement in B, or restart B, see Section for details.

Exceptions may be either checked — must be declared by all functions
that may throw them, both directly and indirectly — or unchecked — may
be thrown without being mentioned in a function’s list of throwable
exceptions. In Java, checked exceptions are the default, but unchecked
exceptions are used for catastrophic errors, such as out-of-memory errors
and disk failure.

Exception handlers need not only be declared as markers on the
stack. They can also be attached to classes, statically giving each class its
own handler, or to objects giving each object a specific handler. This is
discussed in Section 5.6}

ConpiTioN SYSTEM The PL/I ON condition system, allows the program-
mer to attach handler blocks for pre-defined language exceptions that
may occur in expressions, such as division by zero and end of file. These
handlers are installed and removed dynamically. Extensions of this idea
can be found in Dylan, Smalltalk and Lisp, which have systems for de-
tecting exceptional situations based on (a restricted description of) the
state space of a program. When a given failure condition is met, control
is transferred to a specified error handler which can elect to try error
recovery followed by resume, or terminate the function that threw the
exception.

Event HaNDLERS Event handlers and posix signal handlers both pro-
vide a callback mechanism which may be used for passing error notifica-
tions from the operating system to the application, or between parts of
an application. This model requires no special language support, and is
usually tied to the API or framework the application was written with,
e.g. posix (signals) or Winz2 GDI (events).
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GuARDING A pre-condition may be declared on a function,testing be-
forehand whether the function will return normally with the data. Ef-
fectively, pre-conditions ensure that the input falls within a function’s
domain, and attempts to ascertain whether the state of the system al-
lows the function to complete. Formulating such a pre-condition may
not always be possible, e.g., during complex interaction with external
resources.

ConTRACTS A significant extension to guarding is design by contract,
described by Meyer [I11l. In this technique, explicit pre- and post-
conditions are declared on every function. Whenever either fails, the
program terminates immediately. A contract should never be checked by
the caller; contract verification must happen during the implementation
phase, not at run-time. Eiffel [TT0] was the first language to support and
enforce contracts, but also comes with a notion of exception handling.
A routine may have a rescue handler declared for it, which may either
provide some default return value, retry the routine, or fail. In the latter
case, the failure will be propagated to the method'’s caller.

Goro The use of goto as an exception handling technique has almost
disappeared with the introduction of various exception handling lan-
guage features. In some restricted domains, such as the kernel code of
operating systems, where space and performance considerations out-
weigh readability, gotos are still prevalent.

5.2.2 ALERT HANDLING POLICIES

Even using the same basic alert reporting, different usage policies lead
to large differences in alert handling in the design of frameworks and
libraries. The policy about retrying on failure, is one example. Unix
leaves it to the user to retry failing operating system calls, for example if
a long running kernel operation is preempted. Windows (and BSD Unix
variants), on the other hand, retries preempted operations automatically.
In many languages, guiding principles exist about using the exception
handling feature of the language. This is the case for Java, where the
general recommendation is to use exceptions for alerting. Despite such
principles, there are numerous examples in the library where error return
values are used, among them in the implementation of the hash table.

5.2.3 A GAME OF ANTICIPATION

The state of the art is to use design experience on a case-by-case basis
to provide suitable alerts. Specifically, there exists no declarative way to
select the desired error handling mechanism for part of a program. The
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need for design experience comes from the fact that fundamental trade
offs between the caller and callee of an abstraction must be managed.
The caller is the party which will be implementing the alert handling.
As the various handling techniques have different affinities with alert
reporting, and every caller is potentially different, the implementer of
the callee must anticipate the handling techniques that will be used by
the callers.

From the callee side, the ideal reporting mechanism may depend on
the implementation of an algorithm. For instance, if we are within a
deeply nested data traversal, it may be more convenient to throw an
exception than to use return values.

CALLER VS. CALLEE Another consideration is who should do error checking on the input
parameters. Should the callee accept erroneous input and produce
garbage? Should the callee do all checking? This decision is usually
coupled with significant performance trade offs.

The amount of anticipation required by the implementer of the callee
is significant, perhaps especially in core language libraries. In Java, an
example can be found in java.util.Queue, which provides pairs of
identical functions, save for differences in alert reporting: pol1() and
remove() can both be used to remove the head of a queue. poll(Q)
returns null if there is no head, whereas remove () throws an exception
in the same case. Similarly, add() throws an exception if a new element
cannot be added to a queue, whereas offer() returns false if the
insertion failed.

WHAT 15 FAILURE? Determining a suitable reporting mechanism when implementing a
callee is compounded by another problem: the caller is the final arbiter
of what is normality and what is failure. Returning null from a hash
table lookup may in one application be completely acceptable, and
not constitute a special case in the algorithm using the hash table. In
another application, it will be the sign of severe data corruption and
violation of crucial invariants. In the first case, returning a null is neither
an exceptional case, nor an error, and this situation is therefore not a
candidate for alert handling. In the second, it is critical that proper
alerting be used.

5.3 Separation of Concerns

AsSPECT SEPARATION OF ALERT REPORTING AND HANDLING  Although the mech-
ORIENTATION ~ anisms in Section are essentially equivalent in that they all report
exceptional situations (possibly with additional information), the default
action taken when an error occurs differs. For return values and error
flags, the default is to ignore the error. For exceptions, the default is to
propagate the exception through the call hierarchy, possible leading to
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termination of the program. For guarding, the default is not to guard, i.e.,
ignore the error.

In all cases, the callee implicitly decides the default action in case of
an error, by choosing a given report mechanism. This is unfortunate,
since the goal of raising an alert to the caller is to let the caller decide the
appropriate course of action (otherwise, the callee could simply handle
everything on its own). Additionally, the choice of alert mechanism is of-
ten based on implementation pragmatics, rather than whether the default
action is likely to be appropriate for the severity of the error. If the callee
is changed to use a different mechanism, all call sites must be updated.
Thus, we have a tangling of alert mechanisms (callee implementation) and
alert handling (caller implementation).

SEPARATION OF NORMALITY AND EXCEPTIONALITY With existing tech-
niques for handling exceptional situations, we get a tangling of a pro-
gram’s normal behaviour and its exceptional behaviour. If our handling
policy is to report small errors to the user and abort the program on seri-
ous errors, we have to code this into all places where errors are handled.
Thus we end up with a mix of code dealing with normal circumstances,
and code dealing with exceptional circumstances (alert behaviour). This
leads to cluttered code and maintainability problems: if we wish to
change our policy for some errors, we may need to change a lot of code
in many different parts of our program.

This problem has also been observed in [100l, where aspects are
used to untangle the alert behaviour from the normal behaviour. The
authors advocate that alert handling code be put in separate declarations
— aspects — instead of being scattered around the code (see Section [5.6).

GRANULARITY In some cases, mixing normal and alert behaviour may
be beneficial; for example, by taking alerts into account locally, we may
compensate, e.g., by substituting a different return value. In some cases,
such decisions must be made for each call site; in other cases, we may be
able to provide a common policy for an entire class, a module or a set of
functions.

An example of this is 1EEe floating-point expressions. Here a NaN
is propagated through the expression and may be tested for, while
an overflow (+o0) may be propagated or consumed depending on the
expression itself.

5.4 Alert Language Extension

While the existing body of research on exception handling addresses
many of the concerns we have mentioned above, one area of the design
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declaration ::= alert { alert-def 1 super—alert* ;
alert-def ::= alert-name [(parameter-list)] super-alert”
super-alert ::= : alert-name

FIGURE 5.1: Grammar for the declaring new alerts.

space remains relatively unexplored: how to extract and declare sepa-
rately the handling of exceptional situations. This is what we will address
in the next sections.

Our mouldable abstraction of alert handling provides for separation
of mechanism and handlers, separation of normal behaviour and failure
behaviour, and allow decisions to be taken at the appropriate level of
granularity, i.e. at the expression, statement, function, class, module or
component level. Furthermore, our proposed solution allows the callee
to declare what is normality and what is exceptional; allows the caller to
declare the desired alert handling policies; can be applied retroactively
to existing libraries; and is able to distinguish different types of errors.

A grammar for the alert extension is presented in Figures and
Although our prototype implementation (discussed in Section [5.5) is
an extension of the C language, we will discuss the extension in terms of
a C/C++/Java/C#-like language with an exception facility.

The grammars in this paper are meant for human consumption, and
not for use directly in an implementation. Non-terminals written in
upright font are meant as hooks into the base language. Non-terminals
ending in name, type or expr are all names, types or expressions of the
appropriate type. The notation 7" and “ ¥ " is used for comma-separated
lists.

541 DISTINGUISHING DIFFERENT ALERTS

Alerts are declared with the alert declaration, using syntax similar to
the enum declaration (see grammar in Figure [5.1):

alert {MyAlert};

Multiple comma-separated alerts can be declared in the same decla-
ration. For example, a selection of posix error codes is listed in Figure
These errors can occur during normal file operations, such as open, read
and write. We can give each of them a unique alert name with the fol-
lowing declaration, with different (case-sensitive) names to avoid name
clashes:

alert {eBadF, eIntr, eIO, eNoEnt, eNoMem};
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EBADF Bad file descriptor
EINTR Interrupted system call
EIO Input/output error

ENOENT  No such file or directory
ENOMEM  Insufficient memory available

F1GURE 5.2: A small selection of posix error codes, used, e.g, for open, read
and write. The codes are set in the global errno variable, and should be
checked whenever a function raises an error (typically by returning -1)

If we look at the selected error codes (and a posix reference), we see
that they fall into roughly four categories: temporary conditions (EINTR);
system problems outside the program’s control (ENOMEM, E10); problems
that might be correctable with user help (ENOENT); and programming
errors (eBaDF). Thus, it is useful to be able to group them, so that we
may, for example, automatically retry temporary failures, ask the user
for a new file name on permission or missing file problems, and abort
the program on system errors and programmer errors. To do this, we
organise our alerts in a hierarchy, similar to an inheritance hierarchy
in OO programming (which is also used for exceptions - in Java, for
example):

alert {Retry, AskUser, FatalSys, FatalBug};
alert {eNoEnt : AskUser};

The colon separates a sub-alert from its super-alert in a declaration.
Multiple alerts can be assigned a common super-alert:

alert {eIO, eNoMem} : FatalBug;
Additionally, an alert may have more than one super-alert:

alert {StupidMistake};
alert {eBadF} : FatalBug : StupidMistake;

To avoid cycles in the inheritance graph, alerts must be declared before
they are used as super-alerts. The built-in alert Alert is the super-alert
of all other alerts.

Finally, we note that it is sometimes useful for the callee to pass some
information back to the caller. To do this, the alert must be declared
with one or more arguments. For example, an Error alert which allows
a message to be passed to the caller:

alert {Error(char *msg)};

We will see below how the values are passed from callee to caller.

INHERITANCE

FEEDBACK
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declaration ::= fun-dcltr (alert alert-rep | throws-clause)” [fun-body]
declaration ::= alertrepdef alert-rep alert-rep-name ;
declaration ::= funspace funspace (alertalert-rep)+

alert-rep ::= [alert-name| pre [unless| ( cond-expr)
alert-rep ::= [alert-name] post [unless]| ( cond-expr)
alert-rep ::= [alerl-name] on throw excepltion-name

alert-rep ::= alert-rep-name
alert-rep ::= {alzrt—rept }

FIGURE 5.3: Grammar for specifying alert reporting. The funspace non-terminal
is defined in Figure

5.4.2 SPECIFYING THE ALERT REPORTS OF A FUNCTION

Alert reports are specified at the callee side with an alert clause in
the function declaration, c.f. grammar in Figure Possible reporting
mechanisms include condition checks before (pre conditions, useful for
guarding) and after (post conditions, for checking return values and
global error flags) a call, and exceptions. For example, to declare that a
hash table lookup function lookup returns 0 on failure, we write:

val lookup(tbl t, key k) alert post(value == 0);

To use a more specific alert than the default Alert, we simply add the
name of the desired alert:

val lookup(tbl t, key k) alert NotFound post(value == 0);

The post-clause takes an expression, which is evaluated after the function
call returns - if the expression is true, the function has failed. The special
keyword value can be used to check the call’s return value (the type of
value is that of the return type of the callee). Similarly, the pre-clause
takes a condition which is checked before the function is called.

The condition expressions may be arbitrarily complex, but should
only use globally accessible names, arguments to the call, and value.
Arguments are referred to by the name they are given in the function
declaration, and have whatever values they have at the time of checking
(before or after the call).

// alert if table t cannot be expanded
// due to memory constraints
int insert(tbl t, key k, val v)
alert eNoMem post (value == -1 & & errno == ENOMEM);

Specifying a condition with the unless keyword negates it, providing
a more intuitive way of specifying invariants and pre/post conditions
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(which are often specified in terms of what is normal, and not in terms
of what is exceptional).

// separate success/failure flag if no return values
// can be used for alerting
val lookup(tbl t, key k, bool *success)

alert NotFound post unless(*success);

Exceptions (if the language supports it) can be declared with a throws
(Java) or throw (C++4) clause, provided that the exception name has also
been declared as an alert:

alert {AnException};
int £() throws AnException;

If a mapping between exceptions and alert names is desired, an on throw
clause may be used:

int f£() throws AnException
alert Error on throw AnException;

In all cases, information may be passed to a handler using alert parame-
ters:

val lookup(tbl t, key k)
alert NotFound(k) post(value == null)

The callee must still provide some way sending this information, either
through updating of arguments, return values, global variables or ex-
ception objects — alert parameters are merely a declaration of whatever
mechanism is used. For exceptions, the exception object is available for
use in alert parameters:

int f() throws AnException
alert Error(e.msg) on throw AnException(e);

5.4.3 ALERT HANDLING

The alert handler will treat all alerts the same, whether they are reported
by return value, condition check, or exception. The grammar for alert
handlers is presented in Figure[5.4] There are two alert handling constructs:
on, for specifying an alert handler at any scoping level, down to a single
statement, and the handler operator, <: :, which specifies a handler for a
single expression.

The on Construct

The on declaration takes a alert-pattern and a statement. The declaration is
lexically scoped and applies to all call sites it matches within its block.
The statement form of on applies to a single statement. If more than
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declaration ::= handler handler-name ( parameter-list) statement
declaration ::= onalert-pattern statement

statement ::= retry [(argument-list) | [max int-expr] ;

statement ::= use expr;

statement ::= handler-name ( argument-list) ;

statement ::= statement-body on alert-pattern statement
alert-pattern ::= single-alert % [in funspace]

alert-pattern or alert-pattern

alert-pattern ::

single-alert ::= alertname [( parameter-list) ]

expr ::= expr<: [alert-pattern] : handler
handler ::= expr | { statement }
handler ::= handlername Cargument-list)

FIGURE 5.4: Grammar for alert handlers. The funspace non-terminal is defined

in Figure

one handler matches, the most specific one closest in scope applies, or
a compile-time error is given if there is more than one equally suitable
handler.

The alert pattern specifies for which combination of alerts and callees
the handler applies. The handler itself is a single or compound (block)
statement, which should provide a replacement value, retry the com-
putation, refer to another handler, or terminate the caller. It is an error
for a handler to complete without providing a replacement return value
when one is needed - in this case, we terminate the program (though we
could check statically whether this can occur, and other design choices
are certainly possible).

Within a handler, the use statement may be used to provide a re-
placement value; use exits from the handler as if the callee had returned
normally with the value provided. For example, the following defines
a handler for NotFounds in the lookup function which substitutes the
value "Doe, Jane" for failed lookups (e.g., when mapping ID numbers
to names):

on NotFound in lookup() use "Doe, Jane";
The following does the same for all alerts in lookup:

on Alert in lookup() use "Doe, Jane";
The next two declarations both do the same for NotFound in all functions
(the % matches all functions):

on NotFound in % use "Doe, Jane";
on NotFound use "Doe, Jane";
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The following NotFound handler applies to just the preceding print
statement:

print (lookup(tbl, key)) on NotFound use "Doe, John";

The retry statement tries the failed call again (possibly with a maximum RETRYING
retry count, specified with “max number” — the default is to retry indef-
initely). The retry statement also takes an optional list of arguments,
which will replace the arguments in the failed call. It will exit from the
handler, continuing execution at the point of the call which reported
the alert — except when the maximum retry count has been reached, in
which case execution continues with the next statement after retry.
For example, the following specifies that on a NotFoundError, we
should ask the user for a new name and try again (maximum 5 times). If
our recovery attempts fail, we substitute an empty string.

on NotFoundError in readfile(char *name) {
warn("trying again...");
char* name = askUser();
if(name != NULL) retry(name) max 5;
warn("giving up...");

use i}

The Handler Operator

The handler operator provides a convenient way of handling alerts at

the expression level. The left operand is an expression to be evaluated,

and the right operand is a handler to be used if an alert was reported in

the expression. Within the operator itself, one may specify which alerts ExPrRESsION-LEVEL
should be handled. Alerts are specified in the same way as for on, the HANDLERS
handler can be either an expression giving a replacement value, a call to

a previously defined handler, or a statement list (enclosed in braces). In

the following example, a string is substituted if a lookup fails:

print("result:", lookup(t,k) <:: "Unknown");
An alert pattern can be specified between the colons:
print("result:", lookup(t,k) <:NotFound: "Unknown");
Furthermore, handler code can be provided, as for on:

fd = open(name, flags) <:eNoEnt: {
char *newname = askUser();
if(newname != NULL) retry(newname,flags);
else giveUp("couldn’t open file"); };

This will try to open a file, and if the file is not found, the user will be
asked for another name. If the user provides one, we try that instead,
otherwise, we abort with a message.
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5.4.4 ABSTRACTION

Our extension provides abstractions for alert handling and reporting.
The handler construct declares handlers which may be used later on by
the on declaration or the handler operator. For example,

handler log(msg, dflt) {

print("An error occurred: ", msg);
use dflt; }
which may be used as:
on NotFound in % log("Lookup failed", "");

name = askUser()
<:eNoEnt: log("No response from user", "--");

Handler abstractions look deceptively like functions in both definition
and use, but are not functions, since the retry and use statement would
be tricky to implement in a separate function. Instead, the definitions are
expanded inline wherever they are needed. Hence, (mutually) recursive
handlers are not allowed.

The alertrepdef declaration declares alert reporting mechanisms for
use in a function declaration. It follows the same pattern as the C/C++
typedef construct. This is useful when several functions share the same
alert behaviour. For example,

alertrepdef alert Error post(value == 0) ErrorOnZero;

ErrorOnZero can then be used for functions raising errors with a zero
return value:

int £() alert ErrorOnZero;

5.4.5 SENDING INFORMATION FROM CALLEE TO CALLER

Alerts can have associated values (alert parameters), allowing a callee
to provide additional information to a caller. A similar idea is found in
exception handling (e.g., in Java or C++), where exceptions are objects
that may contain information relevant to the exceptions. As shown in
Section valued alerts should be declared with arguments:

alert {Error(char *msg)};
At the callee side, we provide a suitable value in the alert clause:

int read(int fd, void *buf, size_t count)
alert Error('"read error") post(value == -1);

The value can be obtained at the handler side from the alert pattern:

on Error(msg) in read() { print(msg); exit(1l); };
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In this example, msg is declared as a string, and gets the value "read
error" from the failed read(). If more than one alert is given in the
alert pattern, all of them must have the exact same argument list. It is
not necessary to mention the arguments if they are not needed by the
handler.

If the return value of the callee is to be available to a handler, it must
be passed as a parameter, as return values are not always available (e.g.,
for exceptions and pre conditions), and there is no way for the handler
to distinguish between different alert reporting mechanisms.

Note that, unlike exceptions, we need not construct an alert object
as an aggregate of values. Instead, code is generated in the handler
which obtains the information directly (which is why only arguments,
return values and global variables can be passed from the reporter). Thus,
as for alert conditions, we are restricted to expressions which have the
same meaning for both the callee and the caller (i.e,, global names and
operators, constants and arguments, either before or after the call).

In the case of functions which change their arguments (or modify
global data structures), it is possible that the state of these variables is
inconsistent when the handler is invoked. In this case, it is up to the
handler to put things in a consistent state or terminate execution. Ideally,
functions would ensure that the program state is rolled back to a safe
point before an alert is reported, or at the very least, declare that this
may not happen for some or all alerts. This problem is also found with
the common exception handling mechanisms. We have not dealt with
this problem yet.

5.4.6 GRANULARITY AND FUNSPACES

By granularity, we refer to the coarseness of a declaration in the hierarchy
from expression through statement, function declaration, and optionally
class, module and subsystem level, all the way to the system level. Our
language extension provides additional granularity alternatives, among
them groups of functions, which we call funspaces. Funspaces can be
applied to both alert handling and reporting.

Granularity of Handlers

In most languages, exception handlers are specified at the statement level,
and the exception declaration (e.g., throws in Java) occurs along with the
function declaration.

In our system, the declaration of both alert handlers and alert re-
porters can occur at various levels of granularity. As we have seen,
handlers are declared with on declarations. These can occur at any level
in the scope hierarchy (from global, through namespace/package and

Data CONSISTENCY

SCOPING
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funspace ::= [return-type | %] (function-name | %)
[( parameter-pattern-list)]
funspace ::= funspace funspace-name
funspace ::= { funspace*, }
declaration ::= funspacedef funspace funspace-name ;

FIGURE 5.5: Grammar for declaration of function spaces.

class, down to blocks and single statements within a function) and apply
to the scope in which they are declared. Additionally, handlers can be
declared at the expression level using the handler operator (<: :). If mul-
tiple handlers are in conflict, the most specific handler takes precedence,
i.e. the one with the most specific alert pattern at the finest level of
granularity.

The concept of a scoping level can be refined using funspaces. A
funspace declares a set of functions, i.e. a subspace of the namespace for
function names. The grammar for funspaces and funspace declarations is
presented in Figure

A funspace is basically a list of function patterns. For example, (a
non-exhaustive list of) the file operations of posix can be declared as
follows:

funspacedef { open(), close(), creat() } posix_io;

Each entry in the funspace list conforms to a pattern. For C and languages
without overloading, giving a function’s name is sufficient. In languages
with overloading, the full signature must be given;

funspacedef {

int open(const char *pathname, int flags),

int open(const char *pathname, int flags, mode_t m),

int close(int £fd),

int creat(const char *pathname, mode_t m) }

posix_io;

The pattern can also contain wildcards, with % matching any single item,
and .. matching any argument list. For example, The pattern % %(const
char*, mode_t) would match any function with any return value, that
takes two parameters: a const char® followed by a mode_t, e.g. creat:

int creat(const char *pathname, mode_t mode);

Funspaces, being sets of functions, can be merged, allowing us to con-
struct the posix funspace from smaller, task-specific funspaces.
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funspacedef {
funspace posix_io,
funspace posix_memory,
funspace posix_process }
posix;

This is not merely a syntactic convenience. Different subsets of a given
API often use different sets of errors, each specific to that subset. Some-
times, the same numerical error value is reused with different meaning
across different subsets. ENOMEM when returned from mmap has a differ-
ent meaning than eNomEM returned from stat. Using funspaces, these
differences can be captured at the granularity of function groups, rather
than having to be specified on per-function basis.

Granularity of Alert Reporting

In the previous sections we saw how alert reporting is declared on
individual functions. Using funspaces, reporting mechanisms may conve-
niently be declared on groups of functions. The following declares that
the eNoMem alert will be reported on any function in the posix funspace
if it returns -1 and the global variable errno is set to ENOMEM.

funspace posix alert eNolMem post(value == -1
&& errno == ENOMEM);

Both handlers and alerts can be declared at any scoping level and on
funspaces, but the declarations are completely independent. For example,
the alert eNoMem may be specified for all posix functions, as above, while
a handler for this alert could be declared for only one expression inside
a particular function in a given program, e.g.,

f() { open("foo",0_RDONLY) <:eNoMem:exit(EXIT_FAILURE);}
Or, it could be declared for all posix functions:
on eNoMem in funspace posix { exit(EXIT_FAILURE); }

Multiple, overlapping funspaces may be declared, and both alerts and
handlers may be specified independently for each funspace.

5.4.7 INTERFACING WITH LEGACY CODE

Introducing new failure handling disciplines typically means that legacy
code must be rewritten if it is to take advantage of it. This is the case with
exceptions, for instance: if you want exceptions in an existing library
which reports errors with return values, you will have to either rewrite
the library or write a wrapper for it.

Funspaces, together with handling and reporting abstractions can
be used to specify alert reporting mechanisms and handling for a large
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alert {PrecondFailure, Whoops};
on PrecondFailure in * {fatal("Precond failed");}

int f(int x) alert PrecondFailure pre unless(x > 0)
alert Whoops post(value > 10);
int f£ff(int a, int b)
{ on Whoops in f() {print("whoops!"); use 0;}
return f(£f(a));
}

int f{int x);

int ff(int a)
{ int r;
if(a > 0)
{r=1@);
if(r > 10) { print("whoops!"); r = 0; }
if(r > 0)
{ r=1£0@);
if(r > 10) { print("whoops!"); r = 0; }
} else fatal("Precond failed");
} else fatal("Precond failed™);
return r;

}

FiGure 5.6: Comparison of the Alert extension to C (top), and the corre-
sponding normal C code (bottom).

number of existing functions in a few lines of code. This makes reuse of
existing libraries simpler, which is especially important since many older
libraries use exotic alert reporting mechanisms which may be inconsistent
with newer code.

If the library comes with structured documentation, it may be possible
to automatically extract alert specifications from the documentation. For
example, the posix standard [119] comes with structured manual pages in
HrML format, available online. A tool could be written to extract from the
manual pages function names, return value style (“returns -1 on error”)
and which error codes are applicable to the function, and generate the
necessary declarations. We are currently exploring this option.
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Type Alert Pretty —
Analysis }» Desugaring }» Printing

F1GURE 5.7: The compiler pipeline for our extended C language.

5.5 Implementation

We have made a prototype implementation of the language extension for
C that implements the compiler pipeline shown in Figure The proto-
type is implemented using the Stratego/XT [25] program transformation
language, and the C-Transformers [19] framework for Cgg transformation.
The prototype consists of an extension to the Cg9 grammar [88]
(written in the grammar formalism spr2 [154]) and a set of transformations
translating the extended C code to standard C. As seen in Figure 5.7 the
parser will recognise the extended C language and produce an abstract
syntax tree (AST). Minimal type analysis is then performed to check that
the handlers are type consistent with the functions they will be applied
to. Next, the alert extension is “peeled off” in a desugaring step before
the the AST is pretty-printed into text and fed to a normal C compiler.

5.5.1 TRANSLATION SCHEME

The translation algorithm works roughly as follows (for Cgog, following
traversals can be combined into one pass, since the language requires
declaration before use):

First, traverse the AST and look at all function declarations and def-
initions. For each declaration or definition, extract the signature (.e,
name, return type, argument types) and the alert mechanism (i.e. pre/-
postconditions — exceptions are not available in ), and store this for
later.

Next, traverse the AST and look for scopes, function calls, on handler
declarations or handler operators. When seeing a scope, create a new,
nested scope for subsequent on handler declarations. When later existing
this scope, drop all handlers registered in this scope. When seeing an on
handler declaration, register its entire definition in the current scope. When
seeing a handler operator (<::, expand the pattern in Figure When
seeing a function call, check if the signature of the callee is matched by any
of the registered handlers. Check the textually closest handlers first and
proceed to parent scopes. If a matching handler is found, expand the
pattern in Figure

Keep in mind that a function call is only rewritten if at least one
relevant handler is found for it. Let us call the closest (and thus active)
handler current-handler. Given a function call f(e,, ..) to function t, f(t,,
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t0 r;

{ t1 vl = el;

if(<precond-f(vl, ...)>) {
<current-handler>;

} else {
r = f(vl, ...);
if(<postcond-f(r)>) {<current-handler>};

}3

FIGURE 5.8: Template for desugaring function calls.

..) where 1, is the return type, f the name, 1, ... the types of the formal
arguments, and e,, .. the expressions for the actual arguments, the
instantiation of the template in Figure occurs as follows: First, a
local variable r of type 1, is declared, and will hold the eventual return
value. Then, each of the actual arguments is evaluated and stored, each
ey into a local variable v,. Then, the expression for the pre condition
of f is evaluated on the variables v, (the expression <precond(vo, ..)>
means that the precondition code is expanded in-place - care is taken to
avoid accidental variable capture), and if it succeeds, we must invoke the
alert handler. The code for current-handler is expanded in place, and use
statements in the body are translated into assignments to r. The process
is similar for the post condition and the post condition handler. An
instantiation of this template was given in a cleaned up, human-readable

form in Figure

5.5.2 IMPLEMENTATION ISSUES

In C, which lacks function overloading, matching a function call to the
function’s declaration can be done easily just by comparing names. In
other languages, such as C++ and Java, overload analysis is needed to
distinguish functions sharing a common name.

Although overload analysis is unnecessary for C, we still need to be
able to determine the types of arbitrary expressions, in order to declare
temporary variables and type-check substituted values. Support for this
is lacking in Transformers, but was easily added.

A special problem occurs with function pointers, since it is in general
impossible to determine statically which function will be called at run-
time. In the case of dynamic loading, the function may not even be
written yet. A similar problem occurs with exceptions in object oriented
languages, where the preferred solution, in for example Java, is to require
the exceptions of a function in a subclass to be an (improper) subset
of the exceptions of the corresponding function in the superclass. This
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technique translates to our alerts as well: We can add a declaration
about alerting to the type declaration of the function pointer, i.e. the
function pointer declaration now also declares the alert mechanism
for the function it will eventually point to, and type checking on the
function signature, with alert declarations, must be performed when
function pointers are assigned to. Arguably, this will make function
pointers even more difficult to read, but these syntactical issues can be
remedied by judicious use of typedefs. Our current implementation
does not yet support this.

5.5.3 COMPILING TO ASPECTS

The application of alert handlers to function call sites is a separate, cross-
cutting concern, and can certainly be considered an aspect in the sense
used by Kiczales et al [95]. If we targeted Aspect] rather than C, the
template in Figure could be realised as an around advice, where
the invocation of f is replaced with a call to proceed. The pre and
post condition expressions would be placed before and after the call to
proceed, respectively, in the same fashion as now. Use statements in the
handler body would translate into returns.

The full granularity of handler declarations from expression level to
arbitrary function groups would be harder to capture faithfully, however.
While funspaces can be captured by normal pointcuts, by listing all
function names in the point-cut, we do not see any easy and robust way
of encoding pointcuts that exactly match expression level handlers.

5.6  Related Work

Language support for exception handling has been introduced gradually
since the 1960's. Research-wise, PL/I's condition system and later CLU [10T}
103l and Ada’s structured exception handling have perhaps been the
most influential.

Hill [81] documents about ten different idioms for raising exceptions
in languages such as Algol and Fortran, which at the time did not have
any exception handling facility. He advocates disciplined control transfer
over special return values.

Randell [124], introduces a failure recovery system inspired by “stand-
by sparing”, as found in hardware designs. Their technique assumes a
nested, block-structured language, and provides transaction-like error
recovery. Each block is a transaction, and may have one or several
recovery blocks associated with it. A block has an acceptance test, which
acts as a postcondition check.

If a block fails, by failing its postcondition check, the program state
is unrolled to the state before the block was entered, and the list of
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associated recovery blocks is tried in order, each time preceded by an
unroll, until one of the recovery blocks passes the acceptance test. If
the list is exhausted before recovery occurs, the error is passed to the
enclosing block.

This technique does not support raising of errors to handlers further
up the call chain.

MacLaren [107] critiques the design for being too complex, and en-
couraging bad idioms, like a global ON handler for file exceptions which
set global error flags that must be checked after by the caller of any file
operation, thus effectively degenerating to global error values.

Borgida 20l discusses language features for exception handling with
a focus on the interplay between exception handling and transactions
found in database and information systems. He advocates the support
for resumption, user-defined exception types, classification of exception
types, and preventing the handler from modifying the context of the
alerter. The language presented supports transactional unrolling in
the case of unhandled exceptions and the capture of accountability in
transactions using exceptions.

In a sufficiently reflective language, such as Oberon, exception han-
dling may be entirely implemented by the user without extending the
language, as is shown in [85]. Oberon allows reflection over stack frames
using “riders”. Exceptions are thrown by invoking a rider that locates the
appropriate handler in an enclosing procedure on the stack. If the found
handler returns, this is taken as termination, and the stack below the
handler is cleaned. If the handler invokes Resume, execution resumes at
the point of exception.

Romanovsky and Sandén [125] discuss good and bad practices in
exception handling, dividing the problem into bad language design and
misuse due to insufficient training. They argue that languages should
support two kinds of exceptions with respect to their program units
(modules or packages): internal and external. External exceptions must
be declared and checked, i.e. a propagation discipline must be declared
and the compiler must enforce it. They argue further, based on experience
with Ada, that exceptions in OO-languages must be classes, and user-
definable, so that information may be passed from the exception raiser
to the handler with the exception, and so that the exceptions may be
classified based on type. They also argue that exceptions can aid in,
rather than complicate program validation and verification.

The critique of Romanovsky and Sandén about a propagation dis-
cipline was addressed by Luckham and Polak [106l. They describe a
language extension to Ada for specifying the propagation of exceptions.
This extension has not been included in later versions Ada, however.

Cui and Gannon [35] describe an alternative exception handling sys-
tem for Ada than the school of Goodenough [57]. Instead of being
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declared as part of the control structure, as markers on the stack, excep-
tion handlers are dynamically attached to objects. When an object raises
an exception, its associated handler is invoked. The authors refer to this
as data-oriented exception handling. Our alert system provides no easy
way to support this form of exception handling.

An argument against exception handling for embedded systems - the
difficulty of predicting timing constraints in the face of exceptions - is
addressed by Chapman et al [30], where the authors presents a model for
static timing analysis of exceptions in a subset of Ada8s.

The Lisp condition system [121] is similar to PL/I's ON, but supports
more of the features first described by Goodenough [57], such as resump-
tion.

Other functional languages, such as SML and Haskell, also support
exceptions. Wadler [T156] shows how exceptions may be realised in purely
functional programming languages, using monads.

Dony [41] describes an object-oriented exception handling for Smalltalk,
where users can define new exceptions, where exception objects contain
information passed from the alerter, and where different exceptions can
be distinguished and organised in a hierarchy based on their type. Like
Goodenough'’s approach, the possible action of the handler are resump-
tion, termination, and retry, but the choice is determined by the type of
the exception object, rather than the alerting primitive.

Smalltalk-8o allows the declaration of class-handlers: per-class excep-
tion handlers. These do not take handlers in the dynamic call context
into account, as proposed by Goodenough; this is provided by Dony’s
extension.

Lippert and Lopes [100] describe how to untangle error handling
code from algorithmic code using aspect-oriented programming. The
solution is applied to a framework constructed using design by contract.
Aspects are used to extract the contract checking code from the rest of
the framework. A drawback of the proposed solution is that the con-
tract is declared in documentation comments along with the framework
(algorithmic) code, whereas the contract checking code is maintained
elsewhere, thus opening up for deviations between the declared contract
and the actual contract checking code.

5.7 Conclusion

The state of the art in alert handling provides reporting mechanisms
that are both efficient and expressive. However, with the exception of
the aspect-oriented approach to separating out failure behaviour [100],
failure handling code is largely rigid. The alert reporting and handling
are tangled, and the implementer must always choose a mechanism
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when implementing a function, but in doing so, also makes an implicit
choice about the handling policy.

We have presented a flexible alert language extension that supports
decoupling of the reporting and handling mechanisms for exceptional
behaviour. The extension user-defined alert handling and reporting at a
wide range of granularities. It allows the caller to declare what is normal
and what is exceptional, and to declare separately the desired handling
policies. This improves reuse of existing libraries and components, as
policies can now be specified retroactively by the library user.

We have sketched its implementation based on the Transformers pro-
gram transformation framework. The extension functions as a compiler
extension in the form of a pre-processing step to the C compiler.

The design space where the alerter and handler are decoupled is
largely unexplored. This is unfortunate, since even the modest extensions
we have shown to a simple, imperative language with exceptions could
improve both the reuse of existing code bases and the clarity of failure
handling code.

Some work on this topic has been done in the context of aspect-
orientation, but we believe that our alert declaration language is more
precise and concise than generic join points and advice. One could
consider our language extension as a domain-specific aspect language
for error handling.

While our proposed extension has only been realised for two rather
simple languages, in the imperative style, we expect it to be transportable
to other languages and paradigms. The syntax should be modified to fit
the conventions of the language; in this paper, we have based the syntax
on C-like languages; this would be out of place in Python, for instance.

A few obvious extensions may be necessary. In general, funspace
patterns may need to be more like Aspect] [95] or AspectC++ [139]
pointcuts, to deal with function overloading and namespaces. In our
subject language, C, this was not needed, since we only have one global
namespace and no overloading.

It is important that funspaces should continue to be function (or
method) groups, so that funspaces can cross-cut namespaces. This will
keep the flexibility of specifying alert mechanisms and handlers across
namespaces.

More research is necessary to determine the best interaction between
funspaces and method visibility, however.
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CHAPTER

The Magnolia Programming
Language

6.1 Introduction

Although we initially used C++ to prototype the language constructs
described in the previous chapters, this turned out to be a tedious and
frustrating task [38l. The amount of infrastructure needed to support
mutification, alerts and axiom-based transformation and testing in C++
is huge, essentially one needs a complete compiler frontend - and finding
one that is both fairly complete and extensible enough for our purposes
is next to impossible. C++ is a large language, meant for large tasks,
and this makes it difficult to use as a basis for small-scale language
experiments.

The original goal of Magnolia was to be a simplified, easier to process
version of C++: subtracting some undesirable features (to ease processing,
or to give cleaner semantics) and adding some new features. We would
subtract pointers; some troublesome parts of the syntax, semantics and
the template system; and some of the object-oriented features we weren't
using - and add mutification, alerts, axioms and any other experimental
construct we might desire.

A few desirable changes to C++ (in addition to the experimental fea-
tures) quickly appeared on the feature list: a clearer syntactic distinction
between different declaration types, a more sensible module system than
just code inclusion, a few more overloadable operators (or, with all of
Unicode to chose from, a § more) — and soon the language designer
instinct kicks in, with the desire to create more than just a C++ variant...
Thus, Magnolia was born.

As outlined in Chapter 1} Magnolia is designed to support program
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development based on abstraction and specification. In this chapter, we'll
take a closer look at some aspects of Magnolia: procedural and data
abstraction (Sections [6.3] and [6.5), types (Section [6.4), and specification
with concepts and axioms (Section [6.7). We'll also discuss some compiler
implementation issues.

This chapter is not a complete description or reference manual for
the language — any such document would be quickly outdated as the
design work is still in progress with both minor and major changes
being considered. Rather, this chapter gives an overview of the language,
focusing on the features that set Magnolia apart from other languages.

6.2 Signatures, Concepts and Implementations

A signature is a set of declarations of abstractions (e.g., functions, proce-
dures, types). Specifying the behaviour of the abstractions in a signature
gives us a concept, and implementing this behaviour gives us an implemen-
tation. This relationship is illustrated in Figure[6.1]

A concept is a signature with axioms and requirements describing the
behaviour of the abstractions. This corresponds to the idea of an al-
gebraic specification. An implementation is a signature with associated
implementation code, providing algorithms for the operations, and data
structures for the types.

Magnolia programs consist of a set of modules, containing concepts
and implementations. An implementation models a concept if it has
the same signature, and its implementation satisfies the axioms in the
concept. Signature morphisms can be used to map between signatures —
for example, functionalisation can turn a procedure declarations in an
implementation into function declarations matching a concept.

Most of this chapter describes the signature and implementation side
of things, but concepts are discussed in Section

6.3 Procedural Abstractions

Magnolia provides two kinds of procedural abstractions: functions, which
abstract over expressions, and procedures, which abstract over statements.
Collectively, they are known as operations. As explained in Chapter
functions are forbidden from changing their arguments or accessing
global data. Procedures may update their arguments, but should also
refrain from accessing global data or having side effects other than their
effect on arguments (this restriction is loosened when the procedure is
declared ‘impure’).

A function takes zero or more arguments, and returns a value. A
function declaration looks like this:
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FiGUrE 6.1: The relationship between signatures, concepts and implementa-
tions. Concepts add abstract definitions to a signature, implementations add
concrete definitions.

function rettype funname(tl pl, t2 p2, ...) = body;

where t1 and t2 are types and pl and p2 are parameter names, and
the optional body expression provides the implementation. A function
application is an expression, with zero or more arguments that are
also expressions. For example, the function above might be called like
this: funname(el, e2), giving an expression of type rettype. For all
functions, application with equivalent arguments must yield equivalent
results. A function with zero arguments is known as a constant.

Procedures also take zero or more arguments, but have no return
values. Procedure declarations look like this:

procedure procname(ml tl pl, m2 t2 p2, ...) {
statementl;
statement2;

}...

where t1 and t2 are types, pl and p2 are parameter names, and ml
and m2 are parameter modes — observe (default), update, output, delete or
give. The optional procedure body (in braces) consists of a sequence
of statements. Procedure calls are statements, and may not be nested.
Arguments can be expressions (for obs parameters) or simple variables
(for the other modes). An example call is:

call procname(vl, e2);

Results are given through argument updates.

We have a clear separation between statement abstraction and expres-
sion abstraction - you can always be sure that nothing will happen to
your variables in an expression.

PROCEDURES

PARAMETER
MODES
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Unlike in C and C++, it is not necessary to provide forward declarations
- declaring an operation ahead of its use (and eventual implementa-
tion). The compiler takes care of finding all the operations declared in a
program before attempting to resolve calls. This seems to be the trend
in modern languages — except in some dynamic languages like Python,
where declarations are run-time effects, and declarations must precede
use at run-time (though not necessarily textually). Forward declarations
simplified implementation on early computers, since the compiler could
do the compilation in one pass and without having to keep the entire
program in memory.

6.5.1 FUNCTIONALISATION AND MUTIFICATION

In Magnolia, a function can be declared either explicitly, using the func-
tion declaration syntax, or implicitly, by declaring a suitable procedure.
Procedure declarations are functionalised by creating one or more function
declarations in which the procedure’s input parameters become function
parameters, and the procedure’s output parameters become return val-
ues. This process is detailed in Section For example, consider the
following procedure declaration:

procedure _++_(upd string a, string b);

It declares an operation concatenating the string parameters a and b,
storing the result in a. Based on this, the following function is declared:

function string _++_(string a, string b);

- where the upd parameter occurs both as a return value and a parameter.
The resulting function may be used freely in expressions, without regard
for the fact that the underlying implementation works by changing one
of its arguments. Using operator syntax:

var s = "Hello, ++ person ++ ;

To produce working code from this, the compiler applies mutification
(explained in more detail in Section [.3.2), where the function calls are
translated into a sequence of procedure calls:

var s = "Hello, "; // s = "Hello, "
call _++_(s, person); // s = "Hello, " ++ person
call _++_(s, "!'"); // s = "Hello, " ++ person ++ "I"

In general, mutification may require several temporary variables, par-
ticularly if the variable being assigned to isn't in the ‘right’ position in
the argument list, or if an argument contains sub-expressions that also
require mutification. Normal function call semantics also require tem-
poraries to keep intermediate values — mutification will usually reduce
the number of needed temporaries, and may also eliminate the need for
them (as in the example above).
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6.3.2 OVERLOADED OPERATION NAMES

Operation names may be overloaded in Magnolia - that is, distinct
operations may share the same name, being distinguished only by their
parameter types. The full combination of name and parameter types that
make up a distinct operation is called the operation’s signature.

Internally in the compiler, all operations are identified by their sig-
nature. Connecting the use of a name - in a function application, for
example - to a signature is called overload resolution, and is done together
with type resolution early in the compilation process.

Overload resolution works as follows. First, a list of known candidate
signatures is produced, based on the name used in the call. The list
of candidates is filtered to remove clearly inappropriate candidates -
function signatures for a procedure calls, for example. Then the list of
formal parameters in each signature is compared to the list of actuals,
using the type matching algorithm described in Section Any non-
matching candidates are discarded.

The resulting candidates are then ordered by preference, and if there
is a clear best candidate, it is selected. If there are two or more equally
good best candidates, an ambiguity error is reported to the programmer.
The preference criteria are, in order:

1. The lowest number of implicit conversions needed for successful

argument list match, or, if that is not sufficient,

2. the lowest number of type variables in the argument list match, or,
if that is still not sufficient,

3. whether the candidate is locally defined or not - local names take

precedence.

At some point it may be useful to give the programmer more control
of the overload resolution - this could be done by allowing user-defined
resolution functions that take a list of candidates and return the preferred
one (or raise an error). The functions would be evaluated at compile time,
or loaded into the compiler as an extension. The Common Lisp Object
System (cLos) has a feature similar to this for resolving dynamic dispatch
at run-time [18].

6.3.3 (OPERATORS

Operators are overloadable in Magnolia. The list of expression operators,
presented in Table is similar to that found in C and C++, and we are
also considering letting the user define new operators by combining ex-
isting operator symbols, or by using Unicode characters. Operators don't
add anything to the semantics of the language, they are just syntactic
sugar for function applications or procedure calls.

OVERLOAD
REsoLuTION
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Operators | Associativity | Typical use
_() _[]1 _._| lefttoright | special
!_ "_ +_ -_ | righttoleft | unary ops
_*_ _/_ %_ _**_ | left toright | binary ops
- _++ left to right | binary ops
<< >> left to right | shifting
_.._ | lefttoright | ranges
_<_ _<=_ _>_ _>=_ _in_ _not in_ | leftto right | comparison
==_ _!=_ left toright | equality
_&_ | left to right | bitwise and
_"_ | left to right | bitwise xor
_|I_ | left to right | bitwise or
_&&_ | left to right | logical and
_I1_ | lefttoright | logical or

TaBLe 6.1: Magnolia operators, in order of precedence (highest on top). Notable
omissions compared to C/C++ are pre/post increment/decrement operators, pointer
operators and assignment operators.

Each operator symbol has a corresponding name, which is made by
putting an underscore in the position where the operator would take an
operand. For example, binary plus has the symbol + and the operator
name _+_. This makes it simple to distinguish unary and binary versions
of the same operator. For example, unary plus is +_.

Most operators form expressions, and are implemented either directly
or implicitly as functions. Assignment operators, on the other hand, form
statements and must be implemented as procedures — this applies to
regular assighment, _=_, and the set-element operation, _[_]=_. For

1 ="

example, from the standard library:

forall type E
procedure _[_]=_(upd array(E) A, int i, E elt);

Operators can be called either using operator notation:
al[i] = x + y;
or by using the function/procedure name:
call _[_J=_(a, i, _+_(x, ¥));

The former is usually preferable for humans, the latter is what the
compiler uses internally.

We experimented with having names for each operator - e.g,, so the
latter form above would be

call setelem(a, i, plus(x, y));
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The trouble with this is that it is easy to forget which name corresponds
to an operator. We followed the convention used by C++ STL (e.g,
divides for /, multiplies for *), but still found we had to look it up
too often. The underscore syntax is unambiguous, and should be easy
to remember. Also, it has the advantage that it will also work with
user-defined operators not foreseen by the language designers.

6.3.4 Buitr-iN / PRIMITIVE OPERATIONS

In a way, Magnolia doesn't really have any built-in operations - every-
thing is declared in a library somewhere, including seemingly primitive
types and operations for them. Their names aren’t special keywords
(like ‘int’ in ©), and normal overload and name resolution still applies.
The compiler backend will recognise them and treat them specially (e,
map them to primitive types in the target language). The usual primi-
tive types (int, string, bool, ..) are defined in the primitive module,
which is imported by default into all programs — though it is possible
to disable this import, or override the declarations, so that int will refer
to myint.int rather than primitive.int in your program. We may
also defined multiple language flavours, with different sets of default
declarations.

This leads to fewer special cases in the language design and in the
compiler implementation, and also gives the conceptually clean feeling
of user-defined operations being just as much (or as little) part of the
language as any other operation. It also means that the programmer can
get an overview of standard operations by reading the module declaring
them (primitive.mg). This module doesn’t provide definitions though,
the definitions are provided by the compiler, or in an external library
(implemented in C++).

A few operations can be considered pre-declared and built-in - default
assignment, default construction of objects, and some tuple operations.

6.3.5 PARAMETER MODES

The parameter modes serve the purpose of directing parameter passing
(by value or reference), restricting reads or writes to the parameter within
the procedure, and declaring the data-flow behaviour of the procedure.
The latter cannot be done in C++ - for example, you can't specify that
an argument can be modified but will not be read (or, rather, will not
contribute to the computation).

The parameter modes are detailed in Figure The observe mode
- guaranteeing that an argument will not be modified - is of particular
importance when functionalising procedures and for ease of reasoning.
All function parameters are by definition obs. This, together with disal-
lowing procedure calls in expressions, means that the programmer (and

OBSERVE
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Formals Actuals Notes

Read Write Read Write Init
obs  yes no yes - yes
nrm  yes yes yes yes yes  abstract value must not change
upd  yes yes yes yes yes
out  no yes - yes yes  argument value is irrelevant
giv  no yes - yes no is initialised upon return
del  yes yes yes yes yes  is uninitialised upon return

FIGURE 6.2: Magnolia's parameter modes.

the optimiser) can be sure that no variables are modified by Magnolia
expressions.

UPDATE The reasoning behind the update mode is that it is usually cheaper,
both time and memory-wise, to change an existing object than it is to
build and return a new one. Through functionalisation and mutification,
we can maintain the illusion of by-value semantics, while still getting the
performance benefits of updating semantics.

Ourpur The output mode is simply the same as upd, with the additional
requirement that the procedure’s computation is not affected by the
value of the argument. This simplifies data-flow analysis of the program,
allowing optimisations like eliminating computations when we know the
result will be overwritten later on anyway.

Expressions are allowed as procedure arguments in obs positions.
Modes that modify data require variables as arguments, and the variables
must be of a mode that allows modification. Implicit conversions are also
forbidden for non-obs arguments. This is not a problem for functions,
where all parameters are treated as obs — the compiler will take care
of making any necessary temporary variables for storing the result of
expression evaluation or implicit conversion.

The current compiler only supports obs, out and upd. The other
modes are planned, but aren’t fully researched yet. The nrm (normalise)
mode is between obs and upd in semantics - it guarantees that the abstract
value of the argument doesn’t change, but the data representation may
change.

CONSTRUCTORS The value of an out parameter is expected to be initialised and valid.
For procedures — or constructors — that initialise new data structures, we
have the give mode. A giv argument must be uninitialised (either freshly
allocated, or previously deleted), and the procedure should ensure that it
is in a valid, initialised state upon return. The dual of giv is delete, which
has the effect of marking the argument as uninitialised upon return.

Beyond the obvious applications in declaring constructors and de-
structors, del and giv may, for example, be used for operations that
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translate between similar data structures. Consider an image object con-

sisting of image data allocated on the and a few data items like size, bit

depth, etc. Converting this data structure to the image structure expected

by an external image processing library like gd might be done by a http//wwwlibgd.org/
procedure

procedure convert(del myImage i, giv gdImage o0);

which creates a new gdImage object reusing the heap allocated data. To
avoid having two objects share the same data, the old image object is
marked as deleted — even though the data isn't actually destroyed, just
moved to a different place.

Buffered 1/0 might be done in a similar way, with the output proce-
dures ‘swallowing’ the data, and queueing it onto its list of things to be
printed, without having to copy the data.

It is possible to adapt a procedure to behave like it is using other
parameter modes automatically, by copying variables, introducing tem-
porary variables, or extra constructor/destructor calls. This is part of what
makes functionalisation possible — mutification will insert the necessary
code to make a procedure behave like all its input parameters are obs
parameters.

To make upd or del act like obs, we copy the argument to a temporary,
which is discarded after the procedure call. To make obs work like del,
we insert a call to a default destructor. Similarly, we can make out act
like giv by using a default constructor call first. These conversions rely
on certain operations being available - copying, default constructors and
destructors (possibly no-op), and hence they may not work on all data
types. For example, you can't simply copy a network stream and expect
to end up with two completely independent objects.

6.3.6 PARAMETER PASSING IN OTHER LANGUAGES

The parameter modes are distinct from parameter passing methods, which
is what most other language designs specify. Magnolia doesn't specify
how parameters are passed from caller to callee, the compiler is free to
chose the most efficient method for a given type or architecture. The
idea is to be more concerned about what happens than how it happens.
Knowing that some arguments are immutable (obs) is important when
reasoning about code, particularly when relating procedures to functions
- knowing whether this is implemented by copying values, or by passing
a reference to a constant data structure is of little concern.

Among recent languages, C# [47] has fairly rich parameter passing C#
methods, covering many of the same cases as Magnolia. C# types are
either value types or reference types. Arguments are passed by value by
default, though in the case of reference types, the reference is the value,
giving an effect similar to reference passing. This is how Java works as
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well, except in Java only primitive types are value types (C# also allow
user-defined value types structs). Explicit reference passing in C# is
done using the ref keyword, which must be used both at the declaration
site and the call site. Reference passing allows the value of a variable
to be modified or replaced. C# also allows output parameters with the
out keyword (which also must be given at both declaration and call site).
Output parameters are like reference parameters, except they may be
uninitialised, and are assumed to be initialised upon successful return of
the call.

C#'s use of keywords at the call site has some appeal, and is something
we will consider for Magnolia, particularly in the case of del and giv.

Neither C# nor Java provide the equivalent of obs — guaranteeing
that a method won't change a reference type parameter. In Java, you
can declare a parameter as final, though this isn't part of the method
signature, and can be changed when overriding the method. Protection
against unwanted change is instead done through encapsulation, declar-
ing member variables private so they can only be changed by methods
belong to that class. The convention is that methods only change the
current object (this), but the language doesn’t enforce any protection.
Determining statically whether a parameter can or can not be changed
is difficult. Even having access to the method implementation may not
help, since methods can be overridden through inheritance, and classes
can be loaded dynamically.

Ada [T44] provides in, out and inout modes — quite like Magnolia’s
obs, out and upd. The standard specifies how simple arguments of
the different modes are passed (copy in, copy out), but it is up to the
implementation to chose by-copy or by-reference for arrays and records.
The choice of by-copy or by-reference makes a difference in the face of
concurrency, or if an exception is raised after an in out argument has
been modified — by-copy will show no change, by-reference will show
a (perhaps undesirable) change. The Magnolia compiler currently uses
by-reference to implement upd and out, and does not guarantee that
arguments won't have changed if a procedure aborts due to an error -
this is something we plan to deal with later.

6.4 Type System

The Magnolia type system is not fully researched, hence its features are
based on necessity rather than careful design.

A Magnolia data type has a name (its identity) and a representation (its
data structure). The representation is hidden, so type processing is done
on names. A type name has term structure:

Simple types with just a simple name - a nullary term constructor.
Normally written without parenthesis. Example:
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type int; // declare simple type int
var int x; // variable of simple type int

Parametrised types - a term constructor with one or more type argu-
ments, given by a forall clause. Example:

forall type element, type index
type array(type element, type index); // declaration
var array(string, int) a; // use

Tuple types - parametrised types with an empty constructor name. The
type of a tuple expression is a tuple of types. Example:

var (int, int, string) foo = (5, 2, "hello");

Tuple types are predeclared, so there is no need to declare them
before use.

Type variables — formal parameters of a parametrised type, or types
used in a generic operation. Type variables are scoped like normal
variables. Type variables can bind to either a type or construc-
tor name. For example, if T, U and V are type variables, T(U, V),
array(U,V) and U are legal type names. In the following two
declarations, T is a type variable, local to each declaration:

forall type T
type list(type T);
forall type T
function T head(list(T) xs);

Type function - taking a number of arguments, either types or expres-
sions, and yielding a type. Example:
define type first(type T, type U) = T;
define type intarray = array(int);

Type function applications are evaluated during type resolution,
hence they do not create new types, just aliases for existing types.

Types with no variables in their name are plain types. Plain parametrised PLaIN &
or tuple types are instantiated types, and can be thought of as a simple type ~ INSTANTIATED
with a fancy, structured name. TypES

6.41 TYPE MATCHING

Type resolution has two sub-steps; matching type names to their declara-
tions (name resolution), and checking that the program is well-typed
(type checking and overload resolution). Since operations are overload-
able in Magnolia, type checking is integrated with overload resolution
- you won't know the type of an expression until you know which
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operation is used, and you won't know which operation is used until you
know the types of the arguments. Just as type names are terms, operation
names are also terms - constructed from the user-visible operation name
and the parameter types.

Type checking and overload resolution is based on type matching, where
an operation’s actual arguments are matched against its formal parame-
ters using pattern matching on the type name terms. A type v’ matches
a type 7, if and only if a value of type v can be assigned to a vari-
able of type 7, possibly using implicit conversions. Matching is like a
unification operation, except that implicit conversions may make the
matching asymmetric. A later extension of the type system to handle
subtyping would also require asymmetric matching. Note that implicit
conversion is illegal for arguments which must be variables (i.e., any
non-obs procedure argument).

Type matching has the following inputs:

+ A set of type variables X and an initial list of bindings o,
+ A formal parameter type T

« A actual parameter expression and type e : 7/
For example, given the expression £("foo", 5) and function declaration
forall type T

function int £(T a, int b);

we have X = {T}, T = (T,int), 0o = {}, ¢ = ("fo0",5) and v =
(string, int).

Matching will either succeed or fail. If it succeeds, it produces the
following outputs:

+ A set of type variable bindings o
+ A revised expression ¢’ : To

* The number of implicit conversions applied
In the above example, ¢ = {T — string}, ¢ = ("foo",5) and 10 =
(string, int), with zero conversions.

The number of implicit conversions together with the number of
type variable bindings is used in overload resolution to choose between
multiple matching candidates.

Pattern matching is done according to the following algorithm:

1. If operating on argument lists, the lists are turned into tuples
2. We then proceed recursively:

+ A bound type variable is replaced by its binding before pro-
ceeding.

+ A plain type matches a plain type if the names match or if a
single suitable implicit conversion exists.
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* An unbound type variable matches any type expression and
is bound to that expression.

+ A type tuple matches a tuple of the same arity if their compo-
nents matches.

+ A parametrised type matches a parametrised type of the same
name and arity if their arguments match.

After successful matching, bound type variables are checked against
concept requirements.

For example, given i : int, s : string and x : smallint, with an
implicit conversion from smallint to int, the argument list of £(i, s,
x) will match the parameter list of

function int f(int a, string b, int c);

with no type variable bindings, and giving a revised expression £(i, s,
int(x)). £(i, i, x) will not match, nor will g(i, s, x) match

function int g(smallint a, string b, int c)

since int does not match smallint, even though smallint matches int
(due to implicit conversion). The function

forall type T
function T h(T a, T b);

has an argument list containing type variables, making the matching
more interesting. The argument list (a, a) will match, with t = int, as
will (a, x), also with t = int, but yielding a revised argument list (a,
int(x)).

6.5 Data Abstraction

Data types in Magnolia abstract over the data representation. For users
of a data type, its representation doesn’t matter — it is always hidden
behind the operations of the type’s interface. The users deal with abstract
values, and the implementation relates those abstract values to a concrete  ABSTRACT VALUES
representation.
Most parts of a program will operate on abstract types and abstract
values. Only the implementations of core operations on a type need
access to its representation. Operations where the inputs and outputs are

abstract values are abstract-level operations, in contrast to representation-level ABSTRACT &
operations. Note that a type’s representation can - and typically will - be  REPRESENTATION
composed of abstract values of other types. LEvELS

The implementation of a type is usually contained in a single module.
One module may define multiple types — this is appropriate for closely
related types. Defining a type is done by giving its representation, and
defining its behaviour is done by defining operations on the type. These
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abstract-level operations will then provide the interface for manipulating
abstract values of the type.

6.51 DATA REPRESENTATIONS

A struct is a compound data structure, with a representation made
up of named fields of other types, similar to records or structs in other
languages. Example:

type dog = struct {
var real tonguelLength;
var string name;

}

The fields of a structure are accessed using the conventional dot-notation:

myDog.name = "Spot";
print myDog.tonguelLength;

A union or tagged union is data structure with named fields, only
one of which can hold data at any time:

type pet = union {
var dog doggy;
var cat kitty;

}

Unions are type-safe, and remember which field contains a value. Fields
are accessed by case matching on the field name:

switch(myPet)
case doggy {
print doggy.tonguelength;
}
case kitty {
print kitty.livesLeft;
}

Unions are always closed, in that they can't be extended with new fields
later on. Setting union field values is done using the dot notation. A data
structure that dynamically keeps track of whether it has a defined value
can be represented like this:

type maybe(type T) = union {
var T value;
var () undefined;

}

An opaque dala representation is completely hidden, and can only be
manipulated through operations defined outside Magnolia. The built-in
types are declared this way; this would also be a way to interface with
code from other languages. Examples:
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type int;
type array(type E);

6.5.2 DATA TYPE vs. DATA REPRESENTATION

In order to implement operations on a type, we must provide a way
to expose the representation to the implementation and to ensure the
consistency of the representation and its relation to the abstract values.

Ensuring safe manipulation of the representation of an abstract type
is done by bundling it with a data invariant and a congruence relation. The
data invariant is a predicate on the representation that states which
representation values constitute legal abstract values. The congruence
relation states which legal representation values represent the same
abstract value.

We can have either strong or weak data invariants. A strong invariant
completely describes which representation values are valid. A weak in-
variant is used when we are unable to write down the full invariant as a
predicate. We will then have assumptions about the data representation
in our implementation that we are unable to check algorithmically, and
we must be extra careful when writing and modifying our implementa-
tion.

A strong invariant is implemented as a predicate classInvariant.
For example, for a type rational, all representation values are legal
except those with a zero denominator:

predicate classInvariant(rational a) = a.denom != 0;

For any operation on a data type we have that if the invariant holds
for all inputs, it will also hold for all outputs. For a weak invariant, the
predicate is named dataInvariant.

The congruence is needed because we may have multiple represen-
tations of the same abstract value. For instance, for rational numbers
there are numerous representations for the abstract value “one half”:
1/2 = 2/4 =50/100 = ...

predicate congruence(rational a, rational b) =
a.num*b.denom == b.num*a.denom;

Informally, if two values are congruent, they should be always treated
the same, and we cannot distinguish between the abstract values.

The congruence predicate generates an equivalence operator ==. Note
that we may sensibly implement an equivalence that is weaker than con-
gruence, by considering values of different types equivalent. For example,
we may consider the two values int(s5) and real(s.0) equivalent, but
they are not congruent, since 5/2 = 2 and 5.0/2 = 2.5.

The data invariant and congruence predicates accept abstract values,
but operate on the data representations.

INVARIANT &
CONGRUENCE

STRONG & WEAK
INVARIANTS

CONGRUENCES
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Any abstract-level operation must always uphold the data invariant
and the congruence. If an operation only uses other abstract-level
operations, we can be assured that it is well-behaved, since it has no
way of generating illegal representations or distinguish between different
representations of the same abstract value. For representation-level
operations, we must be more careful, and keep track of when an object
is considered an abstract value, and when it is an instance of a concrete
representation.

To distinguish between an abstract type t and its representation, we
name the representation t$. If we have a variable of type t, we can
obtain its representation by opening it:

var t x;
open(x) {
// code manipulating x’s representation

}

Inside the open construct, we only have access to x's representation,
not the abstract value of x. We may manipulate x by manipulating its
components, or by using operations on t$. But we may not use any
operations on t, since we do not know that the data representation is
consistent.

Opening a variable implies that we swear to uphold the data invariant
and congruence of the variable’s type. For any procedure that uses the
open construct, we automatically get axioms to that effect, which may be
tested using axiom-based testing. For example, given a procedure

procedure _+_(rational a, rational b) {
open(a, b) { ... }
}

we get the axioms

axiom DI(rational a, rational b) {
if(classInvariant(a) && classInvariant(b))
assert classInvariant(a + b);
3
axiom DQ(rational a, rational b, rational a’, rational b’) {
if(congruence(a, a’) && congruence(b, b’))
assert congruence(a+b, a’+b’);

}

We will note in the procedure declaration whether it uses open:
procedure _+_(rational a, rational b) opens(a, b);

The compiler infers this automatically, but it is useful in the code for
documentation. If the code contains no open construct for a variable
mentioned in the opens clause, this is treated as a shorthand for opening



6.5. Data Abstraction

the variable in the entire procedure body. For example, the above _+_
may be equivalently written:

procedure _+_(rational a, rational b) opens(a, b) {

}...

We only allow opening of parameters — not local variables — since we are
only able to generate the necessary axioms at the operation level (though
we could certainly check data invariants by inserting assertions before
and after opening local variables).

Helper Operations

It is sometimes useful to break an operation up into several representation-
level helper operations that operate on the data representation, without
any guarantees about maintaining invariants and congruence. This is
done using the representation name as the parameter type:

procedure normalise(upd rational$ a) {
a.num = a.num/gcd(a.num, a.denom);
a.denom = a.denom/gcd(a.num, a.denom);

}

We can also define operations that open or close a type. Presum-
ing we have a rational representation in which the numerator and
denominator should be as small as possible:

procedure box(upd rational$ a rational) {
call normalise(a);

}

The procedure box updates its parameter a, and before the update it

will have the representation type rational$, afterwards it will have the

abstract type rational. It has the effect of closing the type, by ensuring

that the data is in a normalised form, as expected by the data invariant.
Similarly, we could define unbox which opens the type:

procedure unbox(upd rational a rational$) {

}

The open construct will then have an effect similar to:

var a’ = unbox(a);
open(a, b) { var b’ = unbox(b);
~ ... // with [a -> a’, b ->b’]
} a = box(a’);
b = box(b’);
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6.5.3 ACCESSING FROM OUTSIDE THE DEFINING MODULE

Normally we'll want to limit access to a types representation to operations
defined within the same module. Even within the same module, the
representation isn't exposed by default - we must explicitly open a
variable to get access to its representation.

For types that are protected with a strong classInvariant we may
not have to be so careful about guarding the implementation secrets. We
can allow any operation in any module to open the data representation -
as long as the operation swears to uphold the invariant and congruence.
With invariant and congruence axioms, we can test whether the operation
keeps its promise. If we are suspicious of out-of-module access to
representations, we can have the compiler insert invariant checks after
calls to such operations.

Incompatible changes to the representation will cause either compi-
lation errors (when fields are no longer available) or errors that can be
detected by testing. It is also easy for the compiler to figure out where
out-of-module access to a representation occurs, so that the program-
mer can be aided in tracking down code that must be changed after a
refactoring.

With a weak invariant, it is safer to keep the representation completely
hidden within a single module, since any refinement of the representation
may cause subtle incompatibilities which we won't be able to uncover
by testing.

Note that even though out-of-module access may be safe, it is not
necessarily a good idea from a software maintenance point of view.

6.5.4 CONSTRUCTING OBJECTS

Constructing a new object at the representation level is done with a
constructor expression, giving the type name and a list of field values.
All the fields of a struct must be given a value at construction time, and
only one field must be given for a union. Example:

var myDog = dog${name := "Spot", tonguelLength := 4.5};

It is also possible to define constructor procedures that create a new object
in a giv parameter. This is preferred for non-trivial object construction.
As with the constructor expressions, all the fields of the object must be
initialised, by assignment or by calling appropriate constructors:

procedure dog(giv dog d, obs string n, obs string 1) {
d.name = n; // by copy
call int(giv d.tonguelLength, 1); // by constructor call
}

Any giv parameter is implicitly open at the start of the procedure, and
implicitly closed at the end.
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Constructor expressions can be interpreted as a call to a functionalised
version of a default constructor:

procedure new_dog(giv dog d, obs string name,
obs int tonguelength);

Note that at the expression level (the algebraic language), there is no
difference between constructing an object and returning an object — a
constructor is just another function. For trivial types, a simple function
may be sufficient to give an abstract-level interface to object construction:

function dog dog(string n, int 1) = dog${name = n,
tonguelLength = 1};

6.6 Expressions and Statements

Expressions in Magnolia can consist of variables, literals and function or
operator applications. Expressions are always typed, with type resolution
proceeding from the innermost sub-expression to the outermost (hence,
overloading operations on the return type is not possible).

As explained in Section expressions should always be side-
effect free, with no data being modified, making Magnolia expressions
more like expressions in functional languages than C or Java expressions.
In particular the increment / decrement operators ++ / -- of C-like
languages are unavailable in Magnolia.

In addition to procedure calls, Magnolia has control-flow state-
ments such as if and while, similar to those found in C-like languages.
Variables are introduced with the var declaration statement:

var foo = f(5);
var string bar;
The types of new variables can be omitted if the type can be inferred

from the initialiser. With no initialiser, the variable type must be given
explicitly.

6.7 Concepts and Axioms

Concepts serve two roles in Magnolia:
1. Allowing specifications in the form of axioms to be embedded in a

program, and related to implementations using model declarations,
and

2. constraining type parameters, so that only types supporting re-
quired operations are accepted.

Our research has mostly focused on the first aspect, and how axioms
can be used for testing and optimisation. However, it is the second role

CONSTRUCTION VS.
RETURN
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that was the motivation behind the proposal to add concepts to C++ [14],
and also for similar features like Haskell type classes [71]. The design of
concepts in Magnolia is far from complete, so we will only discuss them
briefly here. Our first design was more or less a straight copy from C++,
but given that our motivations are different and that we do not have
to maintain compatibility with large amounts of existing code, it seems
likely that the final design will be quite distinct from the C++ version.

As we saw at the beginning of this chapter, a concept consists of a
signature and a set of axioms, and can include concept constraints on
types in the signature. For example, this is an excerpt of a concept for
integers:

concept Integer(type int) {
requires Equivalence(int);
function int _+_(int a,int b);
function int _-_(int a,int b);
function int _*_(int a,int b);
function int _/_(int a,int b) guard by b != int(0) ;

axiom commutative_add(int a, int b) {

assert a + b == b + a;

}

axiom commutative_mult(int a, int b) {
assert a * b == * aj;

}

}...

The concept has one type, int, and lists some operations for it. There
is one constraint given by the requires clause — that the type int
models the Equivalence concept, basically stating that there should be
an equivalence operation available on ints. Two axioms are shown,
specifying commutativity for the addition and multiplication operators.

Concepts can also be built on other concepts - for example, we
could build Integer on top of CommutativeRing, which already contains the
addition and multiplication operators, and the commutativity axioms for
them. We can build many algebraic structures this way — Gottschling
[601 provides a collection of fundamental algebraic concepts for concept-
enabled C++.

A model declaration states that some implementation types model a
given concept - for example, that myint and primitive ints are integers:

model Integer(myint);
model Integer(primitive.int);

Upon encountering the model declaration, the compiler will check that
all the operations in the concept’s signature are implemented for the
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given types, and that the types also model any concepts mentioned in a
requires clause. This corresponds to a concept map in C++. The axioms
are not checked, as program verification is beyond the capabilities of the
compiler. However, axiom based testing (Chapter[g) can be used to test
the implementation.

The model declaration may optionally provide implementations for
some operations, which is useful if the existing implementation does not
fully model the concept, or if some operations in the implementation
must be renamed to match the concept. For example, if our imaginary
myint lacks equivalence, we could add one in the model declaration
(assuming we can check if a number is zero):

model Integer(myint) {
function bool _==_(myint a, myint b) == isZero(a - b);

}

6.8 Genericily

Any operation, data structure or module with a type parameter is generic.

Type parameters are given by the forall clause. Generic code can't be
executed until we know what its arguments are — we'll typically need
to know the size of data structures, and the signature of any operations
called from the generic code. The former will vary, since Magnolia isn't
purely object reference based, and the latter is hard to determine until
concrete types are known, due to overloading.

Genericity can be handled either at compile-time or run-time. For the
most part, Magnolia handles genericity by instantialing the generic code
at compile-time, producing non-generic code. This has the advantage
of simplifying the run-time system and allowing the instantiated code
to be specialised for greater performance. The disadvantage is that
program that rely a lot on generic code can grow quite large when all
the instantiations are added.

A generic data type has one or more parameters. Any use of the data
type with non-generic arguments will trigger an instantiation. Only one
instantiation is done for each distinct set of arguments. For example, the
data type stack has an element type as a type parameter:

forall type elt

type stack(type elt) = {
var array(elt) data;
var int top;

}

Declaring a variable ‘'var stack(int) s’ will cause the type stack(int)

to be instantiated, which in turn will trigger the instantiation of array (int).

INSTANTIATION
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The compiler will think of these as plain structure types, except that the
name is a bit funny. Instantiating the type does nothing to any opera-
tions defined on the type - this is done solely on the basis of calls to
those operations.

Instantiation of generic operations is triggered whenever overload res-
olution returns with one or more type variable bindings. The algorithm
is straight-forward (and is also used for generic types) — a non-generic
signature is generated by substituting the type variables according to
the bindings. If the resulting signature identifies an as-yet undefined
operation, the definition of the operation is looked up and type variables
in its body are substituted, producing an instantiated definition. To help
further processing in the compiler, the instantiation is annotated with
information of its generic source and the generic arguments. It is then
added to the compiler’s list of defined operations, just as if it had been
defined directly in the source text.

There are two small complications that make the instantiation process
not quite that simple: The first is that any generic type or operations
used within an instantiation will also need to be instantiated. The second
is that whenever a procedure is called through its functionalisation, we
need to instantiate the procedure itself, and not just the functionalisation.
To handle this, a second pass of semantic analysis can be applied to
the instantiated code, recursively triggering instantiations of any generic
users therein. Functionalised procedures are handled by making the
function an internal compiler primitive representing “functionalisation of
.., thus making it easy to find the corresponding procedure.

Note that type checking can be done without instantiation, since
concept requirements will provide information about which operations
are valid for for various type parameters. In fact, instantiation can be
seen as part of the compiler backend, and may not always be necessary
as long as the generic code can be translated to C++ template code.
However, doing instantiations early means that the instantiated code can
be subjected to heavy optimisation.

6.9 Language Implementation

Magnolia is implemented using compilation by transformation, using a se-
quence of transformation steps to transform code in the source language
to a target language (object code, or another programming language).
The Magnolia compiler is implemented using the Stratego/XT [26] trans-
formation framework, where transformations are implemented using
rewrite rules and strategies.

The overall design of the compiler follows the typical pipeline-like
compiler structure, with various phases dealing with different aspects of
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compilation. Language extension needs to take this into consideration,
since a single extension will typically touch several phases of the compiler.

A ‘phase’ may not correspond to a single pass over the program, as
multiple phases may be applied in sequence to a smaller part of the
program, and a single phases may possible make multiple passes over
the entire program.

6.9.1 FRONTEND

The parser is based on a grammar written in spr2 [154] and uses the
sglr scanner-less GLR parser [I51], which produces an abstract syntax
tree in ATerm format [I50]. New syntax can be added by extending the
grammar. As spr2 is modular, this may be done without touching the
existing grammar, simply by telling the compiler to use an alternate parse
table, or to build a new parse table with an extra module included.

Although GLR grammars are theoretically composable, in that you
don't get the various conflicts that commonly occur with LALR parsers,
adding a language syntax extension may result in an ambiguous gram-
mar — one that produces more than one tree for a given input. There SyNTAX EXTENSION
is no quick fix for this, checking that a context-free grammar is un-
ambiguous is in general undecidable [28; [49]. Several approaches get
around this by restricting the grammar formalism, for example, one may
attempt to build an LR(k) parse table for the grammar, and check for
conflicts [97; 130l. Schwerdfeger and Van Wyk [131] propose a system
where language extensions can be checked for composability individually,
which is important since it allows separately developed libraries with
syntax extensions to be combined. Another approach may be testing by
generating random strings in the language and see if any ambiguities
occur.

To provide syntax extensibility of the kind found in languages like
Dylan [133], one could provide Magnolia syntax for syntax definition,
then extract and compile the syntax definitions to spr2. We'll not bother
too much with syntax extension though, but we will revisit language
extensions in Chapter

After parsing, the program code passes through desugaring, which
normalises the abstract syntax tree. Some constructs that are syntactically
dissimilar but semantically similar will be folded into the same represen-
tation here - for example, operator and function calls are basically the
same thing, but with special prefix, postfix or infix syntax for operators.
They are all folded into the same function call construct.

6.9.2 MAIN COMPILER PHASES

The main phases of the compiler may be invoked multiple times on
smaller parts of a program, and one phase may call another phase as
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needed. Overall, the phases proceed in the other listed:

Semantic Analysis: Expressions in the program are typed and the
types of sub-expressions are used to resolve overloaded calls. State-
ments are also type-checked - for example, assignment requires that
the variable being assigned to is writable, and of a type compatible
with the value being assigned.

Concept Configuration: Generic code is typically written in terms of
concepts, where multiple implementations can satisfy the same
concept. Configuration replaces concepts with implementations
and instantiates any axioms and default code provided in the
concept.

Instantiation: Generic code and macro-like code is instantiated into
concrete code. Instantiation is triggered by use (detected during
semantic analysis), and may trigger further instantiation and appli-
cation of semantic analysis to instantiated code.

Functionalisation: Translates statement-based code using pure proce-
dure calls into expression-based code. This is sometimes desirable,
because it makes code a bit easier to process, e.g. by expression
rewrite rules. We may also do inlining of assignments to obtain as
deeply nested expressions as possible — the effect can be reverse
afterwards using common compiler optimisation techniques and
mutification.

High-level Optimisation: The transformations done here are based
on high-level semantic knowledge of the program - obtained from
axioms, for example, or from user-provided transformations. Data-
flow analysis is needed to track the propagation of properties. For
example, knowledge of whether an array is sorted or not can be
used to chose binary search over linear search. Sorting an array
would set the property, inserting an arbitrary element would destroy
it, and a rewrite rule to select binary search over linear search would
check the property in its condition. This idea is explored further by
Kalleberg [91.

Mutification: Translates expression-based code using pure function
calls into statement-based code using update-based procedure calls.
Needed if functionalisation (below) is used, and also on typical
user code, since many functions are implemented as procedures.
Mutification and functionalisation are described in more detail in
Chapter ]

Slicing: Removes dead code and specialises operations for particular
outputs.

Various optimisations: Inlining, constant folding, code specialisation.
These are called as needed from other phases and may also be
applied in a separate optimisation phase.
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6.9.3 BACKEND

The backend compiles away any remaining Magnolia-specific constructs
and produces C++ source code, ready to be fed to a C++ compiler. The
compiler normally operates as a whole-program compiler, producing one
big C++ source file. Alternative backends for C and for special-purpose
languages/libraries like Cuda and MPI are planned sometime in the
future.

6.9.4 MODULES

A Magnolia program is represented internally as a tree (or term, de-
pending on your point of view). A program typically consists of a main
module, which imports several other modules (possibly from libraries),
defining concepts and implementations. Some code may be implemented
in another language (e.g., C++) with a module defining only the interface
to the external code. All modules are loaded into the compiler during
semantic analysis.

Imported modules are also subjected to semantic analysis. The com-
piler will store processed imports in the file system as trees to speed up
later imports of the same module — modules are automatically repro-
cessed as needed if the source changes.

Although separate compilation would be possible, Magnolia uses
whole-program compilation because we want to be able to aggressively
inline and optimise code across module boundaries.

In the compiler, individual definitions (operations, types, etc) are
assigned an identification, def-id, and properties of a definition can be
looked up based on the def-id. Uses of a definition are annotated with
the def-id during semantic analysis, for example, a function call will
represented as a def-id together with a list of arguments - function body,
return type and all other information can be found using the def-id.

6.10 Status of the Magnolia Implementation

Most basic aspects of the language are fairly complete. We have concrete
and abstract data types, and operations on them in the form of functions
and procedures. There is a module system, and we have generic types
and operations, full overloading of type and operation names (including
inference of generic arguments), the usual selection of statements, and a
library of primitive types.

Functionalisation and mutification, as described in Chapter[a]is fully
implemented, including slicing of multi-valued procedures for use as
single-return functions. There are, however, more possibilities to explore
here. Being able to convert a program to a form which uses only function

The code that is fed to
the backend is actually
close enough to C++
that only a few
transformations are
necessary. The C++
code is produced by a
version of the
Magnolia
pretty-printer adapted
to C++ syntax.

IMPLEMENTED
FEATURES
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calls (as far as possible) will likely be useful for some optimisations.
Slicing can be combined with other forms of specialisationto create
tailored versions of performance critical operations. Finding the right
balance between specialisation, inlining and code duplication would be
important issues here.

Although it works for trivial examples like integers, the concept im-
plementation is not mature enough for larger experiments with concept-
based development. As this is one of the main areas we would like to
apply Magnolia, finalising the design and implementation of concepts
has high priority in the further development of Magnolia.



CHAPTER

Supporting Language Extensions

As Magnolia is intended for experimentation in language design, it is
important to be able to easily add language extensions and new language
variants. This chapter describes an experimental meta-programming
extension to Magnolia, designed to make it possible to do language
extension without having to modify the Magnolia compiler.

The existing abstraction mechanisms in Magnolia already provide
ways for the programmer to add to the vocabulary of the language.
Language extension is simply an other way to either add abstractions
that behave similarly to those we already have, or to add new kinds
of abstractions. Extended abstractions should, as far as possible, be
integrated with features like mutification, functionalisation and axiom:s,
so they behave seamlessly for the programmer, and can be subjected to
high-level optimisation.

Although language extension was a very popular research topic in
the sixties and early seventies [140], this line of research was mostly
abandoned in favour of abstraction and object orientation. In recent
years, however, interest in extensible languages and programming en-
vironments has surged [I57], with, e.g., extensible compilers [48] and
intentional programming [137].

We're not looking to make the ultimate extensible language, but
rather to support those language experiments we want to perform -
language extension itself being one of them.
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ABSTRACT
Magnolia is an experimental programming language designed to try
out novel language features. For a language to be a flexible basis for
new constructs and language extensions, it will need a flexible com-
piler, one where new features can be prototyped with a minimum
of effort. This paper proposes a scheme for compilation by trans-
formation, in which the compilation process can be extended by
the program being compiled. We achieve this by making a domain-
specific transformation language for processing Magnolia programs,
and embedding it into Magnolia itself.

7.1 Introduction

Implementing a compiler for a new programming language is a chal-
lenging but exciting task. As the language design evolves, the compiler
must be updated to support the new design or to prototype the design of
new features. Magnolia is both an experimental programming language,
and a language for language experiments. We therefore need a compiler
flexible enough to keep up with changes in the language design, and
with features that make implementation of experimental features easy.

Use cases for a language extension facility include experimental fea-
tures such as data-dependency based loop statements, embedding of
domain-specific languages, restriction to sub-languages with stricter se-
mantics and language implementation using a simple core language, and
building the rest as extensions.

This is a preprint of: Bagge, A. H. Yet Another Language Extension Scheme. In Proceedings of
the 2nd International Conference on Software Language Engineering (Denver, Colorado, USA,
October 5 - 6, 2009). SLE ‘09. To appear in Lecture Noles in Compuler Science, Springer Berlin /
Heidelberg. Final version may differ from the text presented here. Printed by permission.
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In Magnolia, the programmer can express extra knowledge about
abstractions as axioms. In the compiler, we would therefore like to
preserve abstractions for as long as possible, in order to take advantage of
axioms. Language extensions also provide abstractions, with knowledge
we may also want to take advantage of. Desugaring extensions to lower-
level language constructs at an early stage, as is done with syntax macros,
discards any special meaning associated with the constructs, which could
have been used for optimisation and extension-specific error checking.

The Magnolia compiler is implemented in Stratego/XT [26l, using
compilation by transformation, where a sequence of transformation steps
transform code in the source language to a target language (object code,
or another programming language). It is therefore natural to make use of
transformation techniques for describing language extension. This paper
presents an extension of the Magnolia language with transformation-
based meta-programming features, so that extensions to the Magnolia
language can be made in Magnolia itself, rather than by extending the
Stratego code of the compiler. This gives more independence from the
underlying compiler implementation.

The rest of this paper is organised as follows. First, we give a brief
introduction to the Magnolia language, before we look at how to add
language extension to it (Section [7.3). We have two extension facilities,
macro-like operation patterns (Secti and low-level transforms (Sec-
tion [7.3.2). We provide an example of two extensions, before discussing
related work Section and concluding (Section

7.2 The Magnolia Language

We will start by briefly introducing the parts of Magnolia that are nec-
essary to understand the rest of the paper. Magnolia is designed as a
general-purpose language, with an emphasis on abstraction and specifi-
cation. Abstractions are described by concepts, which consist of abstract
types, operations on the types, and axioms specifying the behaviour of
the operations algebraically. Multiple implementations may be provided
for each concept, and signature morphisms may be used to map between
differences in concept and implementation.

Operations can be either procedures or functions. Procedures are allowed
to update their parameters, and have no return values. Pure procedures
only interact with the world through their parameters (e.g., no I/0 or
global data). Functions may not change their parameters, and are always
pure — the only effect a function has is its return value, and it will
always produce the same return value for the same arguments. Function
applications form expressions, while procedure calls are statements. In
addition, Magnolia has regular control-flow statements like if and while.
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A novel feature (detailed in a previous paper [8]) is the special relation-
ship between pure procedures and functions. Procedures may be called
as if they were functions — the process of mutification turns expressions
with calls to functionalised procedures into procedure call statements.
An expression-oriented coding style is encouraged. Procedures are often
preferred for performance reasons, while expressions with pure func-
tions are easier to reason about, and is also the preferred way of writing
axioms.

7.3 Extending Magnolia

At least four types of useful extensions spring to mind:

1. Adding new operation-like constructs, that look like normal func-
tions or procedures, but for some reason cannot or should not be
implemented that way - for example, because we need to bypass
normal argument evaluation, or because some of the computa-
tion should be done at compile time. This type of change has a
local effect on the particular expressions or statements where the
new constructs are used, and is similar to syntax macros in other
systems.

2. Adding new syntax to the language, in order to make it more
convenient to work with. We may also consider removing some of
the default syntax. In Magnolia, this can be handled by extending
the spr2 grammar of the language.

3. Disabling features or adding extra semantic checks to existing lan-
guage constructs. This can be used to enforce a particular coding
style, to disable general-purpose features when making a DSL
embedding, or to ensure that certain assumptions for aggressive
optimisation holds.

4. Making non-local changes to the language - features requiring
global analysis, or touching a wide selection of code. Cross—cutting
concerns in aspect orientation are an example of this. We can
implement this by extending the compiler with new transformations
and storing context information across transformations.

In a syntax macro system, new constructs are introduced by giving a
syntax pattern and a replacement (or expansion). In languages like Lisp
or Scheme, the full power of the language itself is available to construct
the expansion. For Magnolia, things are a bit more complicated, since
the extension may pass through several stages of the compiler before
it is replaced by lower level constructs. We must therefore provide
the various compiler stages with a description of how to deal with the
language extension.

SYNTAX MACROS
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To provide syntax extensibility of the kind found in languages like
Dylan, one could provide Magnolia syntax for syntax definition, then
extract and compile the syntax definitions to spr2, as used in the compiler.
We will not consider this here, however. A full treatment of compiler
extension in Magnolia is also beyond the scope of this paper, we will
therefore focus the macro-like operation patterns and briefly sketch the
transform interface to compiler extension.

73.1  OPERATION PATTERNS

An operation pattern is a simple interface to language extension, similar
to macros in Lisp or Scheme. Patterns are used in the same way as a
normal procedure or function, but is implemented using instantiation
with arbitrary code transformation. They are useful for things that need
to process arguments differently from normal semantics.

The implementation of an operation pattern looks like a procedure or
function definition, except that one or more of its parameters are meta-
variables that take expression or statement terms, rather than values or
variables. The argument terms and pattern body may be rewritten as
desired by applying transforms to them (see examples below). When
the operation pattern is instantiated, meta-variables in the body are
substituted, and any transformations are applied. The resulting code is
inlined at the call site.

Meta-variables are typed and are distinguished from normal variables
through the type system, thus it is not necessary to use anti-quotation to
indicate where meta-variables should be substituted. Operation patterns
introduce a local scope, so local variables will not interfere with the call
context.

The semantic properties (typing rules, data-flow rules, etc) of an
operation pattern are handled automatically by the compiler, and calls
to operation patterns are treated the same as normal operation calls
during type checking and overload resolution. This means that they can
be overloaded alongside normal operations, and follow normal module
scoping and visibility rules. Processing code with operation pattern calls
requires some extra care, so that arguments that should be treated as
code terms won't get rewritten or lifted out of the call.

Operation patterns can also conveniently serve as implementations
of syntax extensions, by desugaring the syntax extension into a call to
the pattern.

For example, the following operation pattern implements a simple
way to substitute a default value when an expression yields some error
value:

forall type T
procedure default(T e, T f, expr T d, out T ret) {
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ret = e;
if(ret == f)
ret = d;

}

The £ is the failure value (null, for example), d is the default replacement,
and e is the expression to be tested.
Magnolia will automatically provide a function version of it:

forall type T
function T default(T e, T f, expr T d);

which we can use like:
name = default(lookup(db,key), "", "Lucy");
We can describe the behaviour of default by axioms, for example:

forall type T
axiom defaultl(T e, T £, T d) {

if(e == f) assert default(e, f, d) <-> d;
if(e !'= £) assert default(e, f, d) <-> e;
if(f == d) assert default(e, f, d) <-> e;
if(f !'= d) assert default(e, f, d) <!-> f;

}

7.3.2 TRANSFORMS

For further processing of language extension, we add a new meta-
programming operation to Magnolia — the transform — corresponding
to a rule or strategy in Stratego. Transforms work on the term representa-
tion of a program, taking at least one term plus possibly other values as
arguments, and returning a replacement term. Provided semantic analy-
sis has been done, term pattern matching in transforms are sensitive to
typing, overloading and name scoping rules.

A transform may call other transforms and operations, and may also
manipulate symbol tables and other compiler state. Several transforms
can share the same name; when applied they are tried in arbitrary order
until one succeeds. In addition to explicit calling, transforms can also be
controlled through transform classes, which describe how and (possibly)
when transforms should be applied. For example, a transform may
have the classes innermost and during(desugar), signifying that it should be
applied using an innermost strategy during the desugaring phase of the
compiler.

A sample transform is:

forall int il, int i2, int i3
transform example(expr il * i2 + i3 * i2) [simplify,repeat]
= (i1 + i3) * i2;
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Traversals/modifiers Compiler Phases Uses
repeat Can be used repeatedly during(p) apply during p  typecheck
once In traversal: Apply only once  before(p) apply before p  simplify
frontier In traversal: Stop on success after(p) apply after p mutify
topdown Traversal type requires(p) run p first ac
bottomup Traversal type triggers(p) run p after

innermost  Innermost reduction

oute

rmost  Outermost reduction

TaBLE 7.1: Transform classes: Topdown and bottomup traversals can be modified
by repeat, once or frontier. The phase classes can be used to apply a transform

before,

during or after a particular compiler phase, or to trigger application of a

compiler phase. Transforms can also be classified by use - for example, simplification
transforms may be marked as such and used many places in the compiler. The ac

class ca

Read more about
axiom groups and
strategies for axioms in

Section
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n be used to reorder expressions for associative-commutative matching.

This example has a pattern with three meta-variables, i1, i2, i3, all
of which will match only integer expressions. The expression pattern
in the argument list will be matched against the code the transform is
applied to, and will only match the integer versions of + and *. If the
match is successful, the code is transformed to (i1 + i3) * i2. The
transform classes simplify and repeat tell the compiler that this rule can
be applied during program simplification, and that it will terminate if
applied repeatedly. Table [7.1] shows a few different transform classes.
Axioms, when used as rewrite rules, can also have classes assigned to
them, making them usable as transforms [7].

Transforms can be applied directly in program code (most useful
inside operation patterns). For example,

var x = example(a * b + ¢ * b);

will apply the above transform (the expression to the left is implicitly
passed as the first parameter) and rewrite the code to:

var x = (a + ¢) * b;

The double-bracket operator [[...]] can be used to apply inline rewrite
rules, and to specify traversals — we'll see examples of this later.

7.3.3 SEMANTIC RULES

Semantic analysis rules are described by the typecheck transform, which takes a
statement, expression or declaration as argument, and returns a resolved
version of its argument - and its type, in the case of an expression.
Resolving means annotating each use of an abstraction with a unique
identifier that leads back to its declaration - this is typically taken care of
internally in the compiler. Type checking of a declaration will typically
involve adding declarations to the symbol table; type checking other
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constructs is typically a simple case of recursively type checking sub-
constructs. A (simplified) typecheck rule for assignment statements is:

forall name x, expr e
transform typecheck(stat{x = e;}) = stat{x = e’;}
where {
var (e’, t) = typecheck(e);
if(!compatible(typeof(x), t))
call fail("Incompatible types in assignment");

Axioms [7] can describe the abstract semantics of a construct. This is
only applicable to expression-like constructs at the moment, we should
also have a way of describing other constructs.

Implementation rules are used to compile constructs to lower-level code.
Instantiation rules are triggered during semantic analysis, and receive the
unique id of the abstraction and the use case, and produce an instantiated
version. Other implementation rules are free-form and should be tied to
a program traversal strategy and compiler phase. No effort is made on
the part of the compiler to ensure that implementation rules don't leave
behind uncompiled constructs, though we are looking at techniques that
can handle this [3l.

Other compiler phases may also need rules — for example, doing
data-flow analysis and program slicing requires information about which
variables are read and written in a statement — the readset and wrilesel
transforms are used for this purpose. Transforms may also be provided
for mapping between statement and expression forms.

By keeping track of semantic information, we can make more powerful
extensions. For example, with the following extended version of default
a failure value is no longer needed - it is obtained automatically from a
function declaration attribute:

forall type T
function T default(expr T e, expr T d) =
default(e, getAttr("fail_value", e), d);

73.4 MODULE-LEVEL AND GLOBAL EXTENSIONS

Language extension should normally be done at the module level, so that
some modules in your program may use the extension, and others won't.
For example, if your extension defines a restricted subset of Magnolia
with some DSL features, you probably still want the compiler to process
Magnolia libraries as if they were written in normal Magnolia. Therefore,
Magnolia extensions have scope:
* The names of transforms and operation patterns are accessible in
the module in which they are defined and in modules that import
them, just as with other operations.

This provides a
primitive version of
the alerts feature from

Chapter
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¢ Transforms are normally applied to the whole program. Semanti-
cally aware term pattern matching ensure that only relevant parts
of the code are touched, not code that merely looks similar to what
is described by the pattern.

+ For syntax extensions and language-changing transforms that should
only be applied to certain modules, there is a 1anguage declaration
in the module header that can be used to import extension modules.
Transforms imported via language are only applied to the local
module.

73.5 EXAMPLE EXTENSIONS

We will give two example extensions, one which uses transforms to
enforce a restriction on the language, and one which uses operation
patterns to add a map construct.

Impure procedures are ones that violate the assumption that two calls
with equivalent inputs give equivalent results. 1/0 is typically impure,
a random generator that keeps track of the seed would also be impure.
Since pure code is easier to reason about, we might want to have a
sub-language of Magnolia where calls to impure code is forbidden. We
implement this in a module pure, which is used by putting language
pure in the module header of pure modules. Our language module
contains the following transform:

transform purity(stat{call p(_*)}) [after(typecheck)]
where {
if(getAttr("impure", p))

call error("In call to ", p, -- impure calls forbidden");

The transform purity will be applied to the code in all language
pure modules after type checking is done (since the type checker might
be used to infer impurity), and will match procedure calls. If the called
procedure has the impure attribute, a compiler error is triggered.

The map operation applies an operation element-wise to the elements
of one or more indexable data structures (arrays, for example). Our
map works on multiple indexables at the same time (like Lisp’s mapcar),
without the overhead of dealing with a list of indexables at runtime. For
example,

A = map(@A * @B + @C); // map *,+ over elements of A, B, C
A = map(@A * 5); // multiply all elements of A by 5
A = map(@A * V + @C); // V is indexable, but used as-is

While map in Lisp and functional languages traditionally takes a function
(or lambda expression) and one or more lists as arguments — we will
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instead integrate everything as one argument, making it look more like
a list comprehension. Indexables marked with an @-sign are those that
should have element-wise. The @ is just a dummy operator, defined as:

forall type A, type I, type E where Indexable(A, I, E)
function E @_(A a);

This function is generic in E (element type), A (indexable/array type) and I
(index type) - together, these must satisfy the Indexable concept. Applying
the @-operator outside a map operation will lead to a compilation error
- this should ideally be checked for and reported in a user-friendly
manner.

A generic implementation of map is:

forall type A, type I, type E where Indexable(A, I, E)
procedure map(expr E e, out A a) {
// define index space as minimum of input index spaces

var idxSpace = min(e[[collect, frontier: @x:A -> indexes(x)]1]);

call create(a,idxSpace); // create output array
for i in indexes(a) { // do computation
a[i] = e[[topdown, frontier: @x:A -> x[i]]];

i

The implementation accepts an expression e (of the element type) and an
output array a. The body of map is the pattern for doing maps, and this
will be instantiated for each expression it is called with by substituting
meta-variables and optionally performing transformations. Note that the
statements in the pattern are not meta-level code, but templates to be
instantiated. The [[...]] code are transformations which are applied
to e — the result is integrated into the code, as if it had been written by
hand. The first transformation uses a collect traversal, which collects
a list of the indexables, rewriting them to expressions which compute
their index spaces on the way. This is used in creating the output array.
The computation itself is done by iterating over the index space, and
computing the expressions while indexing the @-marked indexables
of type A. The frontier traversal modifier prevents the traversal from
recursing into an expression marked with @ - in case we have nested
maps.
As an example of map, consider the following:

Z = map(@X * 5 + @Y);

where X and Y are of type array(int). Here map is used as a function -
the compiler will mutify the expression, obtaining:

call map(@X * 5 + @Y, Z);
At this point we can instantiate it and replace the call, giving

var idxSpace = min([indexes(X), indexes(Y)]);
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call create(Z,idxSpace);
for i in indexes(Z) {
Z[i] = X[i] * S + Y[il;
}
which will be inlined directly at the call site.

Now that we have gone to the trouble of creating an abstraction for
element-wise operations, we would expect there to be some benefit to
it, over just writing for-loop code. Apart from the code simplification at
the call site, and the fact that we can use map in expressions, we can also
give the compiler more information about it. For example, the following
axiom neatly sums up the behaviour of map:

forall type A, type I, type E where Indexable(A, I, E)
axiom mapidx(expr E e, I i) {
map(e) [i] <-> e[[topdown, frontier: @x:A -> x[i]]];

}

applying map and then indexing the result is the same as just indexing
the indexables directly and computing the map expression. Furthermore,
we can also easily do optimisations like map/map fusion and map/fold
fusion, without the analysis needed to perform loop fusion.

73.6 RELATED WORK

There is a wealth of existing research in language extension [23} 140} 157]
and extensible compilers [48} [116], and there is not enough space for a
comprehensive discussion here.

Lisp dialects like Common Lisp [61] and Scheme [46] come with pow-
erful macro facilities that are used effectively by programmers.

C++ templates are often used for meta-programming, where tech-
niques such as expression templates [153] allow for features such as the
map operation described in Section (though the implementation is a
lot more complicated).

Template Haskell [135] provides meta-programming for Haskell. Code
can be turned into an abstract syntax tree using quasi-quotation and
processed by Haskell code before being spliced back into the program
and compiled normally. Template Haskell also supports querying the
compiler's symbol tables.

MetaBorg [24] provides syntax extensions based on Stratego/XT. Syn-
tax extension is done with the modular spr2 system, and the extensions
are desugared (“assimilated”) into the base language using concrete syntax
rules in Stratego.

Andersen and Brabrand [B] describe a safe and efficient way of im-
plementing some types of language extensions using catamorphisms
that map to simpler language constructs, and an algebra for composing
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languages. We plan to integrate this work with ours as a safe way of
doing simple extensions.

We aim to deal with semantic extension rather than just syntactic
extension provided by macros. We do this by ensuring that transforma-
tions obey overloading and name resolution, by allowing extension of
arbitrary compiler phases, and allowing the abstract semantics of new
abstractions to be described by axioms. The language X1 [108] provide
a type macro-like facility with access to static semantic information -
somewhat similar to operation patterns in Magnolia.

7.4 Conclusion

In this paper we have discussed how to describe language extensions
and presented extension facilities for the Magnolia language extensions,
with support for static semantic checking and scoping. The facilities
include macro-like operation patterns, and transforms can perform arbitrary
transformations of code. Transforms can be linked into the compiler
at different stages in order to implement extensions by transforming
extended code to lower-level code. Static semantics of extensions can
be given by hooking transforms into the semantic analysis phase of the
compiler.

A natural next step is to try and implement as much of Magnolia
as possible as extensions to a simple core language. This will give a
good feel for what abstractions are needed to implement full-featured
extensions, and also entails building a mature implementation of the
extension facility - currently we are more in the prototype stage. There
are also many details to be worked out, such as a clearer separation
between code patterns, variables and transformation code, name capture
/ hygiene issues, and so on.

The Magnolia compiler is available at http://magnolia-lang.org/.
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CHAPTER

Discussion

8.1 Related Work

In this section we will discuss related work particularly related to Mag-
nolia, language design and our overall approach. For more detailed
discussions of related work, see the individual chapters.

8.1.1 THE Risk or DATA ABSTRACTION

The idea of data abstraction dates back to the early seventies. An abstract
dala type is a data structure with set operations to access the data structure
— with all data access having to go through the operations. Thus the
data representation itself is hidden or encapsulated, with access being
controlled by a well-defined interface.

An important precursor to abstract data types was the class mecha-
nism of Simula 67 [Dahl et al} 1968], which later evolved into the now
almost-dominant object-oriented programming paradigm. Simula was
designed for building simulation software, and provided classes as a way of
implementing entities in the simulation. A class declares a self-contained
program with data and procedures, serving as a pattern for making objecls.
Objects are used to model real-world objects in a simulation, with the
procedures defining what sort of actions can be performed on them. Sim-
ula 67 lacked the encapsulation necessary to support abstract data types,
but this was added later [Palme)} 1973]. Simula also provided inheritance
and virtual functions, which are important in object orientation, but
which we have not considered for inclusion in Magnolia - at least not yet
- as this would significantly complicate the language design, and limit
the amount of processing that can be done statically.

Data abstraction was introduced as a language feature in the language
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CLU [Liskov et al. 1981], with the cluster construct which defines a new
abstract data type together with a data representation for objects and
operations to manipulate the data. Access to the data representation
is limited to operations defined within the cluster. The origins and
motivations of CLU [Liskov} 1993] were similar to those of Magnolia -
to support research on programming methodology, in particular, an
abstraction-based approach to programming.

CLU has been a major influence on Magnolia, when it comes to
data abstraction, exception handling, iterators, and separation between
implementation and interface. Major differences from CLU include how
Magnolia is centred around modules with multiple types and operations;
how axioms are integrated into the languages and actively used by the
compiler; and the mapping between imperative and algebraic coding
styles. CLU also uses a heap-based reference oriented semantics (e.g.,
variables don't contain objects, they refer to them), similar to Lisp and
Java, rather than the value-oriented semantics of Magnolia.

Alphard [Shaw et al] 1977; [Wulf et al} 1976 was another important
early data abstraction language. The basic abstraction mechanism there
is the form. Alphard provides generators to abstract over iteration and
the structure of data collections - this is similar to the map operation
discussed in Section

Smalltalk (particularly Smalltalk-76/-80) [Kay} 1996] brought the ideas
of object orientation further, basing the language on message passing
between objects. Smalltalk dropped the distinction between primitive
values and object (a distinction which is important in later OO languages
like Java and C++), and in Smalltalk-8o even classes are objects, and can
be manipulated through reflection. Similar features are found in modern
languages like Python and Ruby.

Ada [Ichbiah et al}1981] was built to support data abstraction and to
simplify the creation of highly reliable software — design goals similar to
Magnolia. As in Magnolia, Ada allows multiple types and operations to
be specified together in a module. Ada features strong typing, modularity,
generic modules, exceptions, run-time checking and also has support
for multi-threaded programs — a feature not considered for Magnolia
yet. Even the syntax is designed to avoid programmer mistakes. While
previous versions had good support for data abstraction, Ada 95 added
full support for object orientation, with inheritance and virtual functions,
to the design.

Scala [Odersky et al) 2006] is a modern data abstraction language
with support for object orientation and (to some degree) functional
programming. It is designed to tackle large scale abstraction (components)
using the same concepts as are used at the small scale (i.e,, class / module
level). Every data type in Scala is organised in a type hierarchy, with
Any at the top and Nothing/Null at the bottom, and even functions
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are treated as objects (with the arrays being a subtype of functions).
Scala makes extensive use of abstract classes (types), which are used in a
manner similar to concepts in Magnolia, and traits which are a special
form of abstract class used to do mixin composition of data abstractions.

8.1.2 SPECIFICATION, VERIFICATION AND RELIABILITY

Important early work on specification and verification of data abstrac-
tions was done by Hoare [1972]. Algebraic specification [Goguen et al,
1978} (Guttag and Horning 1978; Guttag et al| 1978; Liskov and Zilles, 1975|
arose as a specification technique for abstract data types, focusing on
specifying the behaviour of operations in relation to each other, rather
than specifying the inputs and outputs of each operation. A simple
algebraic specification consists of a signature, listing types and operations
on them (giving the syntax), and a set of axioms (specifying the seman-
tics). The signature idea is fairly common in programming languages - a
well known flavour is the Java interface. Having both signatures and
axioms — concepts in our terminology - is less common.

CLU provided a possibility to separate the abstract interface of a
module (what we call a signature) from its implementation, and do type
checking against interfaces. An interface could have multiple implemen-
tations, and and the desired implementation could be selected at link
time. CLU even allowed for procedure behaviour to be specified using
requires, ensures and modifies clauses, although such specification
was usually informal. This closely matches the idea of concepts, the
main difference being that a CLU interface describes only one type. To
deal with the problem of constraining polymorphism, CLU has a where
clause which specified the operations that should be supported by a type
parameter.

Alphard forms — which are used to implement abstract data types —
integrate formal specification through pre- and post-conditions, invari-
ants, requirements, assumptions and proof rules. Unlike CLU and Euclid
(below), the specification language is part of the language and not left to
an external tool.

The Euclid language [Popek et al., 1977l was designed as an improve-
ment of Pascal [Wirth| 1971] with support for verification of programs,
and also adding systems programming features missing from Pascal. The
language design was guided by the goals of verifiability, reliability and
understandability — goals that are also important in Magnolia, though we
would consider ‘verifiability’ as ease of reasoning, and use it in support of
optimisation. As aliasing is a major hindrance to reasoning, the language
forbids aliasing in a similar, though slightly more elaborate way than
Magnolia - Euclid allows for the use of pointers and passing array com-
ponents and dereferenced pointers as arguments, by organising dynamic
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variables and pointers in collections, and enforcing argument-passing rules
that prevent access to both a dereferenced pointer / array component
and its collection / array at the same time.

Like Magnolia, Euclid distinguishes functions (which are side-effect
free) from procedures (which may have side-effects) — though Wortman
and Cordy|[1981] point out that functions may have limited usefulness in
practise. Procedure parameters may be var (modifiable) or readonly, and
all var arguments must be non-overlapping, to prevent aliasing. Access
to module-level variables must be explicitly declared, and is read-only
by default.

Specification and verification in Euclid is based on the axiomatic
system developed by |[Hoare| [1969]. Operations are specified by pre-
and post-assertions, and assert-statements placed throughout the code.
Module invariants - like data invariants in Magnolia - must hold on entry
and exit from exported operations. The code can also be annotated
by specifications to be read by external verifiers — the form of these
annotations depend on the verifier, but any verifier is also expected to
make use of the assertions in its reasoning. Furthermore, the compiler will
insert legality assertions when the legality of some computation depends
on run-time information - for example, checking that an array index is
within bounds. As long as the legality assertions hold, a program is legal,
with well-defined semantics (though it is not necessarily correct according
to the program specification).

Exceptions are intentionally omitted from Euclid, as all programs are
expected to be verified and be free for run-time errors. Later language
designs have typically taken a more pragmatic approach, fortunately.

The design of Eiffel [Meyer] 1992] provided several advances in both
object orientation and reliability — and the combination of these — im-
proving on earlier languages like CLU, Alphard, Euclid and Ada. Eiffel
supports design by contract with pre- and post-conditions (require and
ensures) on methods, and class invariants. As with Euclid module
invariants and Magnolia data invariants, the class invariant must hold
on entry and exit to any exported method. The pre- and post-conditions
form a contract between the caller and callee - if the precondition is
satisfied, the caller can rely on the postcondition to hold on return.
Statement-level assertions and loop invariants are also provided by
the language. The compiler can automatically insert assertion checks if
desired.

As Eiffel is an object-oriented language, it also deals with contracts
and assertions in the context of inheritance, polymorphism and dynamic
binding - issues which are side-stepped in Magnolia, due to the lack of
inheritance. A subclass must always obey the contract of the class or
classes it inherits from, since objects of a subclass may be assigned to and
used as variables declared as the superclass. Preconditions must therefore
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not be stronger than those of the inherited classes, and postconditions
may not be weaker. It is allowed, however, to have weaker preconditions
and stronger postconditions in the subclass - this just means the subclass
does a ‘better job’ at fulfilling the contract. Class invariants are always
at least as strong in subclasses — additional clauses may be added to
the invariant, but the invariants of inherited classes must still hold. In
contrast with C++, which uses static binding of methods by default, Eiffel
always uses dynamic binding (‘virtual functions” in C++ terminology).
This follows naturally from the use of class invariants; with static binding,
the method of a superclass may be called to process an object of a
subclass - but the superclass method has no knowledge of, and cannot
be expected to uphold the invariant of the subclass. The design of
contract inheritance ensures that methods always act according to their
defined contract, even in the face of inheritance and dynamic binding,
thus making it possible to reason about code that employs inheritance.
This would be important for a possible future addition of inheritance to
Magnolia.

Interface definitions are done using deferred classes (abstract classes in
C++ / Java terminology). All classes that implement the interface inherit
from the deferred class, implementing any missing functionality. The
inheritance rules ensure that all such implementations uphold the same
contract.

Eiffel also comes with an exception handling facility, which is further
refined compared to Ada, PL/I and CLU. Exceptions are used in abnormal
situations, and also when monitored assertions fail. Exception handlers
should put objects back into a consistent state, and may then attempt
to resume processing, or give up and propagate the exception through
the call tree. The exception handler is not expected to fulfil the method’s
postconditions, its only obligation is to ensure that objects are consistent
and that the class invariant holds. The caller may then attempt to obtain
its result some other way, or may propagate the exception again.

An important early work on mixing programming languages with
algebraic specification is Extended ML [Sannella and Tarlecki 1985} [1986],
which introduced algebraic specification into the Standard ML language —
rather than using axiomatic specifications with pre- and post-conditions
as in Euclid. Extended ML separates signatures from implementations,
and allows axioms to be given together with the signatures. It builds on
the idea of institutions [Goguen and Burstall, 1984], in order to achieve
independence from the underlying logic system. Sannella and Tarlecki
[1999] report positive experiences with the use of Extended ML in teaching
and for further research, but also note that dealing with specification in
the context of the full Standard ML language in a fully formal way is too
difficult to be practical; particularly dealing with things like exceptions
/ partiality, and higher-order functions. With Magnolia, we have full
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control over the base language, so we have a better hope of avoiding or
controlling features that interfere with formal specification. For instance,
we can deal with partiality using guarding, and avoid the use of higher-
order functions.

Concepts in Magnolia and C++ match closely the ideas of signatures
and axioms from algebraic specification, allowing us to use them for
axiom-based testing and rewriting. |Zalewski and Schupp|l2007] discuss
C++ concepts more closely from a specification and institution point-of-
view. The concept approach, based on algebraic specification, is more
similar to Extended ML than to the axiomatic / assertion approach of
Euclid and Eiffel. Behaviour is specified by relating the operations of
abstract data types to each other, rather than specifying requirements and
effects of each operation. The algebraic approach has the added benefit
of being directly usable for rewriting (see Chapter[g) and as a basis for
testing (see Chapter[g). On the other hand, assertions are immediately
useful as checks during the run-time of a program. In both cases, over-
specification must be avoided if one is to be sure that the specification is
applicable to a wide range of implementations - though the danger of
this may be greater with assertions.

Magnolia still allows (or will allow) the use of pre- and postconditions,
through the alert system (see Chapter [5) - though this is aimed at detect-
ing and handling errors at run-time, rather than at program specification.
Guarding |[Haveraaen and Wagner, 2000] is a form of preconditions that
can be used to hide partiality in an algebraic specification. Assertions
will also play an important role in Magnolia, similar to their use in Euclid
— providing hints for reasoning about programs. For example, asserting
that an array is sorted, so that the compiler may take advantage of this
when selecting a sorting algorithm — and of course also allowing for
run-time checks of assertions, for debugging purposes.

8.1.3 CONCEPTS AND BOUNDED POLYMORPHISM

For a description of concepts in Magnolia, see Section

Concepts in C++

Concepts were proposed for the C++0x standard [Gregor et al] 2008],
primarily to make generic programming more user-friendly by allowing
bounded polymorphism. In standard C++ it's not possible to specify
requirements for template parameters. For example, a generic sorting
library might include a template declaration like:

template<typename ArrayType, typename ElementType>
void sort(ArrayType<ElementType> &a);
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The sort function would rely on the ArrayType having an indexing
operation [] and that the ElementType has a comparison operator (e.g,,
<). If a piece of user code tries to call sort with an inappropriate
element or array type (for instance, a linked list having only head and
tail operations), the user will get an error message pointing deep inside
the library code. For complicated template libraries, such errors can give
several pages of messages, making the actual fault difficult to trace.
With concepts, it is possible to specify requirements for template
parameters. The above sort function may be specified instead as:

template<typename ArrayType,
LessThanComparable ElementType>
requires Indexable<ArrayType, ElementType, int>
void sort(ArrayType &a);

- requiring that the array argument is int-indexable with ElementType
elements, and that elements are LessThanComparable. The compiler is able
to fully type check the sort implementation based on the concepts
(something that previously had to be delayed until the template had
been instantiated with concrete types), and will also give a clear error
message if the user tries to instantiate the template with inappropriate
parameters.
A concept map is used to declare that some types model a concept.

concept_map Indexable<IntArray, int, int>;

The concept map can include some implementation code to replace or
rename missing operations:
concept_map LessThanComparable<Orange> {
bool operator<(const Orange&a, const Orange&b) {
return a.weight < b.weight;

}

This makes it much easier to fit code from different sources together, since
differences in style or conventions can be translated away by the concept
map. With plain templates (and with most other generic programming
systems, for that matter), you're stuck with whatever operations and
calling conventions are used in the template code. We examine this
problem from another angle in Chapter|o}

Haskell Type Classes

Haskell type classes [Hall et al| (996] provide a classification of types
based on which operations are available on the types. A type class lists
some operations, and types that support that operation forms the type
class. Function parameters may then be typed by classes and be generic
in all the types belonging to a type. Type classes provide for refinement
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(building on existing classes), modelling, and constraints in much the
same way as C++, as shown by a comparison by [Bernardy et al|l2008].

As Haskell more or less uniformly uses curried functions, the prolifer-
ation of declaration forms that plague C++'s concepts is much less of an
issue, lessening the need for a concept map feature.

Scala

Scala supports bounded polymorphism by specifying that a type pa-
rameter should be a subtype of some other type. Many of the ideas
of concepts and Haskell type classes are realised in an object-oriented
fashion through abstract classes, traits and views, but there is no support
for axioms and specifications.

Signatures (interfaces) may be specified using abstract classes, for
example:

abstract class Monoid[a] extends SemiGroup[a] {
def unit: a

}

Implementations may be done using objects (classes with just a single
instance) inheriting from the abstract class. Implementation objects are
then sent as arguments to any method that makes use of the abstract
class. For example, calling a sum method with a list of integers and an
integer implementation of Monoid:

def sum[a](xs: List[a]) (m: Monoid[a]): a = ...

sum(List (1, 2, 3))(intMonoid)

Explicitly passing the implementation as a parameter can be avoided
through the use of implicit arguments or declarations, in which case
the sum method can be called as:

sum(List (1, 2, 3))

and Scala will figure out from the context that intMonoid is the only
applicable implementation. This gives an effect similar to how concepts
are used in C++.

A view is used in a way similar to a C++ concept map or Magnolia
model declaration, and is actually a way to define implicit type conver-
sions. For example, one could define a view from List[T] to Set[T]
by giving the definitions of the set operations, allowing lists to be used
as arguments to methods that expect sets. View bounded type parameters
accept types that have views into a given type — comparable to how a
requires clause in C++ is used to constrain a type parameter to type
that have a concept map for the given concept.
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8.2 Evaluation

For Magnolia, current body of code is too small to properly evaluate the
language design. An important next step will be to write larger programs,
to see how the language features work in practise. Testing the language
on more developers is also important — particularly developers of varying
proficiency levels. A language that can only be used by its designers is
almost useless — one that can only be used by grad students and above
is also not likely to succeed.

Writing flexible, reusable code is generally considered difficult. This is
often a problem of choosing the right abstractions — while the language
can help make the implementation of those abstractions reusable in
different situations, it takes a good deal of effort and experience on the
part of the programmer to create reusable code.

Reliability, on the other hand, is something we would like to be within
the grasp of junior programmers. After all, with all the experienced
programmers busy designing good abstractions, someone has to write
all the actual code. In order to verify that Magnolia meets the goal of
enabling more robust and reliable code, we should do trials with both
experienced and less experienced programmers, and see how reliability
compares to other languages. From the small body of code we have
written, we have noticed that code that passes the compiler checks
usually works correctly the first time. Whether this will hold true for
larger programs remains to be seen, but it is consistent with experiences
with other languages with strict compiler checks, such as Euclid [Wortman
and Cordy} [1981].

While we do not yet have enough data to evaluate the full language,
we have enough experience to offer some insight on individual fea-
tures. Our experience with functionalisation and mutification is that
these features interact very well with the rest of the language design,
particularly concepts and axioms. They are also quite convenient when
writing Magnolia code. Previous experience with the Sophus numerical
library (written in C++, in an algebraic style) shows that the ability to
write math-intensive code in an algebraic style is of great benefit [Dinesh
et al} 2000].

While concepts are not completely designed and implemented in
Magnolia, the Sophus library [Haveraaen and Friis, 2009; |Haveraaen et al
1999| has been designed around similar principles — although, imple-
mented in an ad hoc manner, using C++ and the C++ preprocessor, and
with a separate specification. Sophus is a medium-sized project (tens of
thousands of code lines), with several applications available, including
the Seismod seismic simulator. Sophus showed that numerical applica-
tion could be built in a modular manner, with each module satisfying a
particular specification. The well-specified and clean module interface
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allows for interchangeable implementations - such as replacing a sequen-
tial data structure with a parallel one. The planned reimplementation
of Sophus in Magnolia will be a good exercise of concepts in Magnolia
- and will also allow for a substantial refinement of the Sophus design,
building on native support for concepts, axioms and mutification in the
language.

Axiom-based testing has not been implemented or tested in Mag-
nolia yet, but we have gained some experience in this area with the
JAXT [Haveraaen and Kalleberg, |2008]| tool for Java. A team of experi-
enced undergraduate students [Masood et al,, 2009] successfully wrote
axioms for some of the Java collection classes, formally specifying the
behaviour dictated by the API documentation. Their work showed that
axiom-based testing is certainly doable in an object-oriented context,
but that there are problems associated with using axioms for code that
relies heavily on side effects, as is common in object orientation. This is
something we hope to avoid with functionalisation in Magnolia.

8.3  On Language Design

Our initial goal was not to design a new programming language, but
rather to experiment with new language features. The design of Magnolia
started as a means to the end of integrating and experimenting with
new features, as our existing language platform, C++, turned out to be
too difficult to work with [David, poog|. In retrospect, the design and
implementation work may have been easier if we had used another
language than C++ as a starting point — CLU, Eiffel, Euclid, or even Pascal,
perhaps — a language with many of the features we're interested in, and
with a small, concise definition we could use as a starting point for our
own language definition. We could then tweak the syntax to give it the
necessary C++-like feel that our users desire, and perhaps still implement
the compiler using compilation to C++.

In 1973, |Hoare [1989] gave a keynote address on language design,
discussing principles which are to a large degree still valid today. He
recommends that features be designed separately from programming
languages — perhaps as extensions to a well-known language — and the
language designer (ideally a separate person) will then later on pick and
choose the most suitable features and integrate them into a consistent
design. This may be sound advice — though [Meyer [1999] disagrees, as
many Eiffel features have been successfully designed and integrated
in a one-step process. We have gone with Meyer on this — Magnolia
features and the language itself is designed by the same group. However,
most Magnolia features are of course based on existing features in other
languages, and here we have taken Hoare's cherry-picking approach.
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Hoare point out five principles for good language design: simplicity,
security, fast translation, efficient object code and readability.

Simplicity means the language should be as small as possible, so
that programmers (and designers) can know and understand the full
language. Language modularity, in Hoare’s view, is not sufficient, as the
programmer may then be left helpless on encountering features from an
unfamiliar part of the language. Instead, simplicity should be a primary
objective in language design. Meyer [1999] favours simplicity, but not at
the cost of power to solve real problems. We agree - the focus should be
on making the programmer’s task simple, even if that means adding more
language features. There is a danger, though, that some of Magnolia's
features will be difficult to understand for programmers that lack training
in algebraic specification, or is unfamiliar with some of the features, like
alerts or mutification. This is something which will require very careful
thought in the continuing design process.

We have done some simplifications, though, in order to cut down
on the language complexity. Almost any comparable modern language
includes object orientation - this is dropped from Magnolia, as the
simpler ideas of data abstraction are sufficient for us. We have not
included concurrency constructs, or dynamic dispatch — features that
would make programs more difficult to analyse statically. Other language
research projects tackle these issues; object orientation and components
in Scala [Odersky et al} 2006], parallelism and high-performance com-
puting in Xi1o [Charles et al; 2005], Chapel [Callahan et al, poo4] and
Fortress [Allen et al, 2oo7l; distributed computing in Creol [Johnsen et al}
2006], and so on - in addition to the wealth of other research going on
in more established languages. If such features are needed later, we can
build on the experience from other projects.

Security has been important in the design of Magnolia - with features
like strict type checking, data invariants and alerts. Note that this is
security in the sense of what we would now call safety or reliability,
not security against attack from malicious software (though the latter
to implies the former to a large degree). Security is also a major design
concern in Eiffel. C++, on the other hand, forgoes security in some cases
(allowing casts and pointer manipulation) in favour of compatibility with
C and existing code.

Fast translation / compilation was important in the seventies, with
slow hardware - and it is, surprisingly, still important. The edit-compile-
debug cycle of programming will often require many recompilations of a
project, and while processors have gotten a lot faster in the past thirty
years, application size has also grown significantly. The same goes for
object code efficiency — we have more processor power, but also even
more difficult problems to solve. Based on our current tooling experience,
keeping the compilation time low will likely be an issue as Magnolia

SIMPLICITY
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programs grow larger. Many of the optimisations and specialisations we'd
like to do require the entire program to be compiled at the same time,
making time-saving separate compilation difficult. As long as we have
language experimentation as a goal, however, compilation and executable
speed is not a primary concern — though it may be a consideration when
incorporating features into a production language. |Stroustrup|l2007] has
been conscious of this in the design of C++ - avoiding features that add
overhead, particularly features that have run-time costs even when not
in use.

Readability is often undervalued, and many language designers feel
that syntax is of little importance, since it is basically a skin over the
underlying meaning. Still, syntax is one of the things that programmers
easily get worked up about, and the issue of readability is important
in maintenance and for understanding of code. Thus we have features
like functionalisation / mutification, which makes the use of readable
arithmetic expression notation accessible in more cases than usual. Some
syntactic features of the C/C++/Java ‘curly brace’ style have a negative
impact on readability, creating situations where an easy-to-miss extra
semicolon can change the meaning of a program, or where the assign-
ment and equals operators are easily confused. [Meyer|[1999] has taken
this into consideration, and defined Eiffel syntax with a relaxed view
of semicolons, and for the most part using an Algol/Pascal-like syntax.
Magnolia has started out with the more popular C/C++/Java style, simply
to remain as C++-like as possible; though it is easy to change the syntax
later on if desired, or to provided multiple syntactic skins according to
programmer preference.

Hoare [1989] also argues that procedures should give a clear indication
of its effects on its parameters — and idea which is fully supported in
Magnolia with the various parameter modes. He also suggests that
variables should not just be typed, but also supplied with units - so that
a radian value is distinct from a degree value, for instance. The Fortress
language [Allen et al} 2007] supports this kind of type system, and keeps
track of units through various operations — divide length by time to get
speed, for example.

Mevyer| [1999] argues against overloading — having more than one
definition for the same name in the same class / module - as it interferes
with reasoning, simplicity and readability. It is often difficult for the
reader to determine which overloaded operation is called, as this is
highly dependent on the context, and subtle differences in type can lead
to the choice of an entirely different operation. The effect of subclassing
in Eiffel is that you get different variants of the same operation, with the
same basic semantics (specified by the contract), selected appropriately for
the type — whereas with overloading you get multiple operations with the
same name, but with possibly entirely different semantics. Additionally,
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when combined with inheritance and dynamic binding, it becomes easy
to confuse overriding an inherited operation with overloading it.

Magnolia does allow overloading — in fact, it is a pretty fundamental
part of the language, since we do not use the object-oriented message
passing model / dot-notation to decide which type an operation belongs
to. The danger of confusing operations with different semantics remain,
however. A possible way to handle this is to forbid overloading within
concepts and within the same module. This way, every name in a concept
has a unique and well-defined semantics - there may be many different
implementations, but they must all follow the same specification, just
as with subclassing in Eiffel. Confusion between overloaded names in
different modules can be controlled through qualification of names and
fine-grained imports.

To |Stroustrup|[2007] (and the C++ standards committee), compatibility
is an important design criterion, both in the initial design (compatibility
with O), and in further changes of the language. This is probably a
very sensible approach for C++, given the many billions of lines of
existing code. In contrast, Meyer [1999] considers language evolution as
an important part of design, and is open to introducing incompatibilities
with previous language versions — as long as there is agreement that the
change will actually result in a better language, and a migration tool is
made available for existing code. For Magnolia, being able to change
and evolve the language is important — it is in fact the original purpose
of the language. This is one of the language design dilemmas: on one
hand, it is good to have few users and little existing code, so that one
may easily evolve the language without concern for compatibility; on
the other hand, having many users and a large code base makes it much
more likely that one can make sound decisions about how to evolve
the language to better serve its purpose. For us, compatibility issues are
probably best handled with a migration tool.

Another way to approach compatibility is to ensure interoperability with
existing languages and code, while still doing radical new design. This
approach is taken in Scala [Odersky et al} 2006|, which is fully interopera-
ble with existing Java and C# classes and libraries, but still breaking new
ground in the type system, and providing features like pattern matching
of objects, algebraic data types and support for functional programming.
Magnolia provides some degree of interoperability with C and C++, by
allowing for calls to C/C++ operations and doing automatic translation of
some simple data types (strings and primitive types) when calling C/C++
code. Data structure representations are not directly accessible, how-
ever, and must be accessed through functions. Similarly, C++ provides
interoperability with C, with extern "C" declarations.

COMPATIBILITY

INTEROPERABILITY
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8.4  Future Work

We have five main areas of future research for Magnolia: optimisa-
tion, concepts and concept-based programming, language extension
support, language description, and novel language features. Optimisation
overlaps with concepts when it comes to axioms, and with language
extension when it comes to transformation. Optimisation possibilities
include axiom-based rewriting combined with property propagation,
code specialisation, and other high-level optimisations. For low-level
optimisations of the kind typically found in compiler books, we can rely
on the backend compiler.

Concepts are still undergoing design work, and there should be ample
opportunity for future research in this area as we begin to build larger
programs based on concepts. Support for language extensions is still early
in the design phase. While it is primarily intended for prototyping novel
features, extending it to the point where it can be used to implement
large parts of the compiler would be an interesting challenge.

As discussed above, determining how effective the language is in
practical use is an important step that must be done. Furthermore, the
current language design is closely tied to the implementation — to some
degree, the implementation provides the specification of the language.
This is clearly undesirable in the long term — we should swallow our own
medicine and provide a separate specification of the language. Doing
a prototype implementation before proper specification does have its
value though, as it makes clear which features are easily implemented
and easily compiled to efficient code - an important consideration in a
language design project with extremely limited resources.
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CHAPTER

Conclusion

In the introduction, we discussed software quality, and techniques for
developing quality software. Let us now look back on the preceding
chapters, and see how this work extends the state of the art in software
quality.

We pointed out abstraction as a fundamental approach to software qual-
ity, flexibility and for dealing with large problems. We would therefore
like to encourage programmers to make extensive use of abstraction, and
reduce any concerns programmers might have that the resulting code
will be slow because of abstraction overhead. Mutification / functionalisation
from Chapter p| takes the existing idea of procedural abstraction and
makes it more flexible, by decoupling implementation from use. Efficient
code can be written in an imperative style, while the code can be used
in an algebraic style, which is easier to reason about, and which is easily
linked to program specification. Code built this way is aliasing-free,
which enables aggressive optimisation by the compiler.

We also said that separation of concerns was important, both as a thought
process, and when building software. Mutification and functionalisation
provide a new kind of separation of concerns — between how you declare
and implement something, and how you use it. We find the same separa-
tion in alerts — between how errors are dealt with at the implementation
side, and how they can be dealt with at the use side.

Axiom-based rewriting, introduced in Chapter [5| can be used to apply
high-level optimisations in the style of active libraries [Czarnecki et al|
2000|. Such transformations are easily applied to code written in the
algebraic style enabled by mutification. Providing an optimisation benefit
to using axioms will encourage programmers to make use of them.
Axiom-based optimisation may also help further reduce any overhead
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associated with more abstract code - and it also enables separation
of optimisation from implementation, making it more likely that the
programmer can keep the main implementation clean and simple. Axiom-
based testing (Chapter[4) has a more direct quality impact — on reliability
and maintainability — and provides even more benefit to the programmer
who takes the time to program with concepts and axioms.

The alert feature (Chapter[s) abstracts over error behaviour, and cleanly
separates between reporting errors and handling errors. The technique
makes it easy to enforce proper parameter checking and checking of error
conditions, contributing to increased robustness and reliability. Our work
on alerts builds on the exception facility found in many programming
languages, combines it with a formalisation of commonly used ad hoc
techniques, and revisits some old ideas in error handling. Alerts are also
an example of a domain-specific aspect language (DSAL), applying separation
of concerns to the domain of error handling [Bagge and Kalleberg) 2006].

It is difficult to tell how effective our proposed techniques and features
are at increasing software quality without performing trials on medium
to large scale software projects. Such trials are beyond the scope of this
dissertation, and will have to be left as future work.

Contributions

In this dissertation we have looked at language features supporting
a development method for creating quality software, focusing on ab-
straction, specification, testing and separation of concerns. The specific
contributions of this work are:

+ A significant extension of previous work on mutification [Dinesh
et al| 2oool, providing a formalisation of functionalisation and
mutification, and showing its usefulness in linking implementation
and specification.

+ A treatment of axiom-based testing in the context of concepts, and
showing how concepts and axioms can be used for both rewriting
and testing.

+ A language construct, alerts, for dealing with errors, which uni-
fies previous techniques and separates error reporting from error
handling.

* A basic design and implementation for the new language Magnolia,
providing a foundation for future work in this area.



Future Work

Main areas for future work are:

Bringing the language design and compiler implementation to a
level where it can be used for large projects, and doing trials to
evaluate the effectiveness of the language, and our techniques and
development method.

Building a large base of fundamental concepts with accompany-
ing axioms, as a basis for implementation work, and researching
constructs for combining and constructing concepts.

Integrate alerts with guards [Haveraaen and Wagner, 2000| and
concepts.

Do a proper design and specification of the type system. In par-
ticular, adding dependent types would allow the compiler to do even
more checks at compile-time, such as array bounds checking, and
dimension checks for matrix operations. Any checks that cannot be
verified at compile time, can be pushed to run time, as with legality
assertions in Euclid [Popek et al, 1977l.

Axiom-based testing should be extended with support for guards
for controlling errors and undefinedness in axioms; a discussion
of this and of the use of functionalisation to control side-effects in
axioms would be a valuable research contribution.

Explore further the use of axioms for optimisation, particularly
in combination with optimisations that track values and proper-
ties throughout a program. Such tracking is particularly easy in
Magnolia, because of the lack of aliasing, and since functions and
procedures make data-flow properties easy to access.

If possible, see if any of our experimental features or experiences
can be contributed to other languages - such as in the further
process of developing C++ concepts.
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Summary

Developing robust, reliable, flexible and maintainable software is chal-
lenging, especially with large projects. In this dissertation we look at lan-
guage constructs and features to support the development of high-quality
software through abstraction, specification and testing. We are particularly
interested in the high-performance / numerical software domain. The
work culminates in the design of the Magnolia programming language,
intended to serve as a foundation for further research in this area.

PLAYING WITH SIGNATURES: The same algorithm may often be realised
in several different ways. For example, sorting can be seen as reordering
a sequence, or as producing a new sorted sequence from an input
sequence. The former maps naturally to an imperative procedure, while
the latter maps naturally to how we would specify sorting in an algebraic
specification. We introduce mutification and functionalisation, which allow
us to map back and forth between imperative and algebraic code. In
particular, algorithms may be implemented in an imperative style, which
is often more efficient, especially in numerical software, but used -
in both program specification and code - in the algebraic style. The
algebraic style code can then be translated automatically to imperative
style code.

WoRKING wiTH CoNcEPTS: Concepts define the operation interface of
a set of types, and specifies the behaviour of operations with axioms. We
show how axioms can be used for optimisation purposes by annotating
them with axiom classes that describe how the should be used. Such
optimisation is particularly useful on code written in an algebraic style,
as this is the preferred style for writing axioms. We also discuss how to
generate automated tests from concepts and axioms.

Ax10M-BAseDp TesTING: We refine the idea of testing based on con-
cepts and axioms, detailing how to generate tests in concept-enabled
C++, and presenting a test generation tool for C++.
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HANDLING FAILURE AND EXCEPTIONS: Proper handling of failures and
unexpected situations that arise is important in creating reliable software.
We introduce alerts, which provide a unified approach to reporting and
handling failure. In particular, alerts can enforce checking of return codes,
and provide local or global handlers for different error situations.

Alerts can also associate errors with particular argument values, thus
providing precondition checks integrated with the alert handling system.
Improper checking of arguments is a significant source of bugs and
security problems, so this is an important feature.

THE MacNoLIA PROGRAMMING LANGuaGE: We discuss the design of
the Magnolia language, which is designed around the ideas and features
mentioned above. Magnolia is intended to provide a flexible basis for
further language experiments, while providing enough control over the
execution model to be useful for developing high-performance software.

ConcrusioN: The idea of mutification and functionalisation provides
a crucial link between implementation and specification, and serves as
an enabling technology for the work on testing and optimisation with
concepts and axioms. We provide for increased reliability and robustness
with axiom-based testing and the alert facility, while encouraging use
of abstraction and an easy-to-reason-with algebraic style by providing
axiom-based optimisation and reducing overhead with mutification.
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compiler,
concepts, [ITHTZ} [T08]
[[25H127) [137]

congruence relation,
I21HI24

constructors, [[T4} [T24]
data abstraction, [119H123

data invariant,
data structures, [120H125
destructors,

equivalenceﬂ
evaluation,
expressions,
extension,
functions,
generics, [127H128

implementation of,
implementations,
models,

modules,

object construction,

parameter modes,

parser,
partiality, ilS
procedures, [109
set-element operation, (112
signature morphisms, M
signatures,

status, [I31]

tuples,
type matching,
125

manual pages,

map, 20} 132

matching
asymmetric,
of patterns,
of types, [117H
pattern, (4T} (49} [TT§]
semantic,

message passing,

meta programming, see also

language extension

meta variables,

ML, 20|

exceptions,
model,
model
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in Magnolia,
modelling

of a concept,
modifies

in CLU,
modularity,

module invariant
in Euclid,
modules
in Magnolia,
monads,
monoid,
Monoid (concept), F9H41] 46|
154
mouldable,
MTL, [73] [75]

multi-threading,
multi-valued operations,

mutification,
1631

evaluation of,
of expressions, [26H27]

of programs, 28H29
performance of,

NaN,
notation, see also style

algebraic,

dot,

proliferation of variants, @l
Nothing

in Scala,

nrm, [IT4]
Null

in Scala,
null

in Java,
numerics,
Oberon

exception handling,
object

in Scala,

object construction
in Magnolia,
object orientation,

testing, [57}
obs,
OCaml, 9]

on (alert handler),

ON (in pr/1), [84]

open, 122 123

opens, [122]

operations
abstract-level,
extensions, [137
generic, (128
in Magnolia,
multi-valued,
operation patterns,

primitive, [113
representation-level,
specialisation of,
operator
transform, {140
operators
in Magnolia,
Opteron,
optimisation, [38} [L60
axiom-based,
high-level,
low-level, [160]
premature, {4
oracle problem,
oracles,

out, 27]

in Ada,

in C#,

in Magnolia,
over—speciﬁcation
overloading

in C++, [49]

in C, lack of,
in Magnolia,

of operation patterns, [138



of operators, (111

resolving,
parameter modes,

delete,

give,

in Magnolia, r—. 115

normalise,

observe, [113

output, (114

update,
parameter passing,
parsing

of C++,

of Magnolia,
partial operation,

partiality,

in Magnolia,
Pascal,
patterns,

matching, 41
operation, [[38]159
replacement,
syntax,|Ti7|

rL/1,[84]

condition system,
PlayStation 3,

pointcuts, [
polymorphism

bounded, [152]
Portland, OR,
postx, 79} BTHES [68, 9} 0608
post (alert clause),
postconditions,

and inheritance, [150]

in Alpha

in Eiffel,

in Euclid,
pre (alert clause),

preconditions,
and inheritance,

in Alphard,
in Eiffel,
in Euclid,

private
in Java, [114
proceduralisation
of function declarations, 24
procedure
in Magnolia,
procedure calls
in expressions, [113
statements, [T25]
procedures
impure, [108
in Magnolia,
multi-valued, 25 131
programming
extreme,
mouldable,
scientific,
propagate (axiom group),
properties

propagation of,
(130, 160]

sorted,
prototyping
of language constructs,
160

Python,
exceptions,

quantification

universal, [69
QuickCheck,

random
test data,
rational numbers,

readonly

in Euclid,

42
1

—]

ref
in C#,

reference types,
reflection, {148

reliability,
replacement pattern, 41|
reporting, see alerts, errors
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representation mapping, [6]

require

in Eiffel,

requirements
in concepts,
requires, [127]

in C++,
in CLU, [[49]

in Magnolia
resolution,
of overloadmg, [ 49 111} [113]
17 158
of types,

retry (alert handler),

return codes,

reuse, [53} [104) [T55]
and error handling,

of tests,

rewrite rules, see rewriting

user-defined,

rewriting
axiom-based, 41]
(140} 160

confluence, [42]
failure, [42]
semantics-preserving,
strategies,
success, [42]
termination,

rings, 22]

robustness, [T} [155]

Rt1Unwind, B3]
Ruby,

SameShape (concept), 59
Scala, 149
Scheme,
scientific programming,
SDF2,[59}
security

and argument checking,
Seismod,
semigroup,
setjmp,

side-effects

in axioms, [64 -. 7]
signature, [T0} [TTT]
algebraic, [55]

1mplementat10n 21]

in concepts, [126]
in Magnolia,

use, 27]
signature morphism,

in Magnolia,
signatures,
simplify (axiom group),
Simula

SLE

slicing, [28] [130] [131} [141]
Smalltalk, [148

exceptions, [103
SML, see ML

software testing,

Sophus, [9] [50] ‘-
spARK Ada, [80
spec1ahsat10n 1

initial,
loose,
of abstract data types,

of object-oriented code,
over-/under-,
speedup (axiom group), [44]
splicing
in Haskell,
SSA form, 27} 29]
stack
bounded, [65]
static single assignment, 27} 29]
Steel Bridge, [7]

strategies, [42H453|
bottom-up, 43|
choice, [43]

repeat, |1_5|
sequence, [43]



Stratego,
99

Stratego/XT,
struct
in C#,
in Magnolia,

style, see also notation
algebraic, 22] 29]
functional,
imperative, @
object-oriented,
of calls,
of implementation,
substitution, [44]
success
in transformations,

of type matching,

supercomputers, [BH%]
symmetry

in matrices, [44]
syntax
definition, [129
extension of,
for alerts,
patterns, [T37]
syntax macros, see macros
Széchenyi Street, [56]

TAMPR, @] @3]

tangling,

TDD, 55}

temporaries,

termination
of programs, [80)
of rewriting,

test coverage, |Z|

test oracle, 46|

testing, |6
axiom-based,

HdH48| b3H76) [125]

data generation,
experience, '—.
in Haskell,

limitation of axioms,

object-oriented code,
7H7Z
of exceptions,
partition,
reuse, [61]
suites, [64]
unit, 50|
TIL (language),
tools,
traits
in Scala,
transform, [139
transform classes, [140
transformation, see also rewriting
high—leve
Transformers, 99
transforms,
operator, |140
typecheck,
traversal
bottom-up,
innermost,
top-down, [T40]
tuples
in Magnolia,
type checking, see resolution
type classes, [5}
types
abstract,
in Scala,
opening of,
algebraic,
analysis,
constrained,
implicit conversion, [118]
in Haskell,

in Magnolia, 23]
1631
instantiated,

instantiation, [127

matching of,

parametrised,
plain,

representation, [[20H125

201



INDEX

202

resolving,
resource-aware systems,
simple,

tuple types,

type variables,
typing

strong, [T43]

undefinedness,
unicode,
unification, [118
union, [124
in Magnolia,
unit testing,
frameworks for,
upd, 2T} [IT9]
use signature,
user, 20} 22]
using, @]

value types,
values
abstract,
concrete, [121]
var, [125]
in Euclid,
variable
bindings,
temporary, [T15]
variables
declaration of,
global,
in Magnolia,
in patterns,
initialisation of,
modification in
expressmns
temporary,
type Varlables . 117][118]
volatile, [32]
verification

of abstract data types,
of programs,

views

in Scala,

while,
Willamette River,

Win32, 84

XTS5,
xUnit, 50|
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