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ABSTRACT
In this extended abstract we describe the development of
a knowledge-based, personalized, recommender system for
programming exercises in an introductory programming
course using Python.
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1 PROBLEM AND MOTIVATION
Computer science education can be viewed as a constructive
process, where some concepts depend on others [1]. These
relationships between concepts, and the fact that there are
many ways to select and sequence them in any given lan-
guage explain why it can be difficult for students to find
programming exercises that depend exclusively on concepts
they have encountered so far. A knowledge-based recom-
mender system that knows which concepts a student has
used in previous work andwhich concepts have been covered
in lectures should be able to recommend relevant exercises to
individual students based on their programming experience.
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This would enable students to find relevant programming
exercises more effectively.

2 BACKGROUND AND RELATEDWORK
Recommender systems help users make better decisions in
the face of information overload by recommending relevant
items to users [5]. Knowledge-based recommender systems
rely on domain knowledge to make recommendations [6].
Constraint-based recommendation is a subtype of knowledge-
based recommendation focused on the satisfaction of con-
straints [2]. An example of a constraint would be recom-
mending programming exercises that depend exclusively on
concepts that are also present in mandatory assignments.

Course, user and itemmodels can be fine-grained or coarse-
grained, with more fine-grained models enabling more spe-
cific recommendations. For example, a user model that con-
tains information about use of the modulo operator will be
able to make more specific recommendations than a model
that groups together all binary operators. According to Hos-
seini and Brusilovsky, fine-grained indexing is critical to
finding and filling gaps in student knowledge [4].

3 APPROACH AND UNIQUENESS
3.1 Context
Our recommender system is an integrated part of a larger
system that will be used to deliver and grade programming
assignments in an introductory course in Python program-
ming at the University of Bergen in the fall of 2018. The
system will give students access to a set of programming
exercises in the form of Jupyter notebooks2 in an online
portal. Notebooks are created using the nbgrader3 extension
of Jupyter, which supports delivery and grading of student
code based on unit tests. All notebooks will be automatically
tested, and mandatory assignments will be manually graded
as well.

2Jupyter is an open-source editor solution that allows for combining text
and live code. See jupyter.org for more information.
3github.com/jupyter/nbgrader

1
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3.2 Ontology and parser
We created an ad hoc ontology for the course by looking at
the course plan and assigned reading material [3]. We then
built a concept-parser that extracts concepts from a code
sample by traversing the abstract syntax tree. The parser
is fine-grained enough to extract the names of method and
function calls as well as mathematical operations and re-
served keywords in Python like if and try.

3.3 Modelling the course, users and items
The course, users and items are represented by a course model,
user models and item models. The core of each model is a
table of concepts and the number of times they have been
used. The main table in the course model comes from pars-
ing code from lectures and mandatory assignments while
the main table in item models come from parsing the solu-
tions to programming exercises. In a user model, the main
table comes from parsing an individual student’s solutions
to programming exercises.

3.4 The Recommender System
The course, item and user models can be used to hide items
that are either completed or contain concepts that are unused
or unseen by a student.

User settings for the recommender system:
(1) Show or hide exercises that contain unseen concepts.

Reasoning: practice all the concepts covered in the course
so far.

(2) Show or hide exercises that contain unused concepts.
Reasoning: practice concepts the student has used. Useful
if the student is ahead or behind.

(3) Only show exercises than contain a certain concept.

4 RESULTS AND CONTRIBUTIONS
The students will start using the recommender system this
August. We will collect student logs of interactions with
the recommender system, as well as attempted and com-
pleted programming exercises and whether these were rec-
ommended or not. When the course has begun and the data-
base has collected enough user data, the recommender sys-
tem could be extended with recommendation techniques
like content-based or collaborative filtering. We predict that
the recommender system will help students navigate the
programming exercises more effectively, spending less time
searching for relevant exercises and more time doing them.
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