
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

Knowledge-based Recommender System for Students
of an Introductory Programming Course∗

Extended Abstract

Oda Inanna Klemetsdal
Stene

University of Bergen
Bergen, Norway

Ingrid Næss Johansen
University of Bergen
Bergen, Norway

Colin Nordgård
University of Bergen
Bergen, Norway

ABSTRACT
In this extended abstract we describe the development of
a knowledge-based, personalized, recommender system for
programming exercises in an introductory programming
course using Python.

CCS CONCEPTS
• Information systems→Recommender systems; • So-
cial and professional topics → CS1;

KEYWORDS
recommender system, knowledge-based recommender sys-
tem, constraint-based recommender system, concept-based
recommender system
ACM Reference Format:
Oda Inanna Klemetsdal Stene, Ingrid Næss Johansen, and Colin
Nordgård. 2018. Knowledge-based Recommender System for Stu-
dents of an Introductory Programming Course: Extended Abstract.
In Proceedings of SPLASH 2018 Student Research Competition (SPLASH
SRC’18). ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/
nnnnnnn.nnnnnnn

1 PROBLEM AND MOTIVATION
Computer science education can be viewed as a constructive
process, where some concepts depend on others [1]. These
relationships between concepts, and the fact that there are
many ways to select and sequence them in any given lan-
guage explain why it can be difficult for students to find
programming exercises that depend exclusively on concepts
they have encountered so far. A knowledge-based recom-
mender system that knows which concepts a student has
used in previous work andwhich concepts have been covered
in lectures should be able to recommend relevant exercises to
individual students based on their programming experience.

∗Undergraduate entry

SPLASH SRC’18, 2018, Boston, MA
2018. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

This would enable students to find relevant programming
exercises more effectively.

2 BACKGROUND AND RELATEDWORK
Recommender systems help users make better decisions in
the face of information overload by recommending relevant
items to users [5]. Knowledge-based recommender systems
rely on domain knowledge to make recommendations [6].
Constraint-based recommendation is a subtype of knowledge-
based recommendation focused on the satisfaction of con-
straints [2]. An example of a constraint would be recom-
mending programming exercises that depend exclusively on
concepts that are also present in mandatory assignments.

Course, user and itemmodels can be fine-grained or coarse-
grained, with more fine-grained models enabling more spe-
cific recommendations. For example, a user model that con-
tains information about use of the modulo operator will be
able to make more specific recommendations than a model
that groups together all binary operators. According to Hos-
seini and Brusilovsky, fine-grained indexing is critical to
finding and filling gaps in student knowledge [4].

3 APPROACH AND UNIQUENESS
3.1 Context
Our recommender system is an integrated part of a larger
system that will be used to deliver and grade programming
assignments in an introductory course in Python program-
ming at the University of Bergen in the fall of 2018. The
system will give students access to a set of programming
exercises in the form of Jupyter notebooks2 in an online
portal. Notebooks are created using the nbgrader3 extension
of Jupyter, which supports delivery and grading of student
code based on unit tests. All notebooks will be automatically
tested, and mandatory assignments will be manually graded
as well.

2Jupyter is an open-source editor solution that allows for combining text
and live code. See jupyter.org for more information.
3github.com/jupyter/nbgrader

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159

SPLASH SRC’18, 2018, Boston, MA Stene, Johansen and Nordgård

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

3.2 Ontology and parser
We created an ad hoc ontology for the course by looking at
the course plan and assigned reading material [3]. We then
built a concept-parser that extracts concepts from a code
sample by traversing the abstract syntax tree. The parser
is fine-grained enough to extract the names of method and
function calls as well as mathematical operations and re-
served keywords in Python like if and try.

3.3 Modelling the course, users and items
The course, users and items are represented by a course model,
user models and item models. The core of each model is a
table of concepts and the number of times they have been
used. The main table in the course model comes from pars-
ing code from lectures and mandatory assignments while
the main table in item models come from parsing the solu-
tions to programming exercises. In a user model, the main
table comes from parsing an individual student’s solutions
to programming exercises.

3.4 The Recommender System
The course, item and user models can be used to hide items
that are either completed or contain concepts that are unused
or unseen by a student.

User settings for the recommender system:
(1) Show or hide exercises that contain unseen concepts.

Reasoning: practice all the concepts covered in the course
so far.

(2) Show or hide exercises that contain unused concepts.
Reasoning: practice concepts the student has used. Useful
if the student is ahead or behind.

(3) Only show exercises than contain a certain concept.

4 RESULTS AND CONTRIBUTIONS
The students will start using the recommender system this
August. We will collect student logs of interactions with
the recommender system, as well as attempted and com-
pleted programming exercises and whether these were rec-
ommended or not. When the course has begun and the data-
base has collected enough user data, the recommender sys-
tem could be extended with recommendation techniques
like content-based or collaborative filtering. We predict that
the recommender system will help students navigate the
programming exercises more effectively, spending less time
searching for relevant exercises and more time doing them.

REFERENCES
[1] Mordechai Ben-Ari. 2001. Constructivism in Computer Science Educa-

tion. Journal of Computers in Mathematics and Science Teaching 20, 1
(2001), 45–73.

[2] A. Felfernig and R. Burke. 2008. Constraint-based Recommender Sys-
tems: Technologies and Research Issues. In Proceedings of the 10th Inter-
national Conference on Electronic Commerce (ICEC ’08). ACM, New York,
NY, USA, Article 3, 10 pages. https://doi.org/10.1145/1409540.1409544

[3] Paul Gries, Jennifer Campbell, and Jason Montojo. 2017. Practical Pro-
gramming: An Introduction to Computer Science Using Python 3.6 (3rd
ed.). Pragmatic Bookshelf.

[4] Roya Hosseini and Peter Brusilovsky. 2013. JavaParser: A fine-grain
concept indexing tool for Java problems. In CEURWorkshop Proceedings,
Vol. 1009. University of Pittsburgh, 60–63.

[5] Francesco Ricci, Lior Rokach, and Bracha Shapira. 2015. Recommender
systems: introduction and challenges. In Recommender systems hand-
book. Springer, 1–34.

[6] John K Tarus, Zhendong Niu, and Ghulam Mustafa. 2018. Knowledge-
based recommendation: a review of ontology-based recommender sys-
tems for e-learning. Artificial Intelligence Review 50, 1 (2018), 21–48.

2

https://doi.org/10.1145/1409540.1409544

	Abstract
	1 Problem and motivation
	2 Background and related work
	3 Approach and uniqueness
	3.1 Context
	3.2 Ontology and parser
	3.3 Modelling the course, users and items
	3.4 The Recommender System

	4 Results and contributions
	References

