
Exploring API / Client Co-Evolution
Anna Maria Eilertsen
Department of Informatics

University of Bergen
Norway

anna.eilertsen@uib.no

Anya Helene Bagge
Department of Informatics

University of Bergen
Norway

anya@ii.uib.no

ABSTRACT
Software libraries evolve over time, as do their APIs and the clients
that use them. Studying this co-evolution of APIs and API clients
can give useful insights into both how to manage the co-evolution,
and how to design software so that it is more resilient against API
changes.

In this paper, we discuss problems and challenges of API and
client code co-evolution, and the tools and methods we will need
to resolve them.

CCS CONCEPTS
• Software and its engineering→ Software libraries and repos-
itories; Software configuration management and version control sys-
tems; Software maintenance tools;

KEYWORDS
API evolution, co-evolution, repository mining, software evolution,
bytecode analysis
ACM Reference Format:
Anna Maria Eilertsen and Anya Helene Bagge. 2018. Exploring API / Client
Co-Evolution. InWAPI’18: WAPI’18: IEEE/ACM 2nd International Workshop
on API Usage and Evolution , June 2–4, 2018, Gothenburg, Sweden. ACM, New
York, NY, USA, 4 pages. https://doi.org/10.1145/3194793.3194799

1 INTRODUCTION
Increasing complexity and expectations of software motivates reuse
of external software components when possible. An Application
Programming Interface (API) defines how one such component offer
functionality to clients [2]. APIs are found in the interface of web
services, language workbenches, SDKs and bundles as well as both
industrial level and homegrown libraries. APIs can also be internal,
and serve as a less penetrable layer between local software modules.
APIs abstracts, encapsulates and, ideally, defines an ergonomic way
to interact with a module, independent of its internal workings [5].

Good API design is hard [2]. APIs change, and their usage pat-
terns change as well [9]. For clients, updating to a new API version
can be costly and off-putting; for API developers it is hard to be
certain that you evolve the API in a good way, so that it fits ex-
isting or future usage patterns, while causing as little damage to
client code as possible. Research and tools on API and client code

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of a national govern-
ment. As such, the Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government purposes only.
WAPI’18, June 2–4, 2018, Gothenburg, Sweden
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-5754-8/18/06. . . $15.00
https://doi.org/10.1145/3194793.3194799

co-evolution has the potential to save significant development time,
prevent bugs, increase overall software quality and decrease the
development cost.

One research approach to the co-evolution problem is to empiri-
cally analyse API usage data. By building a knowledge base of how
APIs are used, and how clients respond to changes, researchers
makes it easier to develop tools and methodologies that have real-
world impact.

In this paper we give a short overview of background and termi-
nology, and describe and discuss research questions that can aid
API and client co-evolution. We lay out our experimental setup and
tooling, based on analysing bytecode from public repositories, and
discuss how it relates and improves on previous research.

Althoughwe discuss APIs in the scope of external software library
interface in an object-oriented language, like Java, we hope that
this effort may aid not just API/client co-evolution, but also be
generalised to aid evolution and migration of other kinds of APIs,
like the “APIs” of software languages.

2 APIS & API (CO-)EVOLUTION
Research on API evolution and co-evolution is a fairly new field.
It is closely related to software evolution research, and techniques
related to software repository mining in the context of software
evolution is also quite applicable here. However, in an API context
we are looking at software components with independent release
cycles [4], i.e. “co-evolving”1. We also look at a different “change
granularity” than in the context of software evolution. Both will be
explained in the following text.

2.1 Basic Terminology
An API is the interface through which a software module’s func-
tionality is accessible. Client code is the external code that uses the
API. Client code can also be a library bundle, and can itself deliver
an API that other clients consume. Typically, the internal imple-
mentation of the functionality will be encapsulated and not part of
the API, so that it can be changed without affecting clients. In some
cases, though, implementation details may still be accessible by or
leak through to the client. Library functionality can be accessed by
client code in several ways. We use the term access point about the
exact code-expression of the client-API connection. Typical kinds of
API access points are invocations of API methods or instantiating
API classes (constructors can also be considered method calls); or
through code annotations [4]. Other access may be through fields or
constants. In other languages, data structure layouts and constant

1Though in some cases, such as the Eclipse eco-system we may have a “release train”,
with managed co-evolution and synchronised releases, rather than co-evolution “in
the wild”.

https://doi.org/10.1145/3194793.3194799
https://doi.org/10.1145/3194793.3194799

WAPI’18, June 2–4, 2018, Gothenburg, Sweden Anna Maria Eilertsen and Anya Helene Bagge

values may also be part of the API; e.g., structs and #defines
in C. Code annotations, by their nature, are commonly used by
logging frameworks, while method invocations can easier provide
functionality directly to the code. The further discussion will focus
on API use through method invocations and inheritance.

2.2 API/Client Co-Evolution
Software evolves, and APIs evolve. When client software must be
modified to keep up with API changes, we see co-evolution. We
may also co-evolve an API in response to changes in how it is used
by clients.

Researching software co-evolution in this context means that
we are looking at two separately changing artefacts, but we wish
to extract only, but exactly, the changes to each that are relevant to
the other. For the API that means looking at the publicly available
API (technically including documentation and licenses), but not
the internal changes to the code. For the client code that means
disregarding the regular software maintenance and development,
and only consider changes that are performed in response to an
API change.

API evolution events can be categorised into breaking changes
and non-breaking changes. Breaking changes includes changes to
the API such that client code may break (not build, run erroneously)
unless they rewrite their code correspondingly when updating. Non-
breaking changes do not require client-side rewriting, although we
may want to update the client to take advantage of new and better
adapted access points.

The way we specify and write software has a clear impact on
the deeper study of (both intended and actual) API use: “Surface”
information, such as method names and parameters (the syntax) are
directly coded in the programming language and easy to extract;
but relationships between methods and critical information like
required preconditions can often only be encoded in human read-
able documentation. Thus, deeper analysis of APIs and API use is
needed to answer interesting questions about semantics, like “how
will clients be impacted if I switch between returning null and
throwing an exception”; something that can have a profound effect
on clients, without necessarily being visible to a Java compiler. Thus,
we may further divide changes (breaking or non-breaking) accord-
ing to how they affect the client: metadata changes (e.g., renaming
a library), syntactic changes (e.g, changing a method signature), and
various degrees of semantic changes. Breaking semantic changes
may require significant effort to repair (or even uncover), while
simpler changes might be repaired mechanically.

As an example of API evolution, consider the popular unit testing
framework JUnit.2 Its API changed from version 4 to version 5,
though code using JUnit 4 can continue to do so. We can also link
against JUnit 5, and use its JUnit 4 compatibility layer (a simple
change to the build metadata, rather than to the source code). If we
upgrade to the new API, the changes we must make are mainly to
the metadata (just import a different Java package) or the syntax
(e.g., change @Before to @BeforeEach). However, if wewant to take
advantage of the new API, we might want to use the new support
for parameterised and repeated tests instead of implementing this
functionality ourselves; in this case JUnit has adapted its API to

2https://junit.org/junit5/

suit our testing style better, so that our client code becomes shorter
and simpler.

In general, when API developers release a new version of an
API that contains breaking changes, updating the client disrupts
the development cycle and impose a cost on the project. The client
developer may decide not to update (inducing lag time [8] which
may be correlated with security issues and bugs), or updating and
allocating development resources port the code accordingly.

3 EXPLORING APIS & CO-EVOLUTION
Research on API use is inherently empirical, focusing on mining
public code repositories like GitHub or SourceForge, and extracting
API usage information, potentially along an evolution axis [7, 9, 12–
14]. Some researchers publish data sets [7, 12, 13]; other use mining
to build tools that can aid in evolving client code [4, 9, 10]. It is
unclear to which extent these tools are adopted and how well they
work: several have limitations as pointed out by Nguyen et al.
[9] and Jezek and Dietrich [4]. Synthetic data sets are useful for
benchmarking tools [4], but do not help us in mapping out real API
use.

Source code analysis induce challenges, like the need to resolve
method bindings [13] against the API in question. Another alterna-
tive is analysing code after it has been built and names and method
bindings are resolved. For Java, the bytecode is a nearly direct
translation of the source code, with all names fully qualified, thus
avoiding the binding issues of source code analysis. However, as
source-control systems typically only deal with source code, one
would need to build each commit to obtain the bytecode, which
scales poorly [13] (unless one has access to the results of continuous
integration). Although research on already-built artefacts is less
common, tools like Clirr3 can be used to analyse breaking changes
in the API of Java libraries [11].

3.1 Working with Bytecode
We believe studying already-built artefacts rather than source code
may prove to be the more fruitful approach. In particular, we may
avoid issues with resolving bindings and extracting other semantic
information as long as this information is available in the built
code. In the case of Java, this is mostly true; though we may miss
some information such as local variable names (this is optional
debug information) and comments. Even so, we could still combine
approaches as long as we are able to obtain the source code, e.g.,
by relating byte code to source code through debug information.

Our Java Bytecode Fact Extractor processes Java class files, either
single, in bulk, or bundled in jar files. The tool is implemented
using the ASM [3] bytecode analysis framework, and works by
visiting both the declared access points in the class file as well
as individual bytecode instructions. Extracted usage information
includes all use of API access points, including method calls and
field variable access. For fine-grained analysis we can distinguish
individual calls, and it is also possible to extract context information,
in order to answer questions such as “is the return value checked
for null afterwards?” and “what other methods are called on the
same object?” (limited, of course, by what can be achieved with
static analysis).
3http://clirr.sourceforge.net

Exploring API / Client Co-Evolution WAPI’18, June 2–4, 2018, Gothenburg, Sweden

Unlike source code analysis, where access to dependencies are
need for name resolution, Java bytecode already uses fully resolved
and qualified names. Of course, if we are building the code our-
selves, we need the full build environment with all its dependencies;
which may be tricky to set up, especially for older code. Fortunately,
binary code repositories such as Maven Central4 provide access
to millions of already-built artefacts, in the form of jar library
files, complete with metadata such as version number and depen-
dency information. Since older versions of a library are kept when
new ones are uploaded, it is possible to follow the their authors,
and there are typically many versions available for each library,
each with their own jar file, allowing us to examine how a library
evolves over time.

3.2 API Measurement and Data Sets
One way to measure API use in client code, is through the number
of invocations of API access points, either at run-time using a pro-
filer, or by using static analysis to find and list API access points
per method, class or project [7, 13]. Such access point counting is
relatively easy to do, and the results are easily represented. Some
literature however, make explicit the more complex relationship
between APIs and client code. This is acknowledged in efforts to do
API access prediction or API migration tools [4, 9, 14, 15]. Jezek and
Dietrich [4] list semantics, quality of service and licensing as as-
pects of API use that are commonly not captured simply by looking
at the API code. Nguyen et al. [9] list common complications in API
use patterns, such as requirement in method call order, or method
argument processing on client side. The simplified approach of
listing method invocations is insufficient for reliably representing
such data, and authors describe how they use a graph-based ap-
proach to extract “API use skeletons”. Lämmel et al. [7] do a similar
evaluation, but only represent access points in their data set. They
do, however, a large data set, obtained by analysis of 69 APIs used
by 1476 projects. In comparison, the data set produced by Sawant
and Bacchelli [12] consists of the impressive number of over 20 000
projects, but collects API information only for five APIs.

In our work, we are less interested in counting API use, or ex-
tracting specific usage measurements; e.g., answering questions
like “which APIs does this project use?” or “which classes call this
method?”. Rather, we would like to build a data set that we can use
to explore things such as method relationships and how arguments
and return values are processed by a client; for example, in order to
guide further evolution of a library, or to see how clients respond
to such evolution. Such as data set may be useful also for practi-
tioners, if they are able to write their own queries against our it.
To facilitate this, our tool stores facts as semantic triples5 in the
Graal knowledge base [1], making it possible to query them using
the SPARQL6 querying language or a logic/inference system such
as Prolog or Datalog.

As an example, consider the following simplified triples (the full
syntax uses URIs) describe “DustBunny” as a subclass of “Rabbit”,
with a method “getName” which calls Rabbit’s “getName”:
<DustBunny> <extends> <Rabbit> .

4https://search.maven.org/
5Like RDF, https://www.w3.org/TR/rdf-concepts/#section-triples
6https://www.w3.org/TR/rdf-sparql-query/

<DustBunny/getName> <methodOf> <DustBunny> .
<DustBunny/getName> <calls> <Rabbit/getName> .
<Rabbit/getName> <calls> <StringBuilder/append> .

Adding an inference rule for transitivelyCalls would allow us to see
that DustBunny/getName transitivelyCalls StringBuilder/append. In
a sense, we store raw facts, then build abstractions on top, rather
than run query against the code and dump the answer in a database.

3.3 Change granularity
A significant difference between release versions and source-control
versions is the granularity of versions changes, and change tracking.

When using projects from source-control systems the evolution
data is collected along the axis of “commits”. A commit may consist
of anything between a small local code change of one or two lines
of code, to a larger refactoring with far-reaching edits. As such
source-control systems shows the software’s rather fine-grained
evolution over time. In traditional software evolution research this
is a common and useful approach [6], and may in fact be consider
rather coarse-grained (compared to looking at the programmer’s
editing session. However, the usefulness of the same granularity
and code base has not been addressed in a API evolution context.

“Change granularity” of single commits are not homogeneous
across source-control projects. Some commitsmay even undo changes
made in previous ones, commits may introduce bugs, with later
ones fixing them. At the same time, branches in e.g. GitHub is a
significant part of the evolution environment. Some modular parts
of the program evolution can be split into a new branch, which is
later merged into the main branch. This complicates the otherwise
linear software development, and is usually not addressed when
presenting data collection. Sawant and Bacchelli [13] mention this
problem, and choose to only collect data from the master branch.

Public software release versions have coarser change granularity
than source-control systems. Analysing software along the axis of
public releases, as opposed to commits, may provide us with a data
set that is easier to analyse, while still being representative.

It is unclear what level of change granularity is ideal for research-
ing API-client co-evolution. In our setup, we can in principle handle
any granularity for which we can obtain build artefacts; this will of
course be easier for release versions.

4 FUTURE EXPLORATION & CONCLUSION
4.1 Research Questions
Below we provide a selection of research questions for API-client
co-evolution and API use. We hope for a discussion on relevance
and usefulness, and welcome suggestions of questions we may
address, or which may be of interest to practitioners or researchers.

R1. Does the release of an API version without client code update
precede an increase in bug reports? (R1–R4 would also require
mining bug reports.)

R2. When an API version contains only non-breaking changes,
does upgrading the build version of the API without client code
updates induce bug reports?

R3.Does closing issues/bugs relate to API updates in client code?
R4. Does API upgrade lag time predict an increase in bugs?
R5. Are some APIs used more commonly together, or, to what

extent can the presence of one API indicate the need for the other?

WAPI’18, June 2–4, 2018, Gothenburg, Sweden Anna Maria Eilertsen and Anya Helene Bagge

R6. Can repetitive API use patterns indicate that API developers
could extract the pattern into a single API access point?

R7. How different or similar is API use across different lan-
guages?

R8. How different or similar is API use across different APIs?
R9. How similar are the API footprints [7] in a random pool

of open-source projects compared to Maven projects or industrial
projects?

R10. Do some API functionality induce particular use patterns
that are not documented in the API specification?

R11. Does it happen that a client use two different versions of
the same API?

R12. To what extent do API functionality change without it
being reflected in client code edits?

R13. Do clients respond differently to major releases versus
minor or patches? How does the lag time differ?

R14. An interesting, but somewhat separate, research question
would be laying out the exact benefits, drawbacks and limitations
of the different data representations of these data sets.

The list of research questions laid out here are difficult to address,
and we do not necessarily aim at answering all of them ourselves.
Rather, we consider it important to develop and represent a data
set such that they and other questions like them can be answered
using it. The quality and abstraction level of information collected
and represented in such a data set is vital for which answers it
qualifies to answer. One must address how representative the col-
lected code base is; how fine-grained (and correct, in the context of
type-resolving method calls) the API use information one collect is;
how large is the pool both of clients and of APIs; how homogeneous
are the clients and/or the APIs; what change granularity do we use;
how do we represent it in the data set (i.e. flattening many source
control commits into larger change “chunks” could produce the
same effect as looking at public releases). What ontology, i.e., what
predicates or relations, do we use in our knowledge base, and how
do we translate research questions into representative queries?

We also consider how easily the data set can be represented vi-
sually: graph data are more easily consumed visually than database
tables.

4.2 Conclusion
In this paper we have given a short overview of the background for
our exploration of API co-evolution. In effect, we propose a shift in
the relationship between data granularity and change granularity
that is commonly seen in these data sets. The data sets should
contain more complex information about the API use, including
the code context in which they happen, but can be generated from
fewer versions is common in source-control systems. This should
make the analysing process more scalable, while retaining the same
quality of evolution data.

We believe that ontologies and knowledge representation tech-
nologies will be useful in building a tool set and data set that can
be useful for a variety of purposes. For instance, we already see
that our tool prototype may be useful in an educational setting, for
exploring students’ API use (“do they make good use of provide
APIs?”, “do they adapt or extend APIs to better suit their needs?”);
in fact, the semantic triple example is extracted from student code.

ACKNOWLEDGMENTS
We thank the Ralf Lämmel, Tetiana Yarygina and the reviewers for
valuable feedback. This work is supported by the Research Council
of Norway under grant number 250683 (Co-Evo), and by a travel
grant from the Meltzer Research Fund.

REFERENCES
[1] Jean-François Baget, Michel Leclère, Marie-Laure Mugnier, Swan Rocher, and

Clément Sipieter. 2015. Graal: A Toolkit for Query Answering with Existential
Rules. In Rule Technologies: Foundations, Tools, and Applications, Nick Bassiliades,
Georg Gottlob, Fariba Sadri, Adrian Paschke, and Dumitru Roman (Eds.). Springer,
Cham, 328–344. https://doi.org/10.1007/978-3-319-21542-6_21

[2] Joshua Bloch. 2006. How to Design a Good API andWhy It Matters. In Companion
to the 21st ACM SIGPLAN Symposium on Object-oriented Programming Systems,
Languages, and Applications (OOPSLA ’06). ACM, New York, NY, USA, 506–507.
https://doi.org/10.1145/1176617.1176622

[3] Eric Bruneton, Romain Lenglet, and Thierry Coupaye. 2002. ASM: A code ma-
nipulation tool to implement adaptable systems. In Adaptable and extensible
component systems.

[4] Kamil Jezek and Jens Dietrich. 2017. API Evolution and Compatibility: A Data
Corpus and Tool Evaluation. Journal of Object Technology 16, 4 (Aug. 2017),
2:1–23. https://doi.org/10.5381/jot.2017.16.4.a2

[5] Ralph E Johnson and Brian Foote. 1988. Designing reusable classes. Journal of
object-oriented programming 1, 2 (1988), 22–35.

[6] Huzefa Kagdi, Michael L Collard, and Jonathan I Maletic. 2007. A survey and
taxonomy of approaches for mining software repositories in the context of
software evolution. Journal of Software: Evolution and Process 19, 2 (2007), 77–131.
https://doi.org/10.1002/smr.344

[7] Ralf Lämmel, Ekaterina Pek, and Jürgen Starek. 2011. Large-scale, AST-based
API-usage Analysis of Open-source Java Projects. In Proceedings of the 2011
ACM Symposium on Applied Computing (SAC ’11). ACM, New York, NY, USA,
1317–1324. https://doi.org/10.1145/1982185.1982471

[8] Tyler McDonnell, Baishakhi Ray, and Miryung Kim. 2013. An Empirical Study of
API Stability and Adoption in the Android Ecosystem. In Proceedings of the 2013
IEEE International Conference on Software Maintenance (ICSM ’13). IEEE Computer
Society, Washington, DC, USA, 70–79. https://doi.org/10.1109/ICSM.2013.18

[9] Hoan Anh Nguyen, Tung Thanh Nguyen, Gary Wilson, Jr., Anh Tuan Nguyen,
Miryung Kim, and Tien N. Nguyen. 2010. A Graph-based Approach to API Usage
Adaptation. In Proceedings of the ACM International Conference on Object Oriented
Programming Systems Languages and Applications (OOPSLA ’10). ACM, New York,
NY, USA, 302–321. https://doi.org/10.1145/1869459.1869486

[10] Rahul Pandita, Raoul Jetley, Sithu Sudarsan, Timothy Menzies, and Laurie
Williams. 2017. TMAP: Discovering relevant API methods through text mining
of API documentation. Journal of Software: Evolution and Process 29, 12 (2017),
e1845. https://doi.org/10.1002/smr.1845

[11] Steven Raemaekers, Arie van Deursen, and Joost Visser. 2014. Semantic Version-
ing versus Breaking Changes: A Study of the Maven Repository. In 2014 IEEE
14th International Working Conference on Source Code Analysis and Manipulation.
IEEE, 215–224. https://doi.org/10.1109/SCAM.2014.30

[12] Anand Ashok Sawant and Alberto Bacchelli. 2015. A Dataset for API Usage. In
Proceedings of the 12th Working Conference on Mining Software Repositories (MSR
’15). IEEE Press, Piscataway, NJ, USA, 506–509. https://doi.org/10.1109/MSR.
2015.75

[13] Anand Ashok Sawant and Alberto Bacchelli. 2017. fine-GRAPE: fine-grained APi
usage extractor – an approach and dataset to investigate API usage. Empirical
Software Engineering 22, 3 (01 Jun 2017), 1348–1371. https://doi.org/10.1007/
s10664-016-9444-6

[14] Tao Xie and Jian Pei. 2006. MAPO: Mining API Usages from Open Source
Repositories. In Proceedings of the 2006 International Workshop on Mining Software
Repositories (MSR ’06). ACM, New York, NY, USA, 54–57. https://doi.org/10.1145/
1137983.1137997

[15] Hao Zhong, Suresh Thummalapenta, Tao Xie, Lu Zhang, and Qing Wang.
2010. Mining API Mapping for Language Migration. In Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering - Volume 1 (ICSE ’10).
ACM, New York, NY, USA, 195–204. https://doi.org/10.1145/1806799.1806831

https://doi.org/10.1007/978-3-319-21542-6_21
https://doi.org/10.1145/1176617.1176622
https://doi.org/10.5381/jot.2017.16.4.a2
https://doi.org/10.1002/smr.344
https://doi.org/10.1145/1982185.1982471
https://doi.org/10.1109/ICSM.2013.18
https://doi.org/10.1145/1869459.1869486
https://doi.org/10.1002/smr.1845
https://doi.org/10.1109/SCAM.2014.30
https://doi.org/10.1109/MSR.2015.75
https://doi.org/10.1109/MSR.2015.75
https://doi.org/10.1007/s10664-016-9444-6
https://doi.org/10.1007/s10664-016-9444-6
https://doi.org/10.1145/1137983.1137997
https://doi.org/10.1145/1137983.1137997
https://doi.org/10.1145/1806799.1806831

	Abstract
	1 Introduction
	2 APIs & API (Co-)Evolution
	2.1 Basic Terminology
	2.2 API/Client Co-Evolution

	3 Exploring APIs & Co-Evolution
	3.1 Working with Bytecode
	3.2 API Measurement and Data Sets
	3.3 Change granularity

	4 Future Exploration & Conclusion
	4.1 Research Questions
	4.2 Conclusion

	Acknowledgments
	References

