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Abstract. Software transformations in the Nuthatch style are de-
scribed as walks over trees (possibly graphs) that proceed in programmer-
defined steps which may observe join points of the walk, may observe
and affect state associated with the walk, may rewrite the walked tree,
may contribute to a built tree, and must walk somewhere, typically along
one branch or another. The approach blends well with OO programming.
We have implemented the approach in the Nuthatch/J library for Java.

1 Introduction

Software transformations rely fundamentally on traversing tree or graph struc-
tures, applying rules or computations to individual scopes, and composing in-
termediate results. This is equally true for model transformation (in the narrow
sense), e.g., based on ATL [9] and for program transformation (including pro-
gram generation and analysis), e.g., based on Rascal [13], Stratego [4], Tom [2],
and TXL [6] as well as for less domain-specific programming models such as
adaptive (OO) programming [19], generic (functional) programming [15], or OO
programming with visitor combinators [30].

Transformation languages and programming models differ in how traversal is
specified and controlled. For instance, in plain term rewriting with a hardwired
normalization strategy such as innermost, traversal must be encoded in rewrite
rules tangled up with the more interesting rules for primitive steps of transfor-
mation. By contrast, in Stratego-style programming [29, 30, 18] and some forms
of generic functional programming [18, 15], schemes of traversal are programmer-
definable abstractions that are parameterized in the rules or computations to
be applied along the traversal, possibly tailored to specific nodes. For instance,
consider this Stratego fragment for simplifying arithmetic expressions:
strategies
simplify = bottomup(try(UnitLawAdd <+ ZeroLawMult))

rules
UnitLawAdd : Add(x,0) -> x
ZeroLawMult : Mult(x,0) -> 0

The library-defined traversal scheme bottomup is applied to rewrite rules for some
laws of addition and multiplication. The programmer can reuse traversal schemes
or define problem-specific ones, if needed.
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In this paper, we describe a new transformation approach and a corresponding
transformation language Nuthatch,3 which focuses programmer attention on
the step-wise, possible state-accessing progression of a traversal, in fact, a walk,
as opposed to the commitment to a traversal scheme and its application to rules.
As an illustration, consider the following Nuthatch fragment which matches
the earlier Stratego example:

1 walk simplify {
2 if up then {
3 if ?Add(x, 0) then !x;
4 if ?Mult(x, 0) then !0;
5 }
6 walk to next;
7 }

The defined walk abstraction defines a complete walk over a tree. A walk starts
at the root of the input term and (usually) ends there as well. In each step of
the walk, a conditional statement is considered (line 2); it constrains rewrite
rules (lines 3–4) to be applied when the walk goes up to the parent of the current
node. Each rewrite rule consists of a match condition (see ‘?’) and a replacement
action (see ‘ !’). The step is completed with a walk to statement (line 6) which
defines the continuation of the walk. That is, the walk continues to the next node
according to a default path for a comprehensive traversal.

Contributions

– We describe a notion of walks that proceed in programmer-defined steps
which may observe join points of the walk, may access state associated with
the walk, may rewrite the walked tree, may contribute to building a tree, and
must walk somewhere, typically along one branch or another.

– We describe the realization of walks in the transformation language Nuthatch.
Conceptually, Nuthatch draws insights from the concepts of tree au-
tomata [5], tree walking automata [1], continuations [24], and zippers [8].
Importantly, Nuthatch incorporates state and supports OO-like reuse.

– We sketch Nuthatch/J, an open-source library for walks in Java.4

The paper and accompanying material are available online.5

Road-map

§2 develops the basic notion of walks. §3 describes the Nuthatch transformation
language. §4 sketches the library-based implementation of Nuthatch in Java.
§5 discusses related work. §6 concludes the paper.
3 Named after the nuthatch (Sitta spp.), a small passerine bird known for its ability to
walk head-first towards the root of a tree, and on the underside of branches.

4 http://nuthatchery.org/
5 http://nuthatchery.org/icmt13/
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2 The notion of walks

Walks walk along trees. Walks select branches. Walks complete paths. The default
path is the starting point for all paths. Tree mutation may happen along the way.

2.1 Trees

In this paper, we mainly walk trees; graphs can also be walked as long as some
distinguished entry node can replace the role of a root to reach all other nodes,
also subject to precautions discussed in §3.10. In fact, we commit to ordered
trees, i.e., trees with an ordering specified for the children. Ordered trees may
be defined in two common ways, i.e., recursively (like terms of a term algebra)
and graph-theoretically (with a designated root node and further constraints
on nodes and edges for ordered trees as opposed to more general graphs). The
graph-theoretical view is more helpful for intuitive understanding of walks.

We assume ‘rich’ trees in that nodes may be annotated with constructors
and types (as needed for common term representations); leaves may carry some
data (as needed for literals); edges (or ‘branches’, as we will call them) may be
annotated with labels (as needed for records, for example).

Thus, any node n of a tree t can be observed as follows:
– n.arity: The arity ≥ 0 of t’s subtree rooted by n.
– n.root: Test for n being the root of t.
– n.leaf: Test for n being a leaf of t, i.e., n.arity = 0.
– n.name: The constructor name, if any, of n.
– n.type: The type, if any, of n.
– n.data: The data, if any, of n.
– n.parent: The parent node of n for n.root = false.
– n.child[i]: The i-th child of n for 1 ≤ i ≤ n.arity.
– n.label[i]: The label, if any, of the i-th child of n for 1 ≤ i ≤ n.arity.

2.2 Branches

We limit ourselves to walks along the branches of trees as opposed to ‘jumps’,
which would be possible in principle. This limitation seems to imply a more
‘structured’ programming technique. No need for jumps has arisen from our
applications so far.

It is convenient to use natural numbers for referring to branches because 1,
. . . , n.arity readily refer to the children of n, leaving 0 for the parent. Hence, it
makes sense to use branch numbers to say that we walk to the parent or to a
specific child. We may also use branches to track where we came from by referring
to the ‘previous node’ with the corresponding branch number.

2.3 Paths

If we assume immutable trees for a moment, then the walk over a tree may be
described as a path, i.e., sequence of nodes as they are encountered by the walk.
Paths always start at the root of a tree. In the regular case, paths also end at the
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The edge labels denote the order of walking along
branches. The default walk combines pre-, in-, and
post-order in that we walk down from the parent in
a depth-first manner, and we return to the parent
after each subtree.

Fig. 1. Illustration of the default path for an arithmetic expression.

root. Paths for walks along branches can be effectively represented as sequences
of natural numbers.

We refer to the default path as the path which goes along each edge in the tree
in both directions (i.e., along each branch) to achieve depth-first, left-to-right
visiting order. Notably, a parent is visited before and after each child; see Fig. 1
for an illustration. The visiting order of the default path can be described by
defining uniformly the next node (in fact, branch) relative to the current node
and one of its branches, from:

next 7→
{
from+ 1, if current.arity > from
0, otherwise

We think of from as referring back to the node from which we walked to the
current node. This is the information that needs to be tracked by a walk. That
is, if we entered the current node from its parent (i.e., branch 0), then we walk
to the first child; if we (re-) entered the current node from its i-th child, then we
walk to the i+ 1-th child, if there is a next child, and to the parent otherwise.

The definition of next is powerful in so far as it is also usefully describes
continuation in ‘default order’, even for walks that diverted from the default
path. This follows from the fact that the definition only looks at the branch to
the immediately preceding node in the walk.

2.4 Join points

Walks (according to the default path or otherwise) expose ‘join points’ for
transformations, i.e., the join points corresponding to the encounter of nodes along
certain branches. Two important join points are described by these conditions on
current and from:

– down ≡ from = 0
– up ≡ current.leaf || from = current.arity

The down join point captures whether current was just entered from its parent.
The up join point captures whether the walk is about to return to the parent of
current. In §3 (see §3.6 specifically), we will see additional join points at work.
Programmers quantify join points combined with other conditions on the tree
and custom state to control the walk and to select stateful behavior.
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2.5 Mutation

Let us consider walks on mutable trees. Thus, the steps of a walk may add
and remove nodes and edges before they pick any branch. While a walk on an
immutable tree is simply characterized by a sequence of contiguous branches, a
walk on a mutable tree is characterized by a sequence of states. A state s has the
following components:
– s.tree: The tree as seen in state s.
– s.current: The walk’s current node in s.tree.
– s.from: The branch referring back to the node prior to s.current.

We assume that state transition breaks down into two components: the mutation
of the tree and the actual step to advance current. Clearly, if we were to allow
arbitrary mutation, the semantics of walking becomes totally operational and
properties such as termination are no longer attainable.

We are specifically interested in the case that mutation replaces current
and its subtree, as in the application of a rewrite rule. When replacing current,
though, the associated from may no longer be meaningful. Consider these cases:
– If from = 0, prior to mutation, then the first child, if any, of current was set up

to be next. In this case, from shall be retained so that the first child, if any, of
current is also set up to be next past mutation.

– If current.arity > 0 ∧ from = current.arity, prior to mutation, then the parent
of current was set up to be next. Thus, from shall be assigned current.arity, as
seen past mutation, so that again the parent of current is set up to be next.

These two cases cover rewrite rules on the down and up join points; for now, we
take the view that current should not be replaced otherwise.

3 A Language for Walks

The Nuthatch transformation language supports walks, as described in the
previous section, on the grounds of an abstraction form for organizing walks in
steps along branches. Nuthatch can be mapped to an OO language such as
Java, as discussed briefly in §4.

At runtime, a walk encapsulates basic state, as described in §2.5, extra state
to be declared, and it provides a step action to be invoked repeatedly. (We assume
that walks are under the control of a main program which can start walks on
trees, observe results after a walk is complete, and possibly restart suspended
walks.)

3.1 Syntax summary

A walk abstraction has a name (an id), an optional declaration part for extra
state associated with the walk and a statements part describing a step in terms
of observing, matching, and rewriting the tree, accessing the walk’s state and
identifying the branch to follow. Walks may be parameterized, as discussed in
§3.8. Thus:6

6 We use ANTLR (http://antlr.org/) grammar notation.
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walk : ’walk’ closure ;
closure : id paras? ’{’ (’state’ declaration)* statement+ ’}’ ;
paras : ’(’ id (’,’ id)* ’)’ ;

There are Java-like variable declarations, but with an optional type and a required
initializer:
declaration : type? id ’=’ expression ’;’ ;

These are the available statement forms:
statement : ’{’ statement+ ’}’
| ’if’ expression ’then’ statement (’else’ statement)?
| declaration | id ’=’ expression ’;’ | expression ’;’
| ’return’ expression ’;’
| ’walk’ ’to’ expression ’;’ | ’stop’ ’;’ | ’suspend’ ’;’
| ’!’ term ’;’
;

Statement grouping, if-then-else with dangling else, (local) variable declarations,
assignments, and expressions are Java-like. ‘returns’ are needed for functions; see
below. There are special statement forms to specify what branch to walk to, to
stop or suspend a walk. There is another special statement form to replace the
current term (see ‘ !’).

In addition to Java-like expression forms, there are these special forms:
expression : ... | ’?’ term | getter | ’~’ id paras? ;

That is, there is a special expression form for matching the current term (see
‘?’) in a condition that also binds variables. Further, there are ‘getters’ for trees
(arity, root, etc.), the basic walk state (tree, current, from), join points (down,
up), and next, as we set them up in §2. Tree observers are applied to the current
term if not specified otherwise. The last expression form (see ‘~ ’) deals with
nested walks, as discussed in §3.9.

Nuthatch also offers a simple abstraction form for actions which do not
walk anywhere. Other than that, they can maintain state and observe the basic
state of a walk in which they participate, if any. Likewise, there are functions for
expression abstraction. Thus:
action : ’action’ closure ;
function : ’function’ closure ;

Actions and functions are illustrated in §3.8.

3.2 The Default Walk

The following Nuthatch walk captures the default path of §2.3:
walk default {
walk to next;

}

Each control-flow path of a Nuthatch action must end in a walk-to statement
which identifies the branch to walk to. The obvious options are next, parent
(overloaded to refer to branch 0), child[i] (overloaded to refer to branch i), first
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(assumed to represent the branch 1 for the first child), and last (assumed to
represent the branch for the last child).

3.3 Diversion from the Default Path

The following example shows how a walk can be diverted depending on the
current node; in this case, to avoid traversing Expr subtrees. To this end, we
observe the type of the current node; we assume that Expr is one of the types of
terms that are walked:
walk skipExpr {
walk to (if type==Expr then parent else next);

}

(We use expression-level if-then-else.)

3.4 Derived Walks

New walks can be derived from existing walks. To this end, walk abstractions
are referred to in statements. The underlying semantics is that the referenced
walk’s step action is inlined. For instance:
walk skipExpr {
if type==Expr then walk to parent;
default;

}

If the referenced walk includes extra state (which is not the case in the above
example), then such state would be included into the referring walk automatically.

Because the default path is so prevailing, we assume that any walk abstraction
derives implicitly from default such that default’s action is appended at the end
of the step action. Accordingly, we shorten skipExpr:
walk skipExpr {
if type==Expr then walk to parent;

}

We note that this implicit derivation occurs only at the top level, not when a
walk is used to create a derived walk.

3.5 Stateful Walks

A walk may carry state. Actions may hence read and write such state. For
instance, the following walk abstraction counts nodes; it takes advantage of the
implicit derivation from default, as just explained above:
walk countNodes {
state count = 0;
if down then count++;

}

That is, we declare a variable count to maintain the node count, which we initialize
to 0 and increment for each node, but only along the down join point—so that we
do not count nodes multiple times. (We could also use up as a condition here.)
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3.6 Flexible Point-cuts

We have started to invoke the AOP-like terminology of join points. Accordingly,
walks may quantify the join points of interest; in AOP speak: walks need to
express point-cuts. Consider the following walk abstraction which converts a
tree into a string, using a term-like representation with prefix operators and
comma-separated arguments as in “add(add(x,y),0)”:
walk toString {
state s = "";
if leaf
then s += data;

else {
if down then s += name + "(";
if up then s += ")";
if from>=first && from<last then s += ", ";

}
}

In the code, we carefully observe the position along the walk to correctly paren-
thesize and place commas where appropriate. For instance, “(“ belongs before the
first child; thus the condition down, i.e., from==parent. This simple example clearly
demonstrates how Nuthatch style does not explicitly recurse / traverse into
compound structures, as is the case with functional programming or Stratego-like
traversal schemes. Instead, Nuthatch style entails observation of the branch on
which the current node was entered and possibly other data.

3.7 Walks with ‘In Place’ Rewriting

Rewriting is straightforward; it relies on a special condition form for use in an
if-then-else statement to match (‘?’) a term pattern with the current term and
to bind variables for use in the replace (‘ !’) statement within the then-branch.
We also say ‘in place’ rewriting to emphasize the fact that the tree is modified.

Let us revisit the example from the introduction (§1). The example follows
the default path. When applied to the sample tree of Fig. 1, the result is ‘5’. For
what it matters, we mention that simplification would not be complete, if we
were using the down instead of the up join point in the example. (The unit law of
addition would not be applicable in the example on the way down.)

‘In place’ rewriting is suitable for endogenous transformations [20] and specif-
ically transformations that are meant to preserve many nodes and edges, as in
the case of ‘refining models’ according to [26], but see §3.11 for a discussion of
exogenous transformations [20].

3.8 Parameterized Walks

Common Stratego-like traversal schemes can be easily expressed by parameterizing
walk abstractions, e.g.:
walk bottomup(s) { if up then s; }
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The parameter s may abstract over actions such as rewrite rules. Let us revisit
the example from the introduction (§1); we capture these actions (as of §3.1):
action UnitLawAdd { if ?Add(x, 0) then !x; }
action ZeroLawMult { if ?Mult(x, 0) then !0; }
action BothLaws { UnitLawAdd; ZeroLawMult; }

Thus, bottom-up traversal for simplification can be recomposed as follows:
bottomup(BothLaws)

Here is a more problem-specific, still language-parametric example of a parameter-
ized walk which deals with state-based scope-tracking as opposed to Stratego-like
traversal; such tracking is needed in various transformations, e.g., for the purpose
of hosting new abstractions in the same context as the current scope or be it just
for generating error messages.
walk scopeTracker(isDeclaration) {
state scopes = new Stack[Node]();
if down && isDeclaration then scopes.push(current);
if up && current==scopes.top() then scopes.pop();

}

In the context of a transformation for Java, isDeclaration may be a condition
(a function as of §3.1) that tests for a Java class declaration:
function isClassDec { return ?ClassDec(ClassDecHead(_,name,_,_,_),_); }

3.9 Nested Walks

Consider again the definition of bottomup, as given above. Now imagine that the
argument s is not a plain action, such as rewrite rule, but it is meant to be a
walk in itself. The existing definition would inline that walk according to the
derivation semantics of §3.4, thereby disrupting the bottomup traversal. Instead,
the argument walk should be performed atomically, as part of the referring step’s
action, as opposed to participating in the enclosing walk. References to arguments
(which may be walks) can be accordingly marked as nested walks by ‘~ ’:
walk topdown(s) { if down then ~s; }
walk bottomup(s) { if up then ~s; }
walk downup(s,t) { topdown(s); bottomup(t); }

(‘~ ’ is a no-op on non-walks such as actions.) We note that each nested walk
views the current node of the enclosing walk as the root. Note that no nested
walk designation happens for downup because derivation semantics (as of §3.4) is
appropriate here, if we want s to be applied on the way down and t on the way
up. For comparison, consider these definitions:
walk badDownup1(s,t) { ~topdown(s); ~bottomup(t); }
action badDownup2(s,t) { ~topdown(s); ~bottomup(t); }

badDownup1 performs a top-down walk followed by a bottom-up walk for each
node in the tree. badDownup2 performs a top-down walk followed by a bottom-up
walk for a given tree; both walks start from the root.
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3.10 Termination of Walks

A walk terminates regularly, if the walk encounters the root of a tree through the
parent branch. A walk terminates irregularly if an unhandled exception is thrown
by the step action. A walk may also be terminated explicitly or suspended via
designated actions stop and suspend.

Accidentally, one may describe walks that do not terminate. This is implied by
the expressiveness and flexibility of the abstraction form for walks. For instance, a
transformation may continuously expand some redex for the down join point. Other
programming techniques for traversals are also susceptible to this problem [16].

Another major challenge for termination is when graphs are walked. That is,
walks may be cyclic. In adaptive programming [19], strategic programming on
graphs [11], and OO programming with visitor combinator [30], this problem can
arise as well. The problem can be solved, if we can make sure that no object is
visited more than once. In Nuthatch, we can use an ‘enter once’ walk as the
starting point for any walk on a graph. Thus:
walk enteronce {
state seen = new WeakHashSet();
if down then
if seen.contains(current)
then walk to parent;
else seen.add(current);

}

Thus, the walk keeps track of all nodes that were encountered. This scheme
is not just useful for avoiding cyclic walks; it generally prevents walks from
entering nodes more than once, even in directed acyclic graphs. The problem of
non-termination or repeated walks into the same nodes can also be addressed if
additional metamodel information is available to distinguish composition versus
reference relationships, as in the case of walking EMF models, for example. That
is, edges for reference relationships shall not be followed by walks.

3.11 Walks Building Terms

When facing exogenous transformations [20] (i.e., transformations with a target
metamodel that is different from the source metamodel), then ‘in place’ rewriting
(see §3.7) may not be appropriate, unless it is acceptable to operate on trees that
use a ‘union’ metamodel for source and target models.

Suitable tree builders can be used to describe exogenous transformations or
even endogenous transformations, when the source of the transformation is to
be preserved. Consider the following walk that uses a tree builder to copy the
walked tree, which is a good starting point for an endogenous transformation
which preserves the walked tree:
walk copyall {
state result = new TreeBuilder();
if down then { result.add(current); result.moveDown(); }
if up then result.moveUp();

}



Walk Your Tree Any Way You Want 11

The idea is that a tree builder provides an interface to (building) a tree; there
are operations for adding nodes and edges. Further, the builder uses a cursor to
maintain the current focus for addition. The cursor is a pointer to the children list
of some node. Upon construction, the cursor points to the degenerated children
list that will hold the root of the built tree. In the ‘copy all’ walk, we use the
following operations:
– add : A given node (current in the example) is added to the children list pointed

to by the cursor, where information such name, type, and data as well as label
(for the edge to the parent) is copied over.

– moveDown: The cursor is set to point to the children list of the last node in the
children list currently pointed to by the cursor.

– moveUp: The cursor is set to point to the children list of the parent node of the
last node in the children list currently pointed to by the cursor.

When implementing exogenous transformations, tree builders are invoked to add
‘terms’ specific to the target model.

4 Walking in Java

In the following, we sketch the Nuthatch/J library for walking in Java. Nuthatch
transformations can be mapped to Java code that uses the Nuthatch/J library.

4.1 Basic Interfaces

Nuthatch/J is designed as a generic tree walking library for Java which is
independent of the underlying data representation. Thus, the library can be
adapted by parameterization and subclassing for use with different kinds of trees,
including those of existing transformation systems; see §4.4.

Walks are specified by implementing the Walk interface:
public interface Walk<W extends Walker<?, ?>> {

int step(W walker);
}

The step method performs a single step of the walk, can observe and manipulate
state, and returns the next branch to walk to. The Walker type of the library
encapsulates the tree-walking functionality and maintains the current node and
state as described in §2.5, and provides the tree observers of §2.1.

The Walk interface is parameterized by the walker type, thereby making the
extended features of a walker accessible in a type-safe manner. For example, the
following code (also available online) implements the example from §1:
public int step(ExprWalker w) {
if (down(w)) {
if (w.match(Add(var("x"), Int(0)))) w.replace(w.getEnv().get("x"));
if (w.match(Mul(var("x"), Int(0)))) w.replace(Int(0));

}
return NEXT;

}

ExprWalker is a subtype of Walker which fixes the generics parameters for the
expression terms of the example.
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4.2 Extra State

Walk state is handled either by using variables in a closure or field variables
in the class which implements Walk. The following Java code uses the former
technique to replicate the example from §3.6:
final StringBuffer s = new StringBuffer(); // Accumulate result here.
Walk<ExprWalker> toTerm = new BaseWalk<ExprWalker>() {
public int step(ExprWalker w) {
if (leaf(w)) // We are at a leaf; print data value .
s.append(w.getData().toString());

else if (down(w)) // First time we see this node; print constructor name.
s.append(w.getName() + "(");

else if (up(w)) // Just finished with children ; close parenthesis .
s.append(")");

else // Coming up from a child (not the last ); insert a comma.
s.append(", ");

return NEXT;
}

};

4.3 Combinator Style

A library of common parameterized walk or action combinators (in the sense
of §3.8) is available for various join points. In a combinator style, the simplifier
of §1 can be expressed as follows:
Walk<ExprWalker> w =
walk(up(sequence(match(Add(var("x"), Int(0)), replace(var("x"))),

match(Mul(var("x"), Int(0)), replace(Int(0))))));

The walk is built up using static methods calls, where ‘walk’ represents the
default walk, ‘up’ builds a conditional action for the up join point, ‘sequence’
executes all its arguments in the given order, ‘match’ executes its argument, if
the pattern matches, and ‘replace’ performs a replace action.

4.4 Tool Integration

Nuthatch/J integrates with Spoofax/Stratego/XT [4] and Rascal [13] so that
these systems can be used in Nuthatch/J applications. This is well in line with
other transformation systems that support diverse access methods. For instance,
Tom [21] can be applied to parse trees and object graphs of a domain model;
POM adapters [12] allow Stratego to transform an Eclipse JDT AST.

The Nuthatch/J+Stratego library supports untyped trees using the same
term implementation as the Java version of Stratego. It also provides an interface
to the JSGLR parser, including a pattern generator which generates pattern
builders from an abstract syntax specification. Syntax definitions and minimal
tooling for working on Java programs is also available, through the JavaFront
package for Stratego.

The Nuthatch/J+Rascal library wraps the Rascal data types into Nuthatch
trees, and can work on both concrete and abstract syntax trees (though without
support for making concrete syntax patterns, at the time of writing).
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Nuthatch/J Stratego STRJ Java
Collect Strings 3.0 5.0 4.2 —
Commute 4.6 29.8 0.9 0.8
Bottomup Build 5.6 3.2 1.2 —
Topdown 1.5 1.0 0.5 0.5
Downup 1.5 1.7 0.6 0.5

Table 1. Some performance measurements of Nuthatch/J vs. Stratego, with execution
times in milliseconds (average over 5000 runs) for Nuthatch/J, interpreted Stratego,
compiled Stratego (strj), and hand-written Java.

4.5 Performance

As of writing, Nuthatch/J has not yet been optimized for performance. Never-
theless, we have done some measurements of traversal and rewriting performance
on Java programs, comparing against Stratego. All Nuthatch/J measurements
were done using Stratego terms as the underlying data structure, so that we
could use the exact same data for both Nuthatch/J and Stratego, and check
that both implementations gave the exact same results.7

For reference, we also measured hand-written Java versions of some of the
transformations, in order to get an idea of the top performance possible using
the Stratego term library.

A few selected experiments are summarized in Table 1.8 The experiments show
that performance of Nuthatch/J is similar to that of the Stratego interpreter
for trivial traversals (topdown, downup), but slower than compiled Stratego code.
Simple transformations (commute) are a lot faster in Nuthatch/J than with
interpreted Stratego code, but again, compiled Stratego is faster. Nuthatch/J
has an advantage when using plain Java to accumulate state, and outperforms
compiled Stratego on collecting strings from a tree.

5 Related Work

Walks à la Nuthatch combine generic traversal, stateful behavior, OO-like deriva-
tion, and parameterization. Accordingly, walks relate to Stratego-like program-
ming, visitor programming including visitor combinators, adaptive programming,
generic functional programming, and model transformation.

Stratego et al. Walks are inspired by the seminal work on strategies à la Strat-
ego [29, 4]—the combination of term rewriting and programmable strategies, also
for traversal purposes. Walks depart from strategies in that the basic traversal
expressiveness is about continuous walking along branches as opposed to recursive
7 Stratego measurements were done using both interpreted and compiled code, both
using version 1.1 of the Spoofax language workbench. For interpretation, we used
the hybrid interpreter, which uses compiled-to-Java versions of the standard libraries,
but interprets user code on the fly. Measurements are an average of 5000 iterations,
run on an otherwise idle AMD FX-8350 computer, running OpenJDK 7u15.

8 See http://nuthatchery.org/icmt13/benchmarks.html for more details.
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one-layer traversal. Further, walks are designed around state, whereas strategies
only uses state in the special sense of dynamic rewrite rules [3]. Also, walks
are designed to be derivable (and parameterized), whereas strategies leverage
parameterization only. §3.8 shows how walks represent Stratego-like traversal
schemes. The AspectStratego [10] variation on Stratego was proposed to leverage
some means of aspect orientation in the context of term rewriting. In this work,
join points of rewriting or the strategic program can be intercepted. By contrast,
walks à la Nuthatch interact with join points for walks along trees.
Visitor programming In the OO programming context, traversal problems can
be addressed by means of visitors [22]. Specifically, advanced approaches use
visitor combinators [30, 21] inspired by Stratego. The cited approaches transpose
Stratego style to an OO language context; they make limited use of OO-like
derivation and imperative state. When compared to walks, ‘visits’ are controlled
strategically (as above), as opposed to exposing join points of the walks to the
problem-specific functionality.
Adaptive programming The notion of processing object graphs in a structure-shy
fashion has been realized in seminal work on adaptive programming [19], where
traversal specifications of objects to be visited are separated from actions to be
actually applied to the objects on the path. Stratego-like strategic programming
and adaptive programming are known to be related in a non-trivial manner [17].
Walks differ from adaptive programs in that they do not leverage any special
language constructs for traversal specifications. Also, each step of a walk may
affect the remaining path.
Generic functional programming The parameterization- or combinator-based
approach of traversal programming has been pushed particularly far in a generic
functional programming context; see, e.g., the ‘mother of traversal’ [14, 23]. Indeed,
such approaches offer highly parameterized abstractions for different traversal
instantiations. By contrast, walks à la Nuthatch additionally offer i) OO-like
derivation, ii) imperative OO-like stateful behavior, and iii) exposure of join
points of walks (traversals) for customized traversal behavior.
Model transformation Because of the large amount MT languages in existence,
it is hard to compile a useful comparison. Overall, Nuthatch style is closer to
term rewriting approaches. We have in mind ATL [9] as a representative in what
follows. Thus, model transformations match source model elements and map
them to target model elements. Endogenous transformations, specifically, may
rely on some degree of implicit behavior (refinement) to copy or retain model
elements when not said otherwise [26]. MT rules are essentially declarative, with
some built-in scheme of applying rules to the source model. Escapes to imperative
features are needed in practice and thus supported. Join points of walks à la
Nuthatch are not established for MT languages.

6 Concluding remarks
We have described a new approach to traversal programming with walks as the
central abstraction form. The development of the walk notion and all of our
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related experiments were based on the Nuthatch/J library for walks in Java.
The Nuthatch transformation language should be viewed as an ongoing effort
to extract a transformation DSL from the Nuthatch/J library. Nuthatch
can express traversal schemes à la Stratego and thus, it provides ‘proven ex-
pressiveness’. Importantly, OO idioms (such as state, encapsulation, closures,
and type derivation) are also part of the Nuthatch programming model. The
Nuthatch/J library leverages adapters for tree formats of other transformation
tools in the interest of tool integration.

Proper DSL notation enables conciseness (when compared to Java), type
checking, static analyses for other properties of walks, and compile-time optimiza-
tions. However, an external DSL approach makes it harder to provide all language
services. Therefore, we continue research on the Nuthatch/J’s combinator style
of §4.3 to perhaps settle on an internal DSL (in fact, DSL embedding) which is a
popular approach for transformation languages with functional host languages [18,
25, 7]. Nuthatch/J’s combinator style would also permit on-the-fly optimization,
as it has been used elsewhere for embedded DSL implementation [27, 28].
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