
Parsing in a Broad Sense

Vadim Zaytsev1 and Anya Helene Bagge2

1 Universiteit van Amsterdam, The Netherlands, vadim@grammarware.net
2 Universitetet i Bergen, Norway, anya@ii.uib.no

Abstract. Having multiple representations of the same instance is com-
mon in software language engineering: models can be visualised as graphs,
edited as text, serialised as XML. When mappings between such repre-
sentations are considered, terms “parsing” and “unparsing” are often used
with incompatible meanings and varying sets of underlying assumptions.
We investigate 12 classes of artefacts found in software language pro-
cessing, present a case study demonstrating their implementations and
state-of-the-art mappings among them, and systematically explore the
technical research space of bidirectional mappings to build on top of the
existing body of work and discover as of yet unused relationships.

Keywords: parsing, unparsing, pretty-printing, model synchronisation,
technical space bridging, bidirectional model transformation

1 Introduction

Parsing is a well established research field [1] — in fact, its maturity has al-
ready become its own enemy: new results are specialised refinements published
at a handful of venues with a critical mass of experts to appreciate them. Un-
parsing is a less active field, there are no books on unparsing techniques and
there is no general terminological agreement (printing, pretty-printing, unpars-
ing, formatting), but this family of mappings has nevertheless been studied
well [2,3,4,5,6,7,8,9,10,11]. Parsing research concerns recognising grammatically
formed sentences, providing error-correcting feedback, constructing graph-based
representations, as well as optimising such algorithms on time, memory and
lookahead. Research questions in the domain of unparsing include conservatism
(in BX related to hippocraticness [12] and resourcefulness [13]), metalanguage
completeness and designing a universal way to specify pretty-printers. It was
suggested that unparsing in a broad sense should comprise advanced techniques
like syntax highlighting [14, §3.8.3] and adjustment to screen width [11, §2.1].
Methods have been proposed to infer parsers from unparsers [11], unparsers
from parsers [15,16] or both from annotated syntactic definitions [17,18,19]. Our
attempt is about modelling parsing and unparsing together as bidirectional trans-
formation, essentially by breaking up big step parsing into smaller steps for the
sake of bidirectionalisation [20] and analysis. There are no general BX frame-
works [12] to give a solution. This modelling approach can provide useful insights
in bridging the gap between structural editors and text-based IDEs, which is
known to be one of the open problems of software language engineering [21].

mailto:vadim@grammarware.net
mailto:anya@ii.uib.no


2 Motivation

Bidirectional transformations are traditionally [12] useful for situations when we
need consistency restoration among two or more entities that share information
in such a way that if one is updated, the other(s) need to coevolve. For example,
a language instance (the term we use to avoid committing to “model”, “program”,
“table”, etc) can be expected to be defined in a specific way (i.e., to belong to
an algebraic data type), but its concrete implementation can take a form of a
textual file, or a graph, or an XML tree — one can think of scenarios when we
would like to freely choose which instance to update so that the rest get co-
updated automatically. (This can be seen correponding to the classic PIM/PSM
distinction in MDA or to Ast/Cst from the next sections).

When two instances represent the same information in different ways, the
mapping between them is bijective, and the solution is trivial. However, it is
often the case that each kind of an instance is only a “view” on the complete pic-
ture. In the database technical space, this complete picture is formally defined,
and we know exactly what the view is lacking. This allows an asymmetrical
view/update or get/putback solution with one function taking just one argu-
ment and replacing its target with a new result, and one function taking two
arguments and updating one of them [22,13,23]. However, in software language
engineering we often end up having bits of specific locally significant informa-
tion scattered among many artefacts. For example, a text of a program (Str) can
contain indentation preferred by programmers, while the graphical model of the
same instance (Dra) can contain colours and coordinates of its visualisation, and
the abstract internal representation (Ast) can have precalculated metrics values
cached in its nodes. Solving the problem by creating one huge structure to cover
everything is undesirable: this solution is neither modular nor extendable.

In our endeavour to stay unbiased, we adopt a symmetrical approach that
treats all views uniformly, as will be described in detail in § 3. To model all
existing work we will also need a more demanding definition than the one used
for lenses [22], since many techniques in the grammarware technological space
are error-correcting, and thus can update both entities for consistency.

In § 4, we will propose a megamodel of mappings between strings, tokenised
strings, layout-free lists of tokens, lexical source models, parse forests, parse
trees, concrete syntax trees, abstract syntax trees, pictures, graphs and models
of different kinds. We will also give examples of such mappings and argue how
they fit our framework and what can we learn from it, leading to § 5 where a
case study is presented with all types and mappings from Figure 1 implemented
in Rascal [24], a metamodelling/metaprogramming language.

The main contribution of the paper is the structured megamodel of activities
that can be viewed as either “parsing” or “unparsing”; the case study demon-
strates its otherwise non-apparent aspects; the rest of the paper revisits and
catalogues common software language engineering processes. The reader is ex-
pected to be familiar with modelling and megamodelling; background on parsing
and bidirectionality is appreciated but not required: the necessary explanations
and literature references are provided.

2



3 Bidirectionality

In this section we will recall some of the kinds of bidirectional mappings covered
by previously existing research, in order to establish the background needed to
appreciate and comprehend the main contribution of the paper (the megamodel
on Figure 1). To simplify their comparison, we take the liberty of reformulating
the definitions in a way that leaves them equivalent to their corresponding origi-
nals. We will also put a dot above a relation to account for undefined cases: e.g.,
the sign “ .=” will denote “if all subformulae are defined, then equals”.

The simplest form of a bidirectional mapping is a reversible function [25]:

Definition 1 (reversible function). For a relation Ψ ⊆ L × R, a reversible
function f is a pair of functions for its forward execution

−→
f : L→ R and reverse

execution
←−
f : R→ L, such that

∀x ∈ L, 〈x,
−→
f (x)〉

·
∈ Ψ (1)

∀y ∈ R, 〈
←−
f (y), y〉

·
∈ Ψ (2)

If it is bijective, then also

∀x ∈ L, (
←−
f ◦
−→
f )(x)

.
= x (3)

∀y ∈ R, (
−→
f ◦
←−
f )(y)

.
= y (4)

A lens [22] is a more complex bidirectional mapping defined asymmetrically
such that one of its components can observe both the “old” value being updated
and the changed one. We will call them “Foster BX” here to avoid confusion
with many variations of lenses (for the purpose of this paper, we only need
well-behaved lenses).

Definition 2 (Foster BX). A get function↗ : L→ R and a putback function
↘ : R× L→ L form a well-behaved lens, if

∀x ∈ L, ↘ (↗ (x), x)
.
= x (5)

∀x ∈ L,∀y ∈ R, ↗ (↘ (y, x))
.
= y (6)

If a reversible function f exists, then constructing a lens is trivial: ↗ ≡
−→
f

and ∀x ∈ L,↘ (y, x) ≡
←−
f (y). The inverse construction of a reversible function

from a lens is only possible if both↗ and↘ are bijective (Eq. 3 and Eq. 4 hold).
As an example of symmetric bidirectional mapping, we recall the notation

by Meertens [26], with terms for properties inherited from Stevens [12]:

Definition 3 (Meertens BX). A bidirectional mapping is a relation Ψ and
its maintainer, which is a pair of functions B : L×R→ R and C : L×R→ L
that are correct:

∀x ∈ L,∀y ∈ R, 〈x, xB y〉
·
∈ Ψ, 〈xC y, y〉

·
∈ Ψ (7)

and hippocratic:

∀x ∈ L,∀y ∈ R, 〈x, y〉 ∈ Ψ ⇒ xB y = y, xC y = x (8)

3



Intuitively, correctness means that the result of either function is according
to the relation Ψ . Hippocraticness means that no modification happens if the two
values are already properly related (i.e., the transformation is guaranteed to “do
no harm”). In other words, a maintainer B and C can maintain the relation Ψ
either by leaving their arguments unchanged if the relation is already respected
or by massaging one of them with the data from the other one, until they do.

Constructing a trivial Meertens maintainer from a lens is straightforward:

xB y ≡ ↗ (x)

xC y ≡ ↘ (y, x)

Obviously, the inverse operation is only possible when the right semi-maintainer
does not require y for computing its result.

While the symmetry of the definition allows us to research scenarios of
two or more views of equal importance and comparable expressiveness, semi-
maintainers always assume one side to be correct, which especially in the context
of parsing only models straightforward precise parsing [1] or noncorrecting recov-
ery strategies [27]. For more complicated scenarios, we introduce the following
kind of bidirectional transformations:

Definition 4 (Final BX). A final bidirectional mapping is a relation Ψ and
its sustainer, which is a pair of functions I: L × R → Ψ and J: L × R → Ψ
that are hippocratic:

∀x ∈ L,∀y ∈ R, 〈x, y〉 ∈ Ψ ⇒ x I y = 〈x, y〉, x J y = 〈x, y〉 (9)

Final BX is also correct in the sense of the codomain of I and J being Ψ .
Constructing a sustainer from a Meertens BX or a Foster BX is trivial:

x I y ≡ 〈x, xB y〉 ≡ 〈x,↗ (x)〉
x J y ≡ 〈xC y, y〉 ≡ 〈↘ (y, x), y〉

Correctness of this construction is a direct consequence of the (rather strict)
properties we have demanded in Def. 2 and Def. 3. For example, if maintainer
functions were allowed to violate correctness, we would have needed to construct
a sequence of updates until a fixed point would have been reached.

The inverse operation is only possible for noncorrecting sustainers:

Definition 5 (noncorrection property). A sustainer is noncorrecting, if

∀x ∈ L,∀y ∈ R x I y = 〈x, y′〉 (10)
∀x ∈ L,∀y ∈ R x J y = 〈x′, y〉 (11)

Noncorrecting sustainers are equivalent to maintainers.

4



Str
(string)

Tok
(tokens)

TTk
(typed tokens)

Lex
(lexical model)

For
(parse forest)

Ptr
(parse tree)

Cst
(concrete syntax tree)

Ast
(abstract syntax tree)

Pic
(rasterised picture)

Dra
(vector drawing)

Gra
(graph model)

Dia
(diagram)

to
ke

n
is

e

co
n

ca
t

st
ri

p

fo
rm

at

parse

unparse

parse

unparse

st
ri

p

fo
rm

at

im
p

lo
d

e

ex
p

lo
d

e

d
is

am
b

ig
u

at
e

re
co

g
n

is
e

re
n

d
er

st
ri

p

fo
rm

at

ex
tr

ac
t

fl
at

te
n

scannerless parse

unparse

visualise

serialise
m

2
m

text editing

structural editing

m
2m

transform
ation

re
fa

ct
or

in
g

co
d

e
tr

an
sf

or
m

at
io

n

fi
lt

er
in

g

d
ra

w
in

g
vi

su
al

ed
it

in
g

R
aw

L
ay

ou
t

L
ay

ou
tl

es
s

A
bs

tr
ac

t

Textual Structured Graphical

Fig. 1. Bidirectional megamodel of parsing. Dotted lines denote mappings that rely on
either lexical or syntactic definitions; solid lines denote universally defined mappings.
The loops are examples of transformations.

4 Artefacts and Mappings

Let us first introduce the kinds of artefacts we will use for the remainder of the
paper:
• Str — a string.
• Tok — a finite sequence of strings (called tokens) which, when concatenated,

yields Str. Includes spaces, line breaks, comments, etc — collectively, layout.
• TTk — a finite sequence of typed tokens, with layout removed, some classified

as numbers of strings, etc.
• Lex — a lexical source model [28,29] that addes grouping to typing; in fact a

possibly incomplete tree connecting most tokens together in one structure.
• For — a forest of parse trees, a parse graph or an ambiguous parse tree

with sharing; a tree-like structure that models Str according to a syntactic
definition.

5



• Ptr — an unambiguous parse tree where the leaves can be concatenated to
form Str.

• Cst — a parse tree with concrete syntax information. Structurally similar to
Ptr, but without layout.

• Ast — a tree which contains only abstract syntax information.
• Pic — a picture, which can be an ad hoc model, a natural model [30] or a

rendering of a formal model.
• Dra — a graphical representation of a model (not necessarily a tree), a

drawing in the sense of GraphML or SVG, or a metamodel-indepenent syntax
but metametamodel-specific syntax like OMG HUTN.

• Gra — an entity-relationship graph or any other primitive “boxes and arrows”
level model.

• Dia — a figure, a graphical model in the sense of EMF or UML, a model
with an explicit advanced metamodel.

Figure 1 shows a megamodel of all the different artefacts and the mappings
between them. The artefacts in the left column of the megamodel are textual
(examples of these can be seen in Figure 2), the ones in the middle are structured
(examples of these can be seen in Figure 3), and the ones on the right are
graphical (Figure 4). Going “up” the megamodel increases the level of details in
annotations: in Str we have one monolithic chunk, in Tok we know the boundaries
between tokens, in TTk some tokens have types, in Lex some are grouped together
(and similarly for other columns).

For example, classic parsing (e.g., using yacc [31]) is TTk → Cst or Tok →
Ptr; layout-sensitive generalised scannerless parsing is Str → For (and possibly
Str→ For→ Ptr). Going from TTk or Cst to Tok or Ptr is code formatting.

An interesting and important detail of those mappings for us is whether they
are defined generally or parametric with a language specification of some kind
(usually a grammar, a metamodel, a lexical definition, a regexp). For example,
Ptr→ Tok unparsing can be done by traversing a tree and collecting all its leaves
from left to right. However, in order to construct a meaningful Cst tree from a
TTk sequence, we need to rely on the hierarchy of linguistic categories (i.e., a
grammar). Especially for the case of Ast 
 Cst there are fairly complicated
mapping inference strategies from (annotated) language specifications [32,33].

4.1 Fundamental Operations

Tokenisation. A tokeniser tokenisel : Str → Tok for some lexical grammar L,
maps a character sequence c1, . . . , cn to a token sequence w1, . . . , wk in such a
way that their concatenations are equal (i.e., c1 + · · · + cn = w1 · · · + wk). We
call the reverse operation concat:

∀x ∈ Str, concat(tokenisel(x))
.
= x (12)

∀y ∈ Tok, tokenisel(concat(y))
.
= y (13)

Note that concat can be defined independently of the lexical grammar.

6



Fig. 2. Textual representations of a simple program. Clockwise from top left, Str (initial
string), Tok (including layout), TTk (tokenised), Lex (lexical model).

Fig. 3. Structured representations of a simple program. Clockwise from top left, For
(forest of ambiguous interpretations), Ptr (parse tree including layout), Cst (concrete
syntax), Ast (abstract syntax).

Fig. 4. Graphical representations of a simple program. Clockwise from top left, Pic
(rasterised picture), Dra (vector picture), Gra (specific graphical model), Dia (abstract
model).

7



Adding/Removing Layout. The strip operation removes layout; format intro-
duces it. While stripping of layout is grammar independent, format is not. We can
apply stripping and formatting to sequences (strip : Tok→ TTk, formatl : TTk→
Tok), trees (strip : Ptr→ Cst, formatg : Cst→ Ptr) and models (strip : Dra→ Gra,
formatm : Gra→ Dra).

Stripping has the following property (shown for formatm, defined similarly for
the other two variants):

∀x ∈ Gra, strip(format(x))
.
= x (14)

Bidirectional stripping/formatting is at least a Foster BX: without knowing
what the original input looked like prior to stripping, it is generally impossible
to format it in the same way. With a Final BX we can model error correcting
formatting as well. For example, if an arc is added to a Gra model, the visual
formatter can suggest to add the target node to the model because it knows
that drawing an edge always ends in a vertex. However, it is often desirable that
such a sustainer is deterministic in the sense of Eq. 14 or close to it — i.e.,
reformatting a model will not result in a totally alien graph.

Layout preservation and propagation through transformations remains a
challenging research topic even without considering error correction [34,19].

Parsing/Unparsing. Parsing recovers the implicit structure in the input se-
quence, representing it explicitly in a tree. The forward operations parseg :
Tok → Ptr and parseg : TTk → Cst uncover the grammatical structure (de-
fined in a grammar G) of a sequence (with or without layout). Parsing is readily
reversible, with universally defined reverse operations unparse : Ptr → Tok and
unparse : Cst→ TTk:

∀x ∈ Tok, unparse(parseg(x))
.
= x (15)

∀x ∈ TTk, unparse(parseg(x))
.
= x (16)

∀y ∈ Ptr, parseg(unparse(y))
.
= y (17)

∀y ∈ Cst, parseg(unparse(y))
.
= y (18)

Unparsing may be implemented by, for instance, collecting the leaves of the tree
into a sequence.

Implosion/Explosion. For conversion to and from abstract syntax trees, we
have implodeg : Cst → Ast and explodeg : Ast → Cst. The explode mapping is
non-trivial and requires knowledge of the intended syntax; implode can be de-
fined in multiple ways, including the straightforward uniform mapping of Strat-
ego/XT’s implode-asfix [35] or Rascal’s implode [24]. The explosion is harder
to implement, and therefore it is rarely found in standard libraries.

Tree disambiguation. Earlier approaches to parsing always tried to burden
the grammar with additional information to guide the parsing (and sometimes
also the unparsing) process [1]. The state of the art in practical source code

8



manipulation usually relies on a relatively uniform parsing algorithm (SGLR,
GLL or Packrat) that yields a For structure which is then filtered according to
extra information [36,24]. In such a decoupled scenario this additional knowledge
can come from the grammar, from a separate specification, from a classifying
oracle, etc, which gives more flexibility to the language engineer. Thus, we must
add the disambiguate operation both as a (metamodel-specific) mapping from For
to Ptr, and as a For → For refinement. There is no currently available research
results on bidirectionalising this mapping, even though many recommenders can
possibly be implemented as Ptr→ For transformations.

Rendering/Recognising. Image recognition techniques can be applied to ex-
tract structured graph information from a picture, identifying (with some degree
of certainty) model elements, their positioning and relationships. Of course, some
natural models are never meant to be recognised this way [30]. The reverse map-
ping is much more trivial and present in most visual editors.

4.2 Familiar Operations Decomposed

We can now decompose common operations into the fundamental components of
the previous section; either single-step mappings L→ R from one representation
to another, or transformations L→ L within the same representation.

For example, code reindentation is a transformation at the layout level,
indent : Tok → Tok (or Ptr → Ptr), modifying the layout of the input while
preserving the property:

∀x ∈ Tok, strip(indent(x)) .= strip(x) (19)

That is, changes in indentation make no difference at the layoutless level.
A compiler can be similarly decomposed, with the crucial transformation

being, for example, Astc → Astasm. A full C compiler might be a pipeline Strc →
Tokc → Ptrc → Cstc → Astc → Astir → Astasm → Cstasm → TTkasm →
Tokasm → Strasm.

Examples

• A traditional lexer does Str→ Tok→ TTk in a single integrated step.
• Classic compiler textbook parsing is TTk → Cst [1]; though the resulting

tree is often implicit (e.g., syntax-directed compilation).
• Layout-sensitive parsing is Tok→ Ptr [37].
• Scannerless parsing is, in effect, parsing with Tok = Str or TTk = Str [38].
• The crucial steps of the PGF code formatting framework [9] are Ptr →

Tok →∗ Tok → Str, with tokens being annotated with extra information,
and additional information from the parse tree appearing as control tokens.
• Code refactoring is, for instance, Ptr→ Ptr [19], lowered to Str→ Str.
• A structural editor does user-directed Ast → Ast transformation internally,

while maintaining a Str representation for the user’s benefit [39]. An IDE
editor does user-directed Str → Str transformation, while maintaining an
internal Ast representation.

9



• Wadler’s prettier printer [5] does Cst→ Ptr→ Tok in single integrated step.

4.3 Discussion
Source-to-Source Transformations and Lowering. From the user’s per-
spective, a transformation such as reindentation is an operation indentStr : Str→
Str on text, rather than on tokens. It has the property:

∀x ∈ Str, tokenise(indentStr(x))
.
= indentTok(tokenise(x)) (20)

An implementation of indentStr may be obtained by applying concat to both sides
and reducing:

concat(tokenise(indentStr(x)))
.
= concat(indentTok(tokenise(x))) ⇐⇒

indentStr(x)
.
= concat(indentTok(tokenise(x))) by Eq. 12

This is called the lowering (to an operation on more concrete representations) of
indent. A transformation lowered to Str→ Str is usually called a source-to-source
transformation. Given the operations in § 4.1 we may lower any transformation,
as we please.

Transformation tools often allow the use of concrete syntax when specifying
transformations – in effect, specifying transformation rules at the Str or Pic
level. The rules are then lifted to the representation where the transformation
actually takes place. For example; Stratego/XT [35] allows concrete syntax in
transformation rules. Such rules are then parsed, disambiguated, stripped and
imploded (and optionally desugared) into transformations on Ast.

In general, given a series of converting transformations from artifact A to B
and back, we may implement any transformation on A by a transformation on
B. Further explorations are needed to determine the required properties of such
conversions.

Model-to-Model Transformation. There are models that have an advanced
metamodel and many relations like “inherits from” or “conforms to” (i.e., Dia),
which are apparently distinct from a simple view on the same models (i.e., Gra).
Such a simplified view, a “concrete visual syntax” so to speak, can concern itself
with the fact that we have nodes of various kinds (boxes, tables, pictures) which
are connected by edges (lines, arrows, colours), all of them possibly labelled. If
such distinction was to be made, we could see the difference between model-to-
model transformations that refine and evolve the baseline model, and model-to-
model transformations that “downgrade” it to one of the possible forms suitable
for rendering. Then, Gra → Dia is a model-to-model transformation that can
also be seen as “parsing” of the visual lexems to a model in a chosen language
(a diagram).

Ast → Dia mappings are often viewed as visualisations and Dia → Ast ones
as serialisations, even though in general they are glorified tree-to-graph transfor-
mations and graph-to-tree ones. So far we could not spot any research attempts
to investigate mappings between lower levels of the central and the right column
of Figure 1, except for idiosyncratic throwaway visualisations that are not meant
to be edited and not meant to be transformed.

10



Layout Preservation. Layout preservation is an important requirement in
certain grammarware applications, such as for instance automated refactoring.
A layout-preserving transformation is one where all layout is intact, except for
layouts in the parts that have been changed by the transformation. In essence,
a transformation on an abstract representation is reflected in the concrete rep-
resentation.

A layout-preserving transformation on a Cst is a transformation t : Cst→ Cst,
lowered to u : Ptr→ Ptr, using a Foster BX with ↗= strip:

u(x) =↘ (t(↗ (x)), x), x ∈ Ptr (21)

Lowering all the way to Str is simple, and gives us r : Str→ Str:

r(x) = concat(unparse(u(parse(tokenise(x))))), x ∈ Str (22)

Incrementality. Suppose that we have a concrete and an abstract representa-
tion (e.g., a Str and a Cst), and a change in the concrete one should be reflected
in the abstract one (this could be seen as the dual of layout preservation).

Again, we can use Foster BX. For example, for incremental parsing, we de-
fine editing editPtr of parse trees as follows, where editStr is the user’s editing
transformation:

editPtr(x) = parseinc(editTok(unparse(x)), x) (23)
editTok(y) = tokeniseinc(editStr(concat(y)), y) (24)

The unparse and concat operation corresponds to the ↗ of Foster BX, while
parseinc : Tok × Ptr → Ptr and tokeniseinc : Str × Tok → Tok corresponds to ↘.
While the former two operations are trivial (defined in § 4.1), the latter two
would be somewhat more challenging to implement.

We consider incremental parsing as a function taking the changed source and
the original parse tree as input. In practice incremental parsing could hardly be
constructed in this way as we still need to at least scan the source, which takes
O(n) time. It is more often that the incremental transformation takes the change
directly as input [40], which is better formalised as delta lenses [41,42] or edit
lenses [43].

Multiple Equitable Views. Foster BX inherently prefers one view over the
other(s), which is acceptable for any framework with a clear baseline artefact
and ones derived from it. However, there are cases when we want to continuously
maintain relations among several views of the same “importance”, and that is
where we switch to Meertens BX. Imagine an IDE-enabled textual DSL with a
built-in pretty-printing functionality. In that case, we have Str which is being
edited by the user, whose typing actions can be mapped to incremental transfor-
mations on Ptr, since the grammar is known to the tool. However, an automated
pretty-printing feature is a mapping from Cst to Ptr. In both cases we would like
to retain the information present the the “pre-transformation” state of both Cst

11



and Ptr entities, for the sake of optimisation (incremental parsing makes IDE
much more responsive) and usability (a user should be able to pretty-print a
fragment of code without destroying the rest of the program).

Correcting Updates. By using Final BX, we can perform correcting updates,
where a change in one of the views can trigger a negotiation sequence ultimately
resulting in multiple updates possibly at all other views, including the initially
changed one. For example, a parse error (e.g., “’;’ expected”) during incremental
parsing may result in a corrective measure being taken (e.g., “insert ’;’”) in order
for the parsing to continue [44]. Final BX pushes this change back to the input,
so that the error can be corrected at the source, most likely by some kind of user
interaction, such as Eclipse’s Quick Fix feature.

5 Case study

In order to demonstrate the main ideas of this paper, we have prepared an open
source prototype available at http://github.com/grammarware/bx-parsing.
This section will introduce it briefly, all interested readers are invited to investi-
gate the code, illustrations and documentation at the repository. The language
for the implementation is Rascal [24], which is a one-stop-shop language work-
bench suitable for rapid prototyping of grammarware, defining data types, spec-
ifying program analyses and visualising results. Most figures on pages of this
paper were automatically generated by it. All type definitions include a valida-
tion and a visualisation function. All types and mappings contain test cases.

The following twelve algebraic data types are defined in our prototype:

• Str — a string;
• Tok — a list of strings;
• TTk — a list of strings non-empty modulo whitespace stripping;
• Lex — a lexical model: left hand side tokens, right hand side tokens; tokens

are typed (alphabetic, numeric, special);
• For — a parse forest defined by an ambiguous grammar;
• Ptr — a parse tree with explicit layout;
• Cst — a parse tree with layout discarded;
• Ast — an abstract data type;
• Pic — a multiline string representing a textual drawing;
• Dra — a list of visual elements such as symbols and labels, with coordinates;
• Gra — a hierarchical structure of prefix/infix/confix operators with implicit

positioning;
• Dia — an abstract graphical model.

The mappings within the left (“textual”) column of Figure 1 are mostly string
manipulations on regular language level: since Rascal’s default parsing algorithm
is GLL, we implemented an explicit DFA tokeniser for Str→ Tok; a library func-
tion trim() is used for Tok → TTk; pattern matching with regular expression-
based for TTk → Lex. Going down on the diagram is even easier: Lex → TTk

12

http://github.com/grammarware/bx-parsing


does not rely on the structure of Lex, it just grabs all the tokens from it sequen-
tially; TTk→ Tok intercalates tokens with one space between any adjacent ones;
Tok→ Str uses a standard concatenation function.

In the default setup of Rascal, For → Ptr is called disambiguation and/or
filtering [36], and Ptr 
 Cst is provided automatically. In order to separate
bijective mapping between instances of one equivalent type to another, from the
actual adjustments, we defined For, Ptr and Cst with three different grammars.
Traditional concrete syntax matching does not work on ambiguous grammars
(since the query of the match is also ambiguous), so For→ Ptr is the longest and
the ugliest of the mappings since it relies on low level constructions. Ptr → Cst
is a top-down traversal that matches all layout and reconstructs a tree without
it. Cst→ Ast is very similar, it traverses a tree and constructs an ADT instance.

In general, Pic → Dra involves some kind of image recognition, and in our
prototype indeed we scan the lines of the textual picture to identify elements,
and convert them to Dra elements with appropriate coordinates. (Avoiding true
image recognition algorithms outweighing illustrative code was one of the rea-
sons we opted for drawing with text instead of pixels). In Dra → Gra we make
some assumptions about the structure of the drawing: for example, we expect
parenthesis to match.(Parentheses in our textual picture correspond to box con-
tainers in pixel visualisations, and the parenthesis matching thus corresponds
to checking whether other elements fit inside the box or are placed outside it).
Gra 
 Dia are m2m transformations between domains of graph models (boxes
and arrows) and of function definitions (arguments and expressions).

Horizontal mappings are easier, since one of the main design concerns behind
Rascal is EASY [24] parsing and fact extraction. We provide both Ast/Dia bridges
(which are not uncommon in modern practice) and Lex/Ast (which are non-
existent) bridges. There are several bonus mappings illustrating technological
shortcuts, which we will not describe here due to space constraints. For example,
there is a Gra → Pic mapping using Rascal string comprehensions to avoid low
level coordinates arithmetic.

Now let us consider Ptr
 Dra: a bidirectional mapping between a parse tree
and a vector drawing. As we know, a parse tree contains structured information
about the instance, including textual indentation; a drawing is similar to that,
but contains information about graphical elements comprising the picture. We
have prepared several implementations of Ptr
 Dra:

• Reversible.rsc (Def. 1):
−→
f is ptr2dra,

←−
f is dra2ptr, and a problem with

obtaining a valid final or intermediate instance is modelled by throwing an
exception. From the tests we can see that

←−
f ◦
−→
f is not always an identity

function, which breaks Eq. 3 — hence, this mapping is reversible, but not
bijective.

• Foster.rsc (Def. 2): ↗ is still ptr2dra, but ↘ is a superposition of dra2ptr
on an updated Dra instance and a balancing function that traverses two
Ptr instances (the old one and the updated one) and in its result saves all
the element information from the new instance with as much as possible
from the indentation of the old one. This ensures the GetPut law (Eq. 5).

13

https://github.com/grammarware/bx-parsing/blob/master/src/bridges/ptrdra/Reversible.rsc
https://github.com/grammarware/bx-parsing/blob/master/src/bridges/ptrdra/Foster.rsc


However, this mapping disregards repositioning of graphical elements, which
breaks the PutGet law (Eq. 6). Hence, the well-behavedness of the mapping
is only preserved if the elements of the vector drawing do not move frome
their default locations.

• Meertens.rsc (Def. 3): both B and C implemented in the same way ↘ was
explained above — B traverses two Dra instances and C traverses two Ptr
instances. There are two lessons to learn here: first, since we have achieved
correctness and hippocraticness in all desired scenarios, this is probably the
BX that we want to have for Ptr
 Dra; second, both Dra and Ptr traversals
needed to be programmed separately, which leads to duplicated effort and
error-proneness.

• Final.rsc (Def. 4):I andJ behave similarly toB andC resp., with two major
differences: they fix some mistakes in Ptr (referencing undeclared variables)
and in Dra (unbalanced brackets). This error recovery is motivated by the
fact that the main purpose of bidirectional model transformation is consis-
tency restoration [12]. However, Final BX can also be used to detect certain
properties of instances and consistently enforce them at all ends.

The entire prototype is around 3000 lines, well tested and documented.

6 Related Work

Danvy [45] was the first one to propose a type-safe approach to unparsing by us-
ing embedded function composition and continuations. More recent research re-
sulted in both embedding of this approach, referred to as string comprehensions,
in modern metaprogramming languages [24] and development of the counterpart
solution for pattern-driven selective parsing, referred to as “un-unparsing” [46].

Matsuda and Wang [11] propose a way to derive a (simplified) grammar from
an unparser specification, which allowed them to focus on unparsing and infer a
parser automatically.

Rendel and Ostermann [18] and Duregård and Jansson [16] independently de-
fine collections of Haskell ADTs to represent invertible syntax definitions, which
can be used together with compatible combinator libraries to infer both parser
(with Alex and Happy) and unparsers.

Brabrand et al [15] propose XSugar language that is used to provide a read-
able non-XML syntactic alternative to XML documents while retaining editabil-
ity of both instances and preserving schema- conformance on the XML side.

For quasi-oblivious lenses [13], where the put function ignores differences
between equivalent concrete arguments, we can say that ∀x ∈ L,∀y ∈ R, 〈x, y〉 ∈
Ψ ⇒ x J y = 〈x′, y〉,where x ∼ x′, 〈x′, y〉 ∈ Ψ . In general, the vision expressed
in this paper, can be conceptually viewed as establishing several equivalence
relations specific for the domain of parsing/unparsing. Moreover, our research is
not limited to dictionary lenses of Bohannon et al [13], since it concerns Final
BX (Def. 4) and allows to continue expanding the bidirectional view on semi-
parsing methods [47], especially Lex 
 Ast mappings that are entirely avoided
in the current state of the art.

14

https://github.com/grammarware/bx-parsing/blob/master/src/bridges/ptrdra/Meertens.rsc
https://github.com/grammarware/bx-parsing/blob/master/src/bridges/ptrdra/Final.rsc


The distinction we draw between textual, structured and graphical repre-
sentations on Figure 1 and Figures 2–4, relates to the concept of a technical
space [48]. We admit not having enough knowledge to add another column re-
lated to ontologies [49] and perhaps other spaces.

Obviously, the landscape of bidirectional model transformation [12] is much
broader than just introducing or losing structure. The topics our work is the
most close to, are model driven reverse engineering [50,51,52] for the parsing
part and an even bigger one of model driven generation for the unparsing part.

7 Concluding Remarks

In this paper, we have considered parsing, unparsing, formatting, pretty-printing,
tokenising, syntactic and lexical analyses and other techniques related to map-
ping between textual, structured data and visual models, from the bidirectional
transformation perspective. We have proposed a uniform megamodel (Figure 1)
for twelve classes of software artefacts (Figures 2–4) involved in these mappings,
and given a number of examples from existing software language processing liter-
ature. We were able to find a place for all the mappings that we have considered,
even though some explicitly or implicitly “skip” a step. The framework that was
introduced, can be used to study such mappings in detail and assess actual con-
tributions, weaknesses and compatibility. For example, with such an approach,
we can take a seemingly monolithic Ast
 Str mapping of Ensō [32] and decom-
pose it in easily comprehensible stages of Str
 Tok which is bijective because of
fixed lexical syntax; Tok
 Ptr
 Cst which relies on the Wadler algorithm [5];
and Cst
 Ast inferred by the authors’ own interpreter relying on annotations in
Ast specifications (“schemas”). Another example is clear positioning of techniques
such as rewriting with layout [34] which provide data structures that work like
Cst in some cases and like Ptr in others.

Detailed investigation of lowering/lifting operations deserves much more at-
tention than we could spare within this paper, because these concepts can help
us seek, understand and address cases of lost information due to its propagation
through the artefacts of Figure 1. We have also not touched upon the very re-
lated topic of model synchronisation [53] as a scenario when both bidirectionally
linked artefacts change simultaneously, and the system needs to evolve by incor-
porating both changes on both sides — it would be very interesting to see how
the existing methods work on Final BX, especially on their compositionality,
which requires termination proofs.

After introducing a megamodel for (un)parsing mappings in § 4, we have
explained the difference between general mappings (the ones defined universally,
like concatenation) and language-parametric (roughly speaking, the ones requir-
ing a grammar), and presented a case study in § 5. This work will serve as a
foundation for us to answer research questions not only like “how to map X to
Y, given specifications for all involved syntaxes?”, but also like “how to map X
to some Y?” and “how to find the best Y to map from X?”.

15



References

1. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques and Tools.
Addison-Wesley (1985)

2. Hughes, J.: The Design of a Pretty-printing Library. In: AFP. (1995) 53–96
3. van den Brand, M.G.J., Visser, E.: Generation of Formatters for Context-Free

Languages. ACM TOSEM 5(1) (1996) 1–41
4. Ruckert, M.: Conservative Pretty-Printing. SIGPLAN Notices 23(2) (1996) 39–44
5. Wadler, P.: A Prettier Printer (1997) http://homepages.inf.ed.ac.uk/wadler/

papers/prettier/prettier.pdf.
6. de Jonge, M.: Pretty-Printing for Software Reengineering. In: ICSM, IEEE (2002)
7. van den Brand, M.G.J., Kooiker, A.T., Veerman, N.P., Vinju, J.J.: An Architecture

for Context-sensitive Formatting. In: ICSM’05. (2005)
8. Arnoldus, B., van den Brand, M., Serebrenik, A.: Less is More: Unparser-Comple-

teness of Metalanguages for Template Engines. In: GPCE. (2011) 137–146
9. Bagge, A.H., Hasu, T.: A Pretty Good Formatting Pipeline. In: SLE’11, LNCS

8225. (2013) 177–196
10. Danielsson, N.A.: Correct-by-construction Pretty-printing. In: DTP, ACM (2013)
11. Matsuda, K., Wang, M.: FliPpr: A Prettier Invertible Printing System. In:

ESOP’13, Springer (2013) 101–120
12. Stevens, P.: A Landscape of Bidirectional Model Transformations. In: GTTSE’07,

LNCS 5235, Springer (2008) 408–424
13. Bohannon, A., Foster, J.N., Pierce, B.C., Pilkiewicz, A., Schmitt, A.: Boomerang:

Resourceful Lenses for String Data. In: POPL’08, ACM (2008) 407–419
14. Zaytsev, V.: The Grammar Hammer of 2012. ACM CoRR 1212.4446 (2012) 1–32
15. Brabrand, C., Møller, A., Schwartzbach, M.I.: Dual Syntax for XML Languages.

In: Database Programming Languages, LNCS 3774. Springer (2005) 27–41
16. Duregård, J., Jansson, P.: Embedded Parser Generators. In: Haskell, ACM (2011)
17. Boulton, R.: Syn: A Single Language for Specifying Abstract Syntax Trees, Lexical

Analysis, Parsing and Pretty-printing. University of Cambridge (1996)
18. Rendel, T., Ostermann, K.: Invertible Syntax Descriptions: Unifying Parsing and

Pretty Printing. In: Haskell’10, ACM (2010) 1–12
19. de Jonge, M., Visser, E.: An Algorithm for Layout Preservation in Refactoring

Transformations. In: SLE’11, LNCS 6940, Springer (2012) 40–59
20. Zaytsev, V.: Case Studies in Bidirectionalisation. In: TFP 2014. (2014) 51–58
21. Bagge, A.H., Zaytsev, V.: Workshop on Open and Original Problems in Software

Language Engineering. In: WCRE’13, IEEE (2013) 493–494
22. Foster, J.N., Greenwald, M.B., Moore, J.T., Pierce, B.C., Schmitt, A.: Combinators

for Bidirectional Tree Transformations: A Linguistic Approach to the View-Update
Problem. ACM TOPLAS 29 (May 2007)

23. Czarnecki, K., Foster, J., Hu, Z., Lämmel, R., Schürr, A., Terwilliger, J.: Bidirec-
tional Transformations: A Cross-Discipline Perspective. In: Theory and Practice
of Model Transformations. Springer (2009) 260–283

24. Klint, P., van der Storm, T., Vinju, J.: EASY Meta-programming with Rascal. In:
GTTSE’09, LNCS 6491, Springer (January 2011) 222–289

25. McCarthy, J.: The Inversion of Functions Defined by Turing Machines. In: Au-
tomata Studies. (1956) 177–181

26. Meertens, L.: Designing Constraint Maintainers for User Interaction. (June 1998)
27. Richter, H.: Noncorrecting Syntax Error Recovery. ACM TOPLAS 7(3) (July

1985) 478–489

16

http://homepages.inf.ed.ac.uk/wadler/papers/prettier/prettier.pdf
http://homepages.inf.ed.ac.uk/wadler/papers/prettier/prettier.pdf


28. Cox, A., Clarke, C.: Syntactic Approximation Using Iterative Lexical Analysis. In:
IWPC’03. (2003) 154–163

29. Murphy, G.C., Notkin, D.: Lightweight Lexical Source Model Extraction. ACM
TOSEM 5(3) (July 1996) 262–292

30. Zarwin, Z., Sottet, J.S., Favre, J.M.: Natural Modeling: Retrospective and Per-
spectives an Anthropological Point of View. In: XM’12, ACM (2012) 3–8

31. Johnson, S.C.: YACC—Yet Another Compiler Compiler. Computer Science Tech-
nical Report 32, AT&T Bell Laboratories (1975)

32. van der Storm, T., Cook, W.R., Loh, A.: The Design and Implementation of Object
Grammars. SCP (2014)

33. Wile, D.S.: Abstract Syntax from Concrete Syntax. In: ICSE, ACM (1997)
34. van den Brand, M.G.J., Vinju, J.J.: Rewriting with Layout. In: RULE. (2000)
35. Bravenboer, M., Kalleberg, K.T., Vermaas, R., Visser, E.: Stratego/XT 0.17. A

Language and Toolset for Program Transformation. SCP 72(1-2) (2008) 52–70
36. Basten, H.J.S., Vinju, J.J.: Faster Ambiguity Detection by Grammar Filtering. In:

LDTA. (2010)
37. Erdweg, S., Rendel, T., Kästner, C., Ostermann, K.: Layout-Sensitive Generalized

Parsing. In: SLE’12, LNCS 7745, Springer (2013) 244–263
38. Salomon, D.J., Cormack, G.V.: Scannerless NSLR(1) Parsing of Programming

Languages. In: PLDI’89, ACM (1989) 170–178
39. Völter, M., Benz, S., Dietrich, C., Engelmann, B., Helander, M., Kats, L.C.L.,

Visser, E., Wachsmuth, G.: DSL Engineering. dslbook.org (2013)
40. Wang, M., Gibbons, J., Wu, N.: Incremental Updates for Efficient Bidirectional

Transformations. In: ICFP’11, ACM (2011) 392–403
41. Diskin, Z., Xiong, Y., Czarnecki, K.: From State- to Delta-Based Bidirectional

Model Transformations: the Asymmetric Case. JOT 10 (2011) 1–25
42. Diskin, Z., Xiong, Y., Czarnecki, K., Ehrig, H., Hermann, F., Orejas, F.: From

State- to Delta-Based Bidirectional Model Transformations: The Symmetric Case.
In: MoDELS, LNCS 6981, Springer (2011) 304–318

43. Hofmann, M., Pierce, B., Wagner, D.: Edit Lenses. In: POPL, ACM (2012)
44. de Jonge, M., Kats, L.C.L., Visser, E., Söderberg, E.: Natural and Flexible Error

Recovery for Generated Modular Language Environments. ACM TOPLAS 34(4)
(December 2012) 15:1–15:50

45. Danvy, O.: Functional unparsing. JFP 8(6) (1998) 621–625
46. Asai, K., Kiselyov, O., Shan, C.c.: Functional un|unparsing. Higher-Order and

Symbolic Computation 24(4) (2011) 311–340
47. Zaytsev, V.: Formal Foundations for Semi-parsing. In: CSMR-WCRE. (2014)
48. Bézivin, J., Kurtev, I.: Model-based Technology Integration with the Technical

Space Concept. In: MIS, Springer (2005)
49. Parreiras, F.S., Staab, S., Winter, A.: On Marrying Ontological and Metamodeling

Technical Spaces. In: ESEC-FSE, ACM (2007) 439–448
50. Bruneliére, H., Cabot, J., Jouault, F., Madiot, F.: MoDisco: a Generic and Exten-

sible Framework for Model Driven Reverse Engineering. In: ASE. (2010)
51. Ramón, Ó.S., Cuadrado, J.S., Molina, J.G.: Model-driven Reverse Engineering of

Legacy Graphical User Interfaces. In: ASE, ACM (2010) 147–150
52. Rugaber, S., Stirewalt, K.: Model-Driven Reverse Engineering. IEEE Software

21(4) (2004) 45–53
53. Diskin, Z.: Algebraic Models for Bidirectional Model Synchronization. In: MoD-

ELS, LNCS 5301, Springer (2008) 21–36

17


