
Yet Another

Language Extension Scheme

Anya Helene Bagge

Bergen Language Design Laboratory
Dept. of Informatics, University of Bergen, Norway

anya@ii.uib.no

Abstract. Magnolia is an experimental programming language
designed to try out novel language features. For a language to be a flexible
basis for new constructs and language extensions, it will need a flexible
compiler, one where new features can be prototyped with a minimum
of effort. This paper proposes a scheme for compilation by transforma-
tion, in which the compilation process can be extended by the program
being compiled. We achieve this by making a domain-specific transfor-
mation language for processing Magnolia programs, and embedding it
into Magnolia itself.

1 Introduction

Implementing a compiler for a new programming language is a challenging but
exciting task. As the language design evolves, the compiler must be updated to
support the new design or to prototype the design of new features. Magnolia is
both an experimental programming language, and a language for language ex-
periments. We therefore need a compiler flexible enough to keep up with changes
in the language design, and with features that make implementation of experi-
mental features easy.

Use cases for a language extension facility include experimental features such
as data-dependency based loop statements, embedding of domain-specific lan-
guages, restriction to sub-languages with stricter semantics and language imple-
mentation using a simple core language, and building the rest as extensions.

In Magnolia, the programmer can express extra knowledge about abstractions
as axioms . In the compiler, we would therefore like to preserve abstractions for
as long as possible, in order to take advantage of axioms. Language extensions
also provide abstractions, with knowledge we may also want to take advantage
of. Desugaring extensions to lower-level language constructs at an early stage,
as is done with syntax macros, discards any special meaning associated with the
constructs, which could have been used for optimisation and extension-specific
error checking.

The Magnolia compiler is implemented in Stratego/XT [1], using compilation
by transformation, where a sequence of transformation steps transform code in
the source language to a target language (object code, or another programming

M. van den Brand, D. Gašević, J. Gray (Eds.): SLE 2009, LNCS 5969, pp. 123–132, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

124 A.H. Bagge

language). It is therefore natural to make use of transformation techniques for
describing language extension. This paper presents an extension of the Magnolia
language with transformation-based meta-programming features, so that exten-
sions to the Magnolia language can be made in Magnolia itself, rather than by
extending the Stratego code of the compiler. This gives more independence from
the underlying compiler implementation.

The rest of this paper is organised as follows. First, we give a brief introduction
to the Magnolia language, before we look at how to add language extension to
it (Section 3). We have two extension facilities, macro-like operation patterns
(Section 3.1) and low-level transforms (Section 3.2). We provide an example of
two extensions, before discussing related work and concluding (Section 4).

2 The Magnolia Language

We will start by briefly introducing the parts of Magnolia that are necessary
to understand the rest of the paper. Magnolia is designed as a general-purpose
language, with an emphasis on abstraction and specification. Abstractions are
described by concepts, which consist of abstract types, operations on the types,
and axioms specifying the behaviour of the operations algebraically. Multiple
implementations may be provided for each concept, and signature morphisms
may be used to map between differences in concept and implementation.

Operations can be either procedures or functions. Procedures are allowed to
update their parameters, and have no return values. Pure procedures only in-
teract with the world through their parameters (e.g., no I/O or global data).
Functions may not change their parameters, and are always pure – the only
effect a function has is its return value, and it will always produce the same re-
turn value for the same arguments. Function applications form expressions, while
procedure calls are statements. In addition, Magnolia has regular control-flow
statements like if and while.

A novel feature (detailed in a previous paper [2]) is the special relationship
between pure procedures and functions. Procedures may be called as if they were
functions – the process of mutification turns expressions with calls to function-
alised procedures into procedure call statements. An expression-oriented cod-
ing style is encouraged. Procedures are often preferred for performance reasons,
while expressions with pure functions are easier to reason about, and is also the
preferred way of writing axioms.

3 Extending Magnolia

At least four types of useful extensions spring to mind:

1. Adding new operation-like constructs, that look like normal functions or
procedures, but for some reason cannot or should not be implemented that
way – for example, because we need to bypass normal argument evaluation,
or because some of the computation should be done at compile time. This

Yet Another Language Extension Scheme 125

type of change has a local effect on the particular expressions or statements
where the new constructs are used, and is similar to syntax macros in other
systems.

2. Adding new syntax to the language, in order to make it more convenient
to work with. We may also consider removing some of the default syntax.
In Magnolia, this can be handled by extending the SDF2 grammar of the
language.

3. Disabling features or adding extra semantic checks to existing language con-
structs. This can be used to enforce a particular coding style, to disable
general-purpose features when making a DSL embedding, or to ensure that
certain assumptions for aggressive optimisation holds.

4. Making non-local changes to the language – features requiring global anal-
ysis, or touching a wide selection of code. Cross-cutting concerns in aspect
orientation are an example of this. We can implement this by extending the
compiler with new transformations and storing context information across
transformations.

In a syntax macro system, new constructs are introduced by giving a syntax
pattern and a replacement (or expansion). In languages like Lisp or Scheme, the
full power of the language itself is available to construct the expansion. For Mag-
nolia, things are a bit more complicated, since the extension may pass through
several stages of the compiler before it is replaced by lower level constructs. We
must therefore provide the various compiler stages with a description of how to
deal with the language extension.

To provide syntax extensibility of the kind found in languages like Dylan, one
could provide Magnolia syntax for syntax definition, then extract and compile
the syntax definitions to SDF2, as used in the compiler. We will not consider
this here, however. A full treatment of compiler extension in Magnolia is also
beyond the scope of this paper, we will therefore focus the macro-like operation
patterns and briefly sketch the transform interface to compiler extension.

3.1 Operation Patterns

An operation pattern is a simple interface to language extension, similar to
macros in Lisp or Scheme. Patterns are used in the same way as a normal
procedure or function, but is implemented using instantiation with arbitrary
code transformation. They are useful for things that need to process arguments
differently from normal semantics.

The implementation of an operation pattern looks like a procedure or function
definition, except that one or more of its parameters are meta-variables that take
expression or statement terms, rather than values or variables. The argument
terms and pattern body may be rewritten as desired by applying transforms to
them (see examples below). When the operation pattern is instantiated, meta-
variables in the body are substituted, and any transformations are applied. The
resulting code is inlined at the call site.

Meta-variables are typed and are distinguished from normal variables through
the type system, thus it is not necessary to use anti-quotation to indicate where

126 A.H. Bagge

meta-variables should be substituted. Operation patterns introduce a local scope,
so local variables will not interfere with the call context.

The semantic properties (typing rules, data-flow rules, etc.) of an operation
pattern are handled automatically by the compiler, and calls to operation pat-
terns are treated the same as normal operation calls during type checking and
overload resolution. This means that they can be overloaded alongside normal
operations, and follow normal module scoping and visibility rules. Processing
code with operation pattern calls requires some extra care, so that arguments
that should be treated as code terms won’t get rewritten or lifted out of the call.

Operation patterns can also conveniently serve as implementations of syntax
extensions, by desugaring the syntax extension into a call to the pattern.

For example, the following operation pattern implements a simple way to
substitute a default value when an expression yields some error value:
forall type T procedure default(T e, T f, expr T d, out T ret) {
ret = e;

if(ret == f)
ret = d;

}

The f is the failure value (null, for example), d is the default replacement, and
e is the expression to be tested.

Magnolia will automatically provide a function version of it:
forall type T function T default(T e, T f, expr T d);

which we can use like:
name = default(lookup(db,key), "", "Lucy");

We can describe the behaviour of default by axioms, for example:
forall type T axiom default1(T e, T f, T d) {
if(e == f) assert default(e, f, d) <-> d;
if(e != f) assert default(e, f, d) <-> e;
if(f == d) assert default(e, f, d) <-> e;
if(f != d) assert default(e, f, d) <!-> f;
}

3.2 Transforms

For further processing of language extension, we add a new meta-programming
operation to Magnolia – the transform – corresponding to a rule or strategy in
Stratego. Transforms work on the term representation of a program, taking at
least one term plus possibly other values as arguments, and returning a replace-
ment term. Provided semantic analysis has been done, term pattern matching
in transforms are sensitive to typing, overloading and name scoping rules.

A transform may call other transforms and operations, and may also ma-
nipulate symbol tables and other compiler state. Several transforms can share
the same name; when applied they are tried in arbitrary order until one suc-
ceeds. In addition to explicit calling, transforms can also be controlled through

Yet Another Language Extension Scheme 127

Table 1. Transform classes: Topdown and bottomup traversals can be modified by
repeat, once or frontier. The phase classes can be used to apply a transform before,
during or after a particular compiler phase, or to trigger application of a compiler
phase. Transforms can also be classified by use – for example, simplification transforms
may be marked as such and used many places in the compiler. The ac class can be
used to reorder expressions for associative-commutative matching.

Traversals/modifiers Compiler Phases Uses
repeat Can be used repeatedly during(p) apply during p typecheck
once In traversal: Apply only once before(p) apply before p simplify
frontier In traversal: Stop on success after(p) apply after p mutify

topdown Traversal type requires(p) run p first ac

bottomup Traversal type triggers(p) run p after
innermost Innermost reduction
outermost Outermost reduction

transform classes, which describe how and (possibly) when transforms should
be applied. For example, a transform may have the classes innermost and dur-
ing(desugar), signifying that it should be applied using an innermost strategy
during the desugaring phase of the compiler.

A sample transform is:
forall int i1, int i2, int i3
transform example(expr i1 * i2 + i3 * i2) [simplify,repeat]
= (i1 + i3) * i2;

This example has a pattern with three meta-variables, i1, i2, i3, all of which
will match only integer expressions. The expression pattern in the argument list
will be matched against the code the transform is applied to, and will only match
the integer versions of + and *. If the match is successful, the code is transformed
to (i1 + i3) * i2. The transform classes simplify and repeat tell the compiler
that this rule can be applied during program simplification, and that it will
terminate if applied repeatedly. Table 1 shows a few different transform classes.
Axioms, when used as rewrite rules, can also have classes assigned to them,
making them usable as transforms [3].

Transforms can be applied directly in program code (most useful inside oper-
ation patterns). For example,
var x = example(a * b + c * b);

will apply the above transform (the expression to the left is implicitly passed as
the first parameter) and rewrite the code to:
var x = (a + c) * b;

The double-bracket operator [[...]] can be used to apply inline rewrite rules,
and to specify traversals – we’ll see examples of this later.

3.3 Semantic Rules

Semantic analysis rules are described by the typecheck transform, which takes a
statement, expression or declaration as argument, and returns a resolved version

128 A.H. Bagge

of its argument – and its type, in the case of an expression. Resolving means
annotating each use of an abstraction with a unique identifier that leads back to
its declaration – this is typically taken care of internally in the compiler. Type
checking of a declaration will typically involve adding declarations to the symbol
table; type checking other constructs is typically a simple case of recursively type
checking sub-constructs. A (simplified) typecheck rule for assignment statements
is:
forall name x, expr e
transform typecheck(stat{x = e;}) = stat{x = e’;}
where { var (e’, t) = typecheck(e);

if(!compatible(typeof(x), t))
call fail("Incompatible types in assignment"); }

Note that typechecking may be better described as more formal semantic rules
which can be used as a basis for reasoning about typechecking and programs.
This is an option we are exploring.

Axioms [3] can describe the abstract semantics of a construct. This is only
applicable to expression-like constructs at the moment, we should also have a
way of describing other constructs.

Implementation rules are used to compile constructs to lower-level code. In-
stantiation rules are triggered during semantic analysis, and receive the unique id
of the abstraction and the use case, and produce an instantiated version. Other
implementation rules are free-form and should be tied to a program traversal
strategy and compiler phase. No effort is made on the part of the compiler
to ensure that implementation rules don’t leave behind uncompiled constructs,
though we are looking at techniques that can handle this [4].

Other compiler phases may also need rules – for example, doing data-flow
analysis and program slicing requires information about which variables are read
and written in a statement – the readset and writeset transforms are used for
this purpose. Transforms may also be provided for mapping between statement
and expression forms.

By keeping track of semantic information, we can make more powerful ex-
tensions. For example, with the following extended version of default a failure
value is no longer needed – it is obtained automatically from a function decla-
ration attribute:
forall type T
function T default(expr T e, expr T d) =
default(e, getAttr("fail_value", e), d);

3.4 Module-Level and Global Extensions

Language extension should normally be done at the module level, so that some
modules in your program may use the extension, and others won’t. For example,
if your extension defines a restricted subset of Magnolia with some DSL features,
you probably still want the compiler to process Magnolia libraries as if they were
written in normal Magnolia. Therefore, Magnolia extensions have scope:

Yet Another Language Extension Scheme 129

– The names of transforms and operation patterns are accessible in the module
in which they are defined and in modules that import them, just as with other
operations.

– Transforms are normally applied to the whole program. Semantically aware
term pattern matching ensure that only relevant parts of the code are touched,
not code that merely looks similar to what is described by the pattern.

– For syntax extensions and language-changing transforms that should only be
applied to certain modules, there is a language declaration in the module
header that can be used to import extension modules. Transforms imported
via language are only applied to the local module.

3.5 Example Extensions

We will give two example extensions, one which uses transforms to enforce a
restriction on the language, and one which uses operation patterns to add a map
construct.

Impure procedures are ones that violate the assumption that two calls with
equivalent inputs give equivalent results. I/O is typically impure, a random gen-
erator that keeps track of the seed would also be impure. Since pure code is easier
to reason about, we might want to have a sub-language of Magnolia where calls
to impure code is forbidden. We implement this in a module pure, which is used
by putting language pure in the module header of pure modules. Our language
module contains the following transform:
transform purity(stat{call p(_*)}) [after(typecheck)]
where if(getAttr("impure", p))

call error("In call to ", p, " -- impure calls forbidden");

The transform purity will be applied to the code in all language pure mod-
ules after type checking is done (since the type checker might be used to infer
impurity), and will match procedure calls. If the called procedure has the impure
attribute, a compiler error is triggered.

The map operation applies an operation element-wise to the elements of one
or more indexable data structures (arrays, for example). Our map works on
multiple indexables at the same time (like Lisp’s mapcar), without the overhead
of dealing with a list of indexables at runtime. For example,
A = map(@A * @B + @C); // map *,+ over elements of A, B, C

A = map(@A * 5); // multiply all elements of A by 5

A = map(@A * V + @C); // V is indexable, but used as-is

While map in Lisp and functional languages traditionally takes a function (or
lambda expression) and one or more lists as arguments – we will instead integrate
everything as one argument, making it look more like a list comprehension.
Indexables marked with an @-sign are those that should have element-wise. The
@ is just a dummy operator, defined as:
forall type A, type I, type E where Indexable(A, I, E)
function E @_(A a);

130 A.H. Bagge

This function is generic in E (element type), A (indexable/array type) and I
(index type) – together, these must satisfy the Indexable concept. Applying the
@-operator outside a map operation will lead to a compilation error – this should
ideally be checked for and reported in a user-friendly manner.

A generic implementation of map is:
forall type A, type I, type E where Indexable(A, I, E)
procedure map(expr E e, out A a) {
// define index space as minimum of input index spaces

var idxSpace = min(e[[collect,frontier: @x:A -> indexes(x)]]);
call create(a,idxSpace); // create output array
for i in indexes(a) { // do computation
a[i] = e[[topdown,frontier: @x:A -> x[i]]];

} }

The implementation accepts an expression e (of the element type) and an output
array a. The body of map is the pattern for doing maps, and this will be instan-
tiated for each expression it is called with by substituting meta-variables and
optionally performing transformations. Note that the statements in the pattern
are not meta-level code, but templates to be instantiated. The [[...]] code
are transformations which are applied to e – the result is integrated into the
code, as if it had been written by hand. The first transformation uses a collect
traversal, which collects a list of the indexables, rewriting them to expressions
which compute their index spaces on the way. This is used in creating the out-
put array. The computation itself is done by iterating over the index space, and
computing the expressions while indexing the @-marked indexables of type A.
The frontier traversal modifier prevents the traversal from recursing into an
expression marked with @ – in case we have nested maps.

As an example of map, consider the following:
Z = map(@X * 5 + @Y);

where X and Y are of type array(int). Here map is used as a function – the
compiler will mutify the expression, obtaining:
call map(@X * 5 + @Y, Z);

At this point we can instantiate it and replace the call, giving
var idxSpace = min([indexes(X), indexes(Y)]);
call create(Z,idxSpace);
for i in indexes(Z) {
Z[i] = X[i] * 5 + Y[i];

}

which will be inlined directly at the call site.
Now that we have gone to the trouble of creating an abstraction for element-

wise operations, we would expect there to be some benefit to it, over just writing
for-loop code. Apart from the code simplification at the call site, and the fact that
we can use map in expressions, we can also give the compiler more information
about it. For example, the following axiom neatly sums up the behaviour of map:

Yet Another Language Extension Scheme 131

forall type A, type I, type E where Indexable(A, I, E)
axiom mapidx(expr E e, I i) {
map(e)[i] <-> e[[topdown,frontier: @x:A -> x[i]]];

}

applying map and then indexing the result is the same as just indexing the
indexables directly and computing the map expression. Furthermore, we can
also easily do optimisations like map/map fusion and map/fold fusion, without
the analysis needed to perform loop fusion.

4 Conclusion

There is a wealth of existing research in language extension [5,6,7] and extensible
compilers [8,9], and little space for a comprehensive discussion here.

Lisp dialects like Common Lisp [10] and Scheme [11] come with powerful
macro facilities that are used effectively by programmers. The simple syntax
give macros a feel of being part of the language, and avoids issues with syntactic
extensions.

C++ templates are often used for meta-programming, where techniques such
as expression templates [12] allow for features such as the map operation de-
scribed in Section 3.5 (though the implementation is a lot more complicated).

Template Haskell [13] provides meta-programming for Haskell. Code can be
turned into an abstract syntax tree using quasi-quotation and processed by
Haskell code before being spliced back into the program and compiled normally.
Template Haskell also supports querying the compiler’s symbol tables.

MetaBorg [14] provides syntax extensions based on Stratego/XT. Syntax ex-
tension is done with the modular SDF2 system, and the extensions are desugared
(“assimilated”) into the base language using concrete syntax rules in Stratego.

Andersen and Brabrand [4] describe a safe and efficient way of implementing
some types of language extensions using catamorphisms that map to simpler
language constructs, and an algebra for composing languages. We have started
implementing this as a way of desugaring syntax extensions.

We aim to deal with semantic extension rather than just syntactic extension
provided by macros. We do this by ensuring that transformations obey overload-
ing and name resolution, by allowing extension of arbitrary compiler phases, and
allowing the abstract semantics of new abstractions to be described by axioms.
The language XL [15] provide a type macro-like facility with access to static
semantic information – somewhat similar to operation patterns in Magnolia.

In this paper we have discussed how to describe language extensions and pre-
sented extension facilities for the Magnolia language extensions, with support
for static semantic checking and scoping. The facilities include macro-like oper-
ation patterns, and transforms can perform arbitrary transformations of code.
Transforms can be linked into the compiler at different stages in order to im-
plement extensions by transforming extended code to lower-level code. Static
semantics of extensions can be given by hooking transforms into the semantic
analysis phase of the compiler.

132 A.H. Bagge

A natural next step is to try and implement as much of Magnolia as possible
as extensions to a simple core language. This will give a good feel for what
abstractions are needed to implement full-featured extensions, and also entails
building a mature implementation of the extension facility – currently we are
more in the prototype stage. There are also many details to be worked out, such
as a clearer separation between code patterns, variables and transformation code,
name capture / hygiene issues, and so on.

The Magnolia compiler is available at http://magnolia-lang.org/.

Acknowledgements. Thanks to Magne Haveraaen and Valentin David for in-
put on the Magnolia compiler, and to Karl Trygve Kalleberg and Eelco Visser
for inspiration and many discussions in the early phases of this research.

References

1. Bravenboer, M., Kalleberg, K.T., Vermaas, R., Visser, E.: Stratego/XT 0.17. A
language and toolset for program transformation. Science of Computer Program-
ming 72(1-2), 52–70 (2008)

2. Bagge, A.H., Haveraaen, M.: Interfacing concepts: Why declaration style shouldn’t
matter. In: LDTA 2009. ENTCS, York, UK (March 2009)

3. Bagge, A.H., Haveraaen, M.: Axiom-based transformations: Optimisation and test-
ing. In: LDTA 2008, Budapest. ENTCS, vol. 238, pp. 17–33. Elsevier, Amsterdam
(2009)

4. Andersen, J., Brabrand, C.: Syntactic language extension via an algebra of lan-
guages and transformations. In: LDTA 2009. ENTCS, York, UK (March 2009)

5. Brabrand, C., Schwartzbach, M.I.: Growing languages with metamorphic syntax
macros. In: PEPM 2002, pp. 31–40. ACM, New York (2002)

6. Standish, T.A.: Extensibility in programming language design. SIGPLAN
Not. 10(7), 18–21 (1975)

7. Wilson, G.V.: Extensible programming for the 21st century. Queue 2(9), 48–57
(2005)

8. Nystrom, N., Clarkson, M.R., Myers, A.C.: Polyglot: An extensible compiler frame-
work for Java. In: Hedin, G. (ed.) CC 2003. LNCS, vol. 2622, pp. 138–152. Springer,
Heidelberg (2003)

9. Ekman, T., Hedin, G.: The JastAdd extensible Java compiler. In: OOPSLA 2007,
pp. 1–18. ACM, New York (2007)

10. Graham, P.: Common LISP macros. AI Expert 3(3), 42–53 (1987)
11. Dybvig, R.K., Hieb, R., Bruggeman, C.: Syntactic abstraction in scheme. Lisp

Symb. Comput. 5(4), 295–326 (1992)
12. Veldhuizen, T.L.: Expression templates. C++ Report 7(5), 26–31 (1995); Reprinted

in C++ Gems, ed. Stanley Lippman
13. Sheard, T., Jones, S.P.: Template meta-programming for Haskell. In: Haskell 2002,

pp. 1–16. ACM, New York (2002)
14. Bravenboer, M., Visser, E.: Concrete syntax for objects: domain-specific language

embedding and assimilation without restrictions. In: OOPSLA 2004, pp. 365–383.
ACM Press, New York (2004)

15. Maddox, W.: Semantically-sensitive macroprocessing. Technical Report UCB/CSD
89/545, Computer Science Division (EECS), University of California, Berkeley, CA
(1989)

http://magnolia-lang.org/

	Introduction
	The Magnolia Language
	Extending Magnolia
	Operation Patterns
	Transforms
	Semantic Rules
	Module-Level and Global Extensions
	Example Extensions

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

