
The Magnolia Programming Language

Anya Helene Bagge

March 15, 2008

Magnolia is a new language intended for experimentation in programming
language design, program transformation and optimisation. It is meant to be
general-purpose, but is motivated by the numerical programming domain (in
particular, coordinate-free numerics [Bjø00]), where high performance and sup-
port for parallel architectures is critical. We have a numerical software library
with a number of computationally intensive simulation applications [HFJ99],
which is being ported to Magnolia.

Magnolia has much in common with new languages like Fortress [ACH+]
and to some degree X10 [CGS+05]. Our focus is different, however, in that we
aim to provide a basis for programming language research, rather than a full
replacement for existing languages.

F

C++ : In the sense that the compiler outputs C++ code (as well as code
for some special purpose languages), and that we aim to have a more or less C++
compatible core language, so that each new language feature can be presented
as an extension to a simple C++-like language. C++ was chosen because there
are good high-performance compilers for it, and because we already have a
large body of code in C++.

S-: Operations and types in the language may be manipulated
at the signature (interface) level, according to axioms defined on the signature.
The implementation is hidden behind the signature, and may look quite differ-
ent from the signature presented at the point of use. For example, sorting may
be implemented as an in-place sort procedure, yet still be used transparently
as a function returning a freshly sorted array. A new implementation can be
used as a drop-in replacement, as long as it fulfils the signature and satisfies
its axioms. This allows us to build a library of replaceable parts with different
performance characteristics. Optimisation rules may be used to try and choose
the best implementation for a particular situation.

P  : A clear distinction is made between procedures
(which may change their arguments) and functions (which are ‘pure’, and may
not change their arguments). Through a process of functionalisation we can de-
rive function signatures from procedure signatures (where updated arguments
are mapped to return values) – thus making procedures available as functions
to the programmer. The reverse process of mutification transforms expressions
written with function calls into a series of procedure calls, possibly introducing
temporary copies of data. Certain operations – like IO – involving uncopyable
objects may not be subjected to functionalisation/mutification. Programmers

1



are encouraged to write their code as function calls as much as possible, since
analysis and optimisation is easier to perform on pure functional expressions.

P  : Alerts [BDHK06] provide a unified interface to fail-
ure handling mechanisms like error return codes, global flags and exceptions.
Alerts may also be used to add invariants to procedures and functions. Alert
handling policies may be introduced either locally in an expression or pro-
cedure, or at the module or global level. Policies can specify substitution of
default values, running of special handling code (e.g., to roll back partially
completed operations), or propagation of the alert.

A   : Axioms [BH08] are statements about the opera-
tions in a program that should be true – often used in program verification. In
Magnolia, axioms can be used to derive rewrite rules to use for optimisation.
For example, a matrix library may come with axioms that are used as algebraic
simplification rules for matrices. Axioms are also used for systematic testing of
programs. Furthermore, we are exploring the use of axioms to determine that
components are interchangeable.

O: The user base for Magnolia will be programmers in high-
performance computing, so optimisation is critical. The language has no as-
sumption on evaluation order, and the compiler is free to aggressively eliminate
calls it determines to be unnecessary. Normally calls that have side-effects –
like printing results – must be preserved, but the compiler is free to eliminate
calls with ‘insignificant’ side-effects, like debug printing. The language en-
courages programmers to explicitly state axioms for user-defined data types
so that algebraic simplification may be applied to them; and constructs like
data-dependency based loops enables fast computation and automatic paral-
lelisation.

T P

Magnolia development is just starting, though many features have been ex-
plored previously as extensions of C++. The high development costs of C++
extensions, and the difficulty of integrating them nicely with the language is
the reason we have decided to work on a new language. Our goal is to ex-
periment with new and interesting language ideas – in particular features that
aid programmer productivity and code reusability – and trying them out on
non-trivial, real-world applications in order to determine their usefulness.

M : I am the principal designer of the language, including the not-so-
exciting language core, and some of the experimental features. I have done
much, if not most of the design work on the above mentioned features (as far
as they differ from previous language designs). I am also doing much of the
implementation work on the compiler. The language is developed in a group,
with other members working on specific features or implementation parts, or
being (potential) users of the language. Design ideas are discussed in the group.

2



R
[ACH+] Eric Allen, David Chase, Joe Hallett, Victor Luchangco, Jan-

Willem Maessen, Sukyoung Ryu, Guy L. Steele Jr., and Sam Tobin-
Hochstadt. The Fortress Language Specification. Sun Microsystems,
Inc.

[BDHK06] Anya Helene Bagge, Valentin David, Magne Haveraaen, and
Karl Trygve Kalleberg. Stayin’ alert: Moulding failure and excep-
tions to your needs. In Proceedings of the 5th International Conference
on Generative Programming and Component Engineering (GPCE’06),
Portland, Oregon, October 2006. ACM Press.

[BH08] Anya Helene Bagge and Magne Haveraaen. Axiom-based transfor-
mations: Optimisation and testing. In Proceedings of the 8th Workshop
on Language Descriptions, Tools and Applications (LDTA’08), Budapest,
Hungary, April 2008.

[Bjø00] Petter Bjørstad, editor. Coordinate-Free Numerics, volume 8 of Scien-
tific Programming. 2000.

[CGS+05] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher
Donawa, Allan Kielstra, Kemal Ebcioglu, Christoph von Praun, and
Vivek Sarkar. X10: an object-oriented approach to non-uniform
cluster computing. In OOPSLA ’05: Proceedings of the 20th annual
ACM SIGPLAN conference on Object oriented programming, systems,
languages, and applications, pages 519–538, New York, NY, USA, 2005.
ACM.

[HFJ99] Magne Haveraaen, Helmer André Friis, and Tor Arne Johansen.
Formal software engineering for computational modelling. Nordic
Journal of Computing, 6(3):241–270, 1999.

3


