Specification of Generic APls,
or: Why Algebraic May Be Better Than Pre/Post

Anya Helene Bagge
Bergen Language Design Laboratory
Department of Informatics
University of Bergen, Norway
http://www.ii.uib.no/ anya/

ABSTRACT

Specification based on Floyd-Hoare logic, using pre and post-
conditions, is common in languages aimed at high integrity
software. Such pre/postcondition specifications are geared
towards verification of code. While this specification tech-
nique has proven quite successful in the past 40 years, it has
limitations when applied to API specification, particularly
specification of generic interfaces.

API-oriented design and genericity is of particular impor-
tance in modern large-scale software development. In this
situation, algebraic specification techniques have a signifi-
cant advantage. Unlike pre/post-based specification, which
deals with the inputs and outputs of one operation at a time,
algebraic specification deals with the relationships between
the different operations in an API, which is needed in the
specification of generic APIs.

Categories and Subject Descriptors

D.2.4 [Software Engineering]: Software/Program Verifi-
cation; F.3.1 [Logics and Meanings of Programs]|: Spec-
ifying and Verifying and Reasoning about Programs

General Terms
Reliability, Verification, Languages

Keywords

Program specification; API specification; Generic program-
ming; APIs; Axioms

1. INTRODUCTION

Modern interface-oriented and generics-heavy development
methods [29, 35] focus on abstract APIs, rather than deal-
ing directly with concrete data structures. In this setting,
the implementation of a class will never deal directly with
objects of other classes—rather, access is through a well-
defined interface that hides the concrete class of each ob-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

HILT 2014, October 18-21, 2014, Portland, OR, USA.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-3217-0/14/10 ...$15.00.
http://dx.doi.org/10.1145/2663171.2663183.

Magne Haveraaen
Bergen Language Design Laboratory
Department of Informatics
University of Bergen, Norway
http://www.ii.uib.no/ magne/

ject. One implementation class is exchangeable for another,
as long as it complies with the same interface.

Generic libraries for collection classes are prime exponents
of this idea. The different collection implementations have
specific requirements on the API of the elements. The col-
lection class only accesses the elements through the API.
When the API requirements are satisfied, the class provides
the service expected of it. Generic programming extends this
approach to any algorithm and data structure. The goal is
to make the implementation as flexible as possible, stating
the minimal requirements needed on the data in order to let
the implementation work.

Many languages have mechanisms for syntactic require-
ments on generic parameters. Examples are interfaces in
Java and packages in Ada. This is sufficient to ensure in-
dependently that the generic code is type correct and that
the instantiation of the generic code will be type correct. In
C++ the template mechanism is used for generic program-
ming, but in itself offers no such guarantee, so every instan-
tiation must be fully typechecked. An attempt at remedying
this situation was made in the form of concepts [17], but the
proposal was deemed to complex. Interestingly, the C++
concept proposal included axioms to provide semantic con-
straints as well as the syntactic requirements. Neither the
Java nor the Ada mechanisms include any semantic con-
straints.

Due to the abstract nature of interfaces, semantics are
more easily specified by relating the operations of the in-
terface to each other, rather than by trying to specify the
inputs and outputs of each operation separately. In particu-
lar, specifying the output of an operation may be impossible
until we know which concrete data types are involved.

Consider the hash and equals methods of Java [15]:

public int hashCode();
public boolean equals(Object other);

The behavior of hashCode is specified entirely by its rela-
tionship to equals: all equal objects must have the same
hash value, i.e. a.equals(b) implies that a.hashCode()
b.hashCode() for all a and b. This is an aziom, in the alge-
braic specification sense. In Java, satisfying these properties
is necessary in order for collections like HashMap and Hash-
Set to work as specified.

In algebraic specification terminology, a signature defines
the syntax of an API by listing its types and operations (with
argument lists and result types). Together with a set of az-
ioms describing the intended semantics, we get a complete
API specification. The axioms normally take the form of
universally quantified expressions in some logic. The axioms

http://www.ii.uib.no/~anya/
http://www.ii.uib.no/~magne/
http://dx.doi.org/10.1145/2663171.2663183

relate the different operations of the API to each other. Mod-
els (implementations) of a specification can be constructed
by associating concrete data structures with the types, and
concrete implementation code with the operations, in such a
way that the axioms hold (are satisfied). A typical abstract
data type declaration corresponds to a signature; with ax-
ioms we get an API specification; and with implementation
class(es) we get one (or more) models.

In contrast, the pre/post specification technique is based
on Floyd-Hoare logic, using triples of the form {P} C {Q},
where the postcondition @ holds after the command C, if
the precondition P holds before. This is typically realized
in the form of a requires or pre clause for the precondition,
and an ensures or post clause for the postcondition, as seen
in e.g., Eiffel [27], JML [23] or SPARK [5].

Preconditions are particularly important in specifying par-
tiality — the range of valid parameters of a function. In the
case of hashCode and equals above, Java enforces an implicit
precondition that this != null. For Java’s equals, the se-
mantics is normally such that passing null as the argument
should give the result false, hence there is no precondition
on the argument.

In algebraic specifications, handling of partiality and pre-
conditions has traditionally been inelegant, often leading to
significant clutter in the axioms, see [28] for an overview.
This may have lead to an impression that algebraic specifi-
cations are difficult to use in practical settings. In guarded
algebras [20], preconditions are stated at the level of the
signature (similarly to pre/post specifications), and all ax-
ioms are written on the implicit assumption that the precon-
ditions hold. The clutter of guarding against precondition
problems thus disappears, while the benefit of specifying the
abstract API is retained.

In this paper we do not delve into the theory of the specifi-
cation technique. Rather we contribute a practical approach
to API specifications, where the axioms are written as code
using assertions. This allows direct integration with unit
testing systems, if the axioms are written using unit testing
assertions. Such axioms should also be readily exploitable
by language related proof tools, e.g., the machinery used for
proving pre/post specifications. The paper shows this tech-
nique for writing axioms in Java, C++ and Ada, and relates
it to the QuickCheck [8] test framework for Haskell.

The paper is organized as follows. In section 2 we motivate
axioms for API specifications, and show several examples
related to the Java library. Then we discuss the approach for
other languages (C++, Ada, Haskell) in section 3. Section 4
discusses axioms versus pre/post specifications, followed by
the issue of purity and side effects (section 5). We will also
briefly discuss the background and history of specification
techniques (section 6) before we conclude (section 7).

2. API SPECIFICATIONS

Specifications of APIs differ from the specification of in-
dividual functions. In APIs there are interaction effects be-
tween functions, and the specification focuses on these.

Consider the Java collection classes. These exist in many
variations, but the Collection interface defines the basic prop-
erties. The method add is in the Java 7 library given the
following specification®.

'From http://docs.oracle.com/javase/7/docs/api/
java/util/Collection.html#add (E)

N}

Ensures that this collection contains the speci-
fied element (optional operation). Returns true
if this collection changed as a result of the call.
(Returns false if this collection does not permit
duplicates and already contains the specified el-
ement.)

Collections that support this operation may place
limitations on what elements may be added to
this collection. In particular, some collections
will refuse to add null elements, and others will
impose restrictions on the type of elements that
may be added. Collection classes should clearly
specify in their documentation any restrictions
on what elements may be added.

If a collection refuses to add a particular element
for any reason other than that it already contains
the element, it must throw an exception (rather
than returning false). This preserves the invari-
ant that a collection always contains the specified
element after this call returns.

This textual description subtly relates the effect of the add
method to the result of calling the contains method. Further,
there are many conditions which need to raise exceptions. If
the collection is immutable, the add method will not be sup-
ported and must raise UnsupportedOperationException. For
some precondition violations, like adding a null reference to a
collection that does not allow this, the NullPointerException
should be thrown. For other violations, like adding a dupli-
cate element to a collection which does not allow this, the
add method should return normally with a return value of
false, not modifying the collection. Thus any method that
queries the status of the collection, e.g., the size method,
should not observe any difference between the two states
of the collection. These properties can be written down as
normal Java code?. The following procedure captures the
specification above.

public static <E>
void addEnsuresCollectionContainsElement(
Collection <E> ¢, E t) {
try {
// Records some data on current status of c.
int size = c.size ();
boolean contained = c.contains(t);

// Attempt to add an element.
if (c.add(t)) {
// Element added to the collection .
assertEquals (size + 1, c. size ());
} else {
// Element already present.
assert True (contained);
assertEquals (size, c. size ());

// Check that the element is present.

assertTrue(c. contains(t));

} catch (UnsupportedOperationException
| ClassCastException

2 The Java based axioms used in this paper work with
JAXT [19], an axiom based testing tool for Java. JAxT
couples axioms and test data to the relevant interfaces and
classes, and is integrated with JUnit through using JUnit
assertions.

http://docs.oracle.com/javase/7/docs/api/java/util/Collection.html#add(E)
http://docs.oracle.com/javase/7/docs/api/java/util/Collection.html#add(E)

| NullPointerException

| NlegalArgumentException

| llegalStateException e) {

// OK: precondition wviolation indicated .

Note the interactions between methods add, contains and
size. The specification is as much a description of how these
methods interact, as a description of the add method itself.

S

| llegalStateException e) {
// OK: call wviolated preconditions .
¥

The second axiom above implies that normal values added
to the collection have the normal behavior described in the
axiom addEnsuresCollectionContainsElement above.

A similar pattern can be used for dealing with collections
that disallow, or allow, null references, respectively.

The interaction is somewhat overwhelmed by the code used public static <E>
to handle precondition situations, a problem also in regular void add_null_invalid (Collection <E> c) {
Java code that tries to deal with all error situations. try {

This rather complex interaction between features and pre- ‘ c.add(null);
conditions has readily been captured as Java code. We be- fail ("add() is required to refuse null elements.”);
lieve many API features can be specified as code, yielding } catch (UnsupportedOperationException €) {
several benefits. fail ("add() is supposed to be implemented.”);
s} catch (NullPointerException e) {

// OK

o} catch (ClassCastException

| IllegalArgumentException

| llegalStateException e) {
fail ("add() should throw NullPointerException.”;

N

e The axiom reads as normal code, a notation familiar
to programmers.

e The axiom is executable as a parameterized unit test,
and in fact here we use the JUnit assertion facility
to make the claims in the axiom, hence supporting
integration with unit testing tools. 14

S

}

1 public static <E>

void add_null_valid (Collection <E> ¢) {
The latter implies that any proof tool for API specification s try {
needs to understand the programming language syntax and c.add(null);
semantics, and only needs to understand the programming // OK
language’s syntax and semantics since no additional specifi- } catch (UnsupportedOperationException
cation notation is used. 7 | NullPointerException

We can further explore this style of axiom notation by pro- | ClassCastException
viding specializations for a few of the cases covered above. o | llegalArgumentException e) {
The next two axioms are mutually exclusive and must be fail ("add() is required to accept null elements.”);
used for appropriate collections; the first for immutable col- 11 } catch (lllegalStateException €) {
lections where add is not supported, the second requires that // OK, maybe a buffer overflow

e The semantics of the axiom is fully compatible with
the semantics of the host language.

the add method is implemented. 5}
1 public static <E> }
void add_unsupported(Collection<E> ¢, E t) { Axioms written as code are generally able to deal with all
try { situations that the programmer must handle in the code.
c.add(t);

fail ("add() did not throw.”);

} catch (UnsupportedOperationException e) {
7 // OK: intended behavior.

} catch (ClassCastException
9 | NullPointerException
| lllegalArgumentException
| llegalStateException e) {

fail ("add() throws wrong exception.”);

2.1 Generic Requirement APIs

The purpose of generic programming is to reuse algo-
rithms and data structures by parameterizing them on types
and operations, i.e., the generic requirement API. The mean-
ing of the parameterized data structures and algorithms very
much depend on the semantics of the generic requirement
API. For instance, an algorithm for sorting data in an ar-

} ray, requires that the elements have a total order operation

available. When implementing a hash map, a hash function
public static <E> compatible with the equality function are the basic require-
> void add_supported(Collection <E> ¢, E t) { ments, implementing a matrix package requires at least a
try { commutative ring as the element type, and so forth.

4 c.add(t); Mainstream languages supporting generic programming
// OK: call succeeded . include Ada, C++ and Java. They all provide means for
6} catch (UnsupportedOperationException e) { declaring syntactic aspects of generic requirements, possibly
fail ("add() is required for this class”); bundling generic arguments together in packages, templates

s} catch (ClassCastException or interfaces.
| NullPointerException Java is an illustrative example, where the requirements for
0 | IllegalArgumentException their collection classes have received extensive documenta-

N

IS

10

tion in the standard library. Consider the Comparable API
from Java®.

interface Comparable<T> {
int compareTo(T o);

The Comparable API is one of the standard interfaces offered
by Java, and must be implemented in order to use e.g. the
sorted collection classes from the Java Library. Classes that
implement this interface must provide a total order via the
compareTo method. This method has a number of proper-
ties. Quoting from the documentation:

The implementer must ensure sgn(x.compareTo(y))
-sgn(y.compareTo(x)) for all x and y. (This
implies that x.compareTo(y) must throw an ex-
ception iff y.compareTo(x) throws an exception.)

The implementer must also ensure that the rela-
tion is transitive: (x.compareTo(y)>0 &&
y.compareTo(z)>0) implies x.compareTo(z)>0.

Finally, the implementer must ensure that
x.compareTo(y)==0 implies that sgn(x.compareTo(z))
== sgn(y.compareTo(z)), for all z.

It is strongly recommended, but not strictly re-
quired that (x.compareTo(y)==0) == (x.equals(y)).

The compareTo method combines several total comparison
relations into one:

e x.compareTo(y) < 0is z < y,

e x.compareTo(y) <=0is z < y,

(

(
e x.compareTo(y) == 0is z = y,
e x.compareTo(y) >= 0is z > y, and
(

e x.compareTo(y) > 0is = > y.

The first property from the Java documentation states that
< and >, < and > are duals, and also defines symmetry for
=. The second property is transitivity for >, and hence for
<. The third gives transitivity and reflexivity for =, hence
these properties follow for < and >. The antisymmetry of
< and > follow from the first property and antisymmetry
for int comparisons. Connectedness follows from compareTo
being a function (it has to give a verdict for every combina-
tions of arguments). The fourth property encourages a weak
form of congruence, ensuring that objects that are alike us-
ing compareTo also are alike using equals. These semantic
requirements can be captured as axioms in Java code.

public static <T extends Comparable<T>>
void propl(T x, Ty) {
try {
assertEquals (Math.signum(x.compareTo(y)),
—Math.signum(y.compareTo(x)));
} catch (RuntimeException €) {

// OK;
}

public static <T extends Comparable<T>>

3From http://docs.oracle.com/javase/7/docs/api/
java/lang/Comparable.html

40

19

void prop2(T x, Ty, T z) {
try {
if (x.compareTo(y) > 0 && y.compareTo(z) > 0) {
assertTrue (x.compareTo(z) > 0);

} catch (RuntimeException e) {
// OK;
}
}

public static <T extends Comparable<T>>
void prop3(T x, Ty, T z) {
try {
if (x.compareTo(y) == 0) {
assertEquals (Math.signum(x.compareTo(z)),
—Math.signum(y.compareTo(z)));

} catch (RuntimeException e) {
// OK;
}
}

public static <T extends Comparable<T>>
void prop4(T x, Ty) {
try {
assertEquals (x.compareTo(y) == 0, x.equals(y));
} catch (RuntimeException e) {
// OK;
}
}

The specification also makes strong statements on excep-
tions. The first property states that compareTo is symmet-
ric also for exceptions. Our code-oriented style for writing
axioms can deal with this.

public static <T extends Comparable<T>>
void strongSymmetry(T x, T y) {
try {
x.compareTo(y);
y.compareTo(x);
// OK: neither call throws an exception.
} catch (RuntimeException e) {
// at least one of the calls throws an exception
try {
x.compareTo(y);
fail (”x.compareTo(y) does not throw!”);
} catch (RuntimeException el) {
try {
y.compareTo(x);
fail (”y.compareTo(x) does not throw!”);
} catch (RuntimeException €2) {
// OK! Both calls fail symmetrically.
}
}
}
}

This property is even more specific for comparisons with
null, where another part of the specification states that since
null.compareTo(x) will cause a NullPointerException, then
x.compareTo(null) must also throw NullPointerException.

public static <T extends Comparable<T>>
void compareTo_null(T x) {

try {

http://docs.oracle.com/javase/7/docs/api/java/lang/Comparable.html
http://docs.oracle.com/javase/7/docs/api/java/lang/Comparable.html

5

9

x.compareTo(null);

fail (”Should throw a NullPointerException”);
} catch (NullPointerException e) {

// As required

}
}

Specifying that throwing of exceptions is symmetric, or when
a specific exception is to be thrown, may seem strange from
a pre/postcondition viewpoint, where throwing an excep-
tion may be thought of as checking a precondition (see sec-
tion 4). However, considering the generic use cases, knowing
that certain exceptions are thrown in specific circumstances
makes sense. When writing a sorting algorithm or binary
search, the strong symmetry ensures that it does not matter
for the user of the compareTo method which element is used
for which argument in the call. The method will behave
symmetrically with respect to throwing in general. Specif-
ically, if a collection allow null references as elements, its
algorithms can possibly be simplified since null pointer ex-
ceptions occur consistently whether the null element is used
as the left or the right argument of compareTo.

2.2 API Specifications and API Enrichment

Keeping the specification logic limited to program code
obviously has limitations. Many properties cannot readily
be expressed due to the weakness of code as a specifica-
tion logic, e.g., lack of quantifiers, no ghost variables, no
modal operators etc. Yet there are interesting interplays
between specification language power and API complexity:
a less powerful specification language can in many cases be
compensated by extending the API.

The specification of a sorting algorithm has two compo-
nents: the fact that the output is sorted, and the fact that
the output is a permutation of the input. The sortedness
condition is readily specified in a simple logic, but the per-
mutation condition normally requires a more powerful spec-
ification logic.

We can stick with the simpler logic by expanding the API.
In addition to the sorting method, let the API also contain a
function that counts the occurrences of elements in the data
structure.

/xx Sorts the data in situ. */
abstract public void sort ();

s /xx Counts the number of occurrences of t. x/

6

0

=

2)

IS

abstract public int count(T t);

Now it becomes possible to write both the sortedness and
the permutation condition in a few lines of code.

public static <T extends Comparable<T>>
void isSorted (MyArrayList<T> list, int i) {
if (list .size () <=i) return;
if (0 ==1) return;
list . sort ();
assertTrue (list . get(i—1).compareTo(list.get(i)) <= 0);

}

public <T extends Comparable<T>>
void isPermutation (MyArrayList<T> list, T t) {

int precount = list .count(t);
list . sort ();
int postcount = list .count(t);

assertEquals (precount, postcount);

}

The first axiom states that the list is in the correct ordering
for an arbitrary selected pair of neighboring indices. The
second axiom ensures that for an arbitrary element, sorting
the list does not change the number of times the element
occurs in the list.

In our experience enlarging the API in order to simplify
specifications seems to have several benefits.

e The specification becomes simpler.

e It becomes much easier to test the API as the need for
test fixtures and mock objects is reduced.

e Often the richer API turns out to be more reusable
than the leaner API.

These effects may be a consequence of the API becoming
somewhat more complete and self contained when it is en-
riched in this way. On the other hand, enlarging the API
induces the cost of developing the additional methods.

3. AXIOMS IN OTHER LANGUAGES

3.1 C++ Concepts and the Catsfoot Library

The failed concepts proposal for C++11 [17] came with
builtin algebraic specification support with axiom definitions
as part of the concept interface definitions. The constructs
allowed fundamental algebraic concepts to be expressed and
integrated with generic libraries [16].

Although the proposal was ultimately rejected, the speci-
fication features as well as most of the other features can be
provided through libraries such as the Catsfoot C++ tem-
plate library [2].

The following example illustrates how Catsfoot can be
used to specify total orders, for any type T and associated
relation Rel. Axioms are placed in specially-structured C++
classes inheriting from the Catsfoot class concept.

template <typename T, typename Rel>
struct total_order : public concept {

Each concept may be generic, and have a number of re-
quirements. In this case, we require a relation, encoded as
a functor (class with overloaded function call operator). It
should take two arguments, be callable, and return some-
thing convertible to bool:

typedef concept_list <
is_callable <Rel(T, T)>,
std :: is_convertible <typename is_callable <Rel(T, T)>
:: result_type , bool>,
> requirements;

Next come the axioms. The operator we are specifying is
provided as one of the parameters (this may seem counter-
intuitive, but remember that the actual relation is defined by
the functor class and not the object itself, which is typically
a dummy object obtained through the default constructor):

static void is_antisymmetric (const T& a, const T& b,
const Rel& rel) {
if (rel(a,b) && rel(b, a))
axiom_assert(a == b);
}

static void is_total (const T& a, const T& b,
const Rel& rel) {
axiom_assert(rel (a,b) || rel(b,a));

o

N

N}
I\

26

1

6

8

18

}

static void is_transitive (const T& a, const T& b,
const T& c, const Rel& rel) {
if (rel(a, b) && rel(b, c))
axiom_assert(rel (a,c));

}

Finally, the axioms are collected in a list—this allows the
tooling to automatically call all axioms with randomized
data when testing.

AXIOMS(is_antisymmetric,
is_total ,
is_transitive)
)z
A sample implementation (model) of a total order would
be the less-than-or-equals operator for integers: total_order<
int, op_lt> (this instantiation checks the syntactic require-
ments). We can state that <= satisfies the total_order con-
cept by specializing the verified type trait (this instantiation
records the semantic intent):

template <>
struct verified <total_order<int, op_It >>
. public std:: true_type

A sorting library may then state that it requires a verified
total order to provide sorting.

3.2 Expressing Axioms in Ada

The same principle of encoding axioms in the Java and
C++ programming languages can be applied to Ada. Be-
low we show a generic specification of the less-than-or-equals
operator, with the properties stated as assertions within pro-
cedures—one for each property.

The setup is similar to Catsfoot, specifying a type and an
operation as parameters:

generic
type T is private ;
with function ”<="(A, B : T) return Boolean is <>;

With Ada’s separation of specification and body, the ax-
ioms should have descriptive names, so that the behavior is
apparent from reading the specification part:

package Total_Order is
procedure LessEq_Is_Antisymmetric(A, B : T);
procedure LessEq_ls_Total (A, B : T);
procedure LessEq_Is_Transitive (A, B, C : T);
end Total_Order;

The package body provides the actual axioms, in the form
of assertions:

package body Total_Order is
procedure LessEq_Is_Antisymmetric(A, B : T) is begin
if A <= B and B <= A then
Assert (A = B, "LessEq_Is_Antisymmetric”);
end if;
end;

procedure LessEq_Is_Total (A, B : T) is begin
Assert(A <= B or B <= A, "LessEq_Is_Total”);
end;

procedure LessEq_Is_Transitive (A, B, C: T) is begin
if A <= B and B <= C then

30

6

Assert(A <= C, "LessEq_Is_Transitive”);
end if;
end;
end Total_Order;

This generic description of how a less-than-or-equals op-
erator should behave can then be reused in other specifica-
tions, such as the specification of sorted lists in the following
example: First, a straight-forward description of the inter-
face:

generic

type Elt is private;

with function ”"<="(A, B : Elt) return Boolean is <>;
package Sorted_Lists is

type List is private;

—— insert E into L

procedure Insert (L :

—— get length of L

function Length(L : in List) return Natural;

—— get element at index I in L

function Get(L : in List; | : in Natural) return Elt;

—— count occurrences of E in L

function Count(L : in List; E :
Next, the semantics. We have split the behavior specifica-
tion into two parts, Requirements and Axioms, two specially
named nested packages.* The former is used to specify re-
quired semantics for parameters to generic packages, and the
latter for specifying the behavior of subprograms provided
by the package. For the requirements, we reuse Total_Order:

in out List; E: in Elt);

in Elt) return Natural;

—— specification of what we require from parameters
package Requirements is
new Total_Order(T => Elt);

—— specification of what we are providing

package Axioms is
—— forany 11, I2, 11 <= 12 = Get(L,11) <= Get(L,12)
procedure List_Is_Sorted (L : List; 11, 12 : Natural);
—— result of Count increases by one after insert
procedure Insert_Increases_Count (L : List; E : Elt);
—— result of Length increases by one after insert
procedure Insert_Increases_Length (L : List; E : Elt);

end Axioms;

private

end Sorted_Lists ;
Code for the axioms is provided in the package body, for
example:
—— sample axiom implementation
procedure List_Is_Sorted (L : List; 11, 12
N : Natural := Length(L);

: Natural) is

X1 : Natural := 11 mod N;
X2 : Natural := 12 mod N;
begin

Assert (X1 <= X2) = (Get(L, X1) <= Get(L, X2)));
end;
Parameter behavior and provided behavior can then be
tested by instantiating the generic package and calling the
axiom procedures with representative data. Tool assistance

4 This format is chosen for technical reasons related to the
Ada package system.

N

N

may be helpful for this—in Java and C++, axioms can be
tested automatically with random data, using reflection or
meta-programming (respectively). A verification or testing
tool should be able to find the associated algebraic specifi-
cation by looking into the nested Requirements and Axioms
packages.

The package organization shown here would likely not be
supported in SPARK, due to limitations in dealing with
generics [34]. Since several SPARK features may be help-
ful (including preconditions and dependencies), finding a
SPARK-compatible axiom scheme would be useful.

3.3 Haskell and QuickCheck

QuickCheck [8] is a popular testing library for Haskell
based on algebraic specification. Axioms are normal Haskell
boolean functions (called properties), and QuickCheck can
automatically determine appropriate arguments and call the
functions with randomly generated data. For example, the
less-than-or-equals specification looks like this (note that
forward implication is, confusingly, written with a back-
wards arrow <=):

propLessEqlsAntisymmetric a b =
(a<=b&&b<=2a)<=(a==b)

proplLessEqlsTotal a b =
a<=bl| b<=a

propLessEqlsTransitive a b ¢ =
(a<=b&&b<=c)<=(a<=0)

We can try the tests on various implementations, for exam-
ple for integers and characters:

> quickCheck (proplLessEqglsTotal :: Int—>Int—>Bool)
++-+ OK, passed 100 tests.
> quickCheck (propLessEqlsTotal ::
+++ OK, passed 100 tests.

In this case, the properties are tied to the type class Ord of
ordered types, which also contains other ordering operations,
min/max operations and equality. A QuickCheck specifica-
tion library should provide properties for the complete set
of operations.

Properties and type classes are fully decoupled in Haskell,
unlike how concepts in JAXT and Catsfoot (and our sketched
Ada example) combine an interface with a specification.
This means that building more complex specification from
simpler ones becomes somewhat more difficult. For exam-
ple, to deal with the sorted list which requires an element
type with a less-than-or-equals operator, we would specify
Ord as the type of elements (a purely syntactic requirement).
Checking conformance with the axioms requires finding each
instantiation and running QuickCheck on the appropriate
properties.

Char—>Char—>Bool)

4. API AND PRE/POST SPECIFICATIONS

Frameworks that rely solely on pre/post specification have
problems capturing the properties of Comparable.

The JML [23] specification below® exposes these differ-
ences. It presents the compareTo example used in subsec-
tion 2.1 using pre/post specifications. The specification was
written for an older, pre-generic version of Java, so needs to

®From http://www.eecs.ucf.edu/ leavens/
JML-release/specs/java/lang/Comparable.spec

deal with dynamic typing of the second argument. It is also
evident that the specification considers being called with
null as a precondition violation, rather than being related to
throwing a specific exception.

Specifications : pure
public behavior
requires o != null;
ensures (x \result is negative
if this is 7less than” o x);
ensures (* \result is O if this is “equal to” o x*);
ensures (* \result is positive
if this is "greater than” o x);
signals_only ClassCastException;
signals (ClassCastException) (x
also
public behavior
requires o != null &&

o instanceof Comparable;
ensures this .definedComparison((Comparable)o,this);
ensures o == this ==> \result == 0;
ensures this .sgn(\ result)

—this.sgn (((Comparable)o).compareTo(this));
signals (ClassCastException)
I this . definedComparison((Comparable)o,this);
compareTo(non_null Object o);

*);

int

This specification is more monolithic than the algebraic ap-
proach. It is monolithic in the sense that all aspects of the
description of the method is included, as opposed to in the
axiom case where the specification is composed from indi-
vidual axioms, each dealing with separate aspects of the
library specification. Further, we see that the JML specifi-
cation uses a more powerful logic than the Java only specifi-
cation of axioms, e.g., the specification language has a built
in equality. Yet there are important shortcomings in this
specification: the transitivity property (property 2) is miss-
ing, so is property 3. Both of these properties relate three
variables, one more than provided as arguments to the func-
tion call, going beyond what pre/post easily can express.

JML does have features for dealing with this, through uni-
versally quantified assertions at the class level, correspond-
ing to axioms in the algebraic sense—which is how the miss-
ing properties are expessed in JML.

In Spec# [6], the specification of IComparable® deals only
with data flow and purity, and does not attempt to specify
the full behavior. This seems to be common for Spec# in-
terface specification, and in general Spec# seems focused on
specifying purity, object invariants, data flow and exception
behavior.

We believe this difference in capturing API properties is
archetypal for the two techniques.

e Algebraic specifications are composed of collections of
axioms, each relating one or more operations with an
unlimited use of free variables.

They may be incomplete, i.e., important axioms may
be missing from the current specification, yet the spec-
ification is still useful.

This encourages modularity and reuse of specification
components.

SFrom https://specsharp.codeplex.com/
SourceControl/latest#SpecSharp/Samples/
OutOfBandContracts/Mscorlib/System.IComparable.ssc

http://www.eecs.ucf.edu/~leavens/JML-release/specs/java/lang/Comparable.spec
http://www.eecs.ucf.edu/~leavens/JML-release/specs/java/lang/Comparable.spec
https://specsharp.codeplex.com/SourceControl/latest#SpecSharp/Samples/OutOfBandContracts/Mscorlib/System.IComparable.ssc
https://specsharp.codeplex.com/SourceControl/latest#SpecSharp/Samples/OutOfBandContracts/Mscorlib/System.IComparable.ssc
https://specsharp.codeplex.com/SourceControl/latest#SpecSharp/Samples/OutOfBandContracts/Mscorlib/System.IComparable.ssc

e Pre/post specifications are extremal points, the first
and the last, of assertions for an algorithm. Assertions
play important roles in the verification of algorithms,
thus making pre/post natural resources for verification
of algorithms.

In order to meet this goal, pre/post specifications tend
to be monolithic and should encompass all relevant
properties. They often need quite powerful specifica-
tion logics to express properties.

These differences are amplified by the different goals: on the
one side API specifications with axioms for unit testing, on
the other specifications for proving algorithms correct.

However, there are many interesting properties that are
less straight-forward to specify algebraically or at the API
level. We have already mentioned how preconditions are
necessary also in algebraic specification. Tools like JML,
Spec#, SPARK and Dafny [24] support a number of such
properties, e.g., termination, coarse or fine grained data
modification, data dependency between inputs and outputs,
data ownership, and algorithm-level assertions.

4.1 API Specifications Subsume Pre/Post
Specifications

Using the same specification logic for axioms as for pre/
post specifications, we find that axioms subsume pre/post
specifications. Assume we have a pre/post specification of
the following form in a suitable specification logic.

method m(...)
requires Pre;
ensures Post;

We can write this as an axiom in the following way.

axiom PrePost (...) {
if (! Pre) return;
call m(...);
assertTrue(Post);

}

The if statement checks for precondition violations in the
test data, ensuring that the axiom does not commit the
method to any specific behavior in such cases. After calling
the method, the post condition is asserted to hold. Pick-
ing up the pre and postconditions in idioms like this should
be straight-forward. Allowing the axioms to use the same
specification power as the pre/post specifications, e.g., lo-
cal quantifiers and ghost variables, we find that pre/post
specifications are a special case of axioms.

Tools that support pre/post specifications often include
features beyond just Pre and Post. For instance, Dafny [24]
has a decreases clause for attaching termination related in-
formation to procedures. Such features are not captured by
the translation into axioms sketched above.

S. PURITY AND MUTABILITY

A particular problem that arises when mixing specifica-
tions with code, is that of what happens when operations
have side effects—i.e., they modify or use global data, ac-
cess the outside world, or change the objects passed as ar-
guments.

This creates a reasoning problem: how do you reason
about a series of assertions/azioms, if each assertion/az-
iom may have unknown side effects?—and a programming

problem: what semantic effect does turning assertion check-
ing on or off have if the assertions can have side effects (and
stmilar for aziom checking)?

Solutions to this problem include forbidding calls to arbi-
trary functions from specifications (e.g., as in ESC/Java [11]);
introduce a notion of purity, and allow only calls to known
pure functions (e.g., as in JML); tell the programmer sternly
to avoid using non-pure functions and hope for the best (e.g.,
as in Eiffel).

In Spec# this problem is dealt with through a notion of
observational purity 7], where side effects are allowed only
as long as they can not be observed by the callers. A static
analysis tool is available to determine the property.

For practical use in testing, side-effects are not a huge
concern. It mostly affects the way axioms are written. The
test framework can take care of ensuring that each axiom
is evaluated in a fresh environment, and instantiated with
suitable (perhaps aged) objects for its universally quantified
variables. Some algebraic-style testing frameworks, such as
ASTOOT [9], allows axioms with OO notation, and can also
deal with side-effects.

The experimental Magnolia language [4] deals with the
side-effect issue by avoiding aliasing (hence no globals) and
mapping from procedures (which are allowed to have effects
on the arguments) to functions (which are strictly pure).
Side effects on the outside world are dealt with through up-
dates on a ‘world’ object. Each procedure is mapped to a
set of functions—one function for each possible output / up-
dated argument of the procedure. Specifications (which are
algebraic-style and integrated into the language) are writ-
ten using functions only, and reasoning happens at the level
of pure functions. Implementations, however, may be pro-
vided in the form of procedures, and through a process of
mutification pure function-oriented code is rewritten to use
procedures with in-place updates of arguments.

6. HISTORICAL BACKGROUND

Both pre/post specifications [12, 21] and algebraic speci-
fications [26] have a long history in computer science.

Pre/post specifications are a natural extension of asser-
tions used for proving and understanding algorithms. An
assertion captures properties of the state of a program, e.g.,
a loop invariant. The last assertion in a procedure defines
its postcondition: what holds when the procedure finishes.
Symmetrically, the first assertion in the procedure defines
its precondition: what needs to hold in order for the proce-
dure to work properly. Already in the 1970s, languages like
Gypsy [1], Euclid [30], CLU [25] and Alphard [33] picked
up these ideas. Some, including Euclid and CLU, left the
specification syntax and processing to external tools, while
Alphard made it directly part of the language. Pre/post
specifications were popularized as “design by contract” in
Eiffel [27], and have gained popularity in recent languages
as Spec# [6], JML [23] and Ada [36] with the SPARK [5]
tool set for proving correctness.

CLU and Alphard also pioneered the use of abstract data
types. ADTSs have an internal implementation, a model, and
an external API (in current terminology). Algebraic spec-
ifications focus on the interaction between functions, mak-
ing them natural for specifying APIs [26]. Early work tied
algebraic specifications closely to software, e.g., [13] using
axioms as test oracles. The research on algebraic specifi-
cations soon took on a more mathematical approach, lead-

ing to a focus on initial specifications [14, 10]. These are
good for building theoretical models, but only have an in-
direct relationship to software. The LARCH specification
language [18] makes this explicit by having a separate alge-
braic specification language, though not with initial seman-
tics, and explicit programming specific interface languages.
Extended ML [31] provided a tight integration between an
algebraic specification language and the programming lan-
guage ML. Although positive experiences were reported [32],
there were problems in integrating the semantics of the spec-
ifications and of ML.

The Tecton system [22] similarly attempted to leverage
algebraic specification; those experiences were later used in
the design of C++ concepts [17]—which, if successful, would
have provided an industrial-strength language with algebraic
specification support. Although axioms played little role in
the proposed standard—compilers were for the most part
supposed to ignore them, apart from basic syntax and type
checking—several initiative attempted to exploit the speci-
fications for optimization [37, 16, 3] and testing [3].

7. CONCLUSIONS

We have discussed the specification of generic APIs and
how postconditions fail to deal with this case. Instead, we
argue that APIs should be specified through algebraic spec-
ification, with axioms that relate the operations of the API
to each other. Preconditions still have an important role to
play in such specifications, for specifying constraints on ar-
guments—guarded algebras provide a systematic approach
to dealing with this.

Though our examples of generic API specifications are
primarily related to collection classes, there are similar needs
in other domains, e.g., in generic linear algebra codes [16].

An API may be implemented many times. A useful spec-
ification should cover all such implementations, and should
be useful in determining the correctness of such implementa-
tions. This requires a tight integration between the notation
and semantics of the specification language and the pro-
gramming language. Such an integration is readily achieved
when axioms are written as tests in the programming lan-
guage. This provides an immediate approach to using alge-
braic style axioms for APIs in a high integrity setting.

Proof tools based on pre/post specifications have made
huge improvements over that past few decades, so much so
that we are approaching the goal of verifying realistic appli-
cations. The recent success of such tools gives a vision for
developing similar automated proof tools for algebraic style
specifications of APIs and the related implementations, pos-
sibly on top of existing tools for pre/post specifications.

Tools for proving generic programs seem to be lacking, as
up to date tools such as SPARK or Dafny cannot tackle this
when requirements on the generic API need to be taken into
account. They are however able to prove the correctness of
instantiated generic code.

Assertions and invariants in general are useful for reason-
ing about algorithms and concrete code—regardless of how
APIs are specified. The success of assertion-based frame-
works such as JML and SPARK are a testament to this.

Acknowledgments

This research is partially financed by the Research Council
of Norway, under the DMPL project. Thanks to Eivind
Jahren for help in understanding Haskell.

8. REFERENCES

[1] A. L. Ambler, D. I. Good, J. C. Browne, W. F. Burger,

R. M. Cohen, C. G. Hoch, and R. E. Wells. Gypsy: A
language for specification and implementation of verifiable
programs. In Proceedings of an ACM conference on
Language design for reliable software, pages 1-10, New
York, NY, USA, 1977. ACM.

[2] A. H. Bagge, V. David, and M. Haveraaen. Testing with
axioms in C++ 2011. Journal of Object Technology,
10:10:1-32, 2011.

(3] A. H. Bagge and M. Haveraaen. Axiom-based
transformations: Optimisation and testing. In J. J. Vinju
and A. Johnstone, editors, Eighth Workshop on Language
Descriptions, Tools and Applications (LDTA 2008),
volume 238 of Electronic Notes in Theoretical Computer
Science, pages 17-33, Budapest, Hungary, 2009. Elsevier.

[4] A. H. Bagge and M. Haveraaen. Interfacing concepts: Why
declaration style shouldn’t matter. In T. Ekman and J. J.
Vinju, editors, Proceedings of the Ninth Workshop on
Language Descriptions, Tools and Applications (LDTA
’09), volume 253 of Electronic Notes in Theoretical
Computer Science, pages 37-50, York, UK, 2010. Elsevier.

(5] J. Barnes. SPARK — The Proven Approach to High
Integrity Software. Altran Praxis Ltd, 2012.

[6] M. Barnett, K. R. M. Leino, and W. Schulte. The Spec#
programming system: An overview. In G. Barthe,

L. Burdy, M. Huisman, J.-L. Lanet, and T. Muntean,
editors, Proceedings of Construction and Analysis of Safe,
Secure, and Interoperable Smart Devices (CASSIS 2004),
volume 3362 of Lecture Notes in Computer Science, pages
49-69. Springer-Verlag, 2005.

[7] M. Barnett, D. A. Naumann, W. Schulte, and Q. Sun.
99.44% pure: Useful abstractions in specifications. In 6th
Workshop on Formal Techniques for Java-like Programs
(FTfJP’2004), 2004.

[8] K. Claessen and J. Hughes. QuickCheck: A lightweight tool
for random testing of Haskell programs. In ICFP ’00:
Proceedings of the fifth ACM SIGPLAN international
conference on Functional programming, pages 268-279,
New York, NY, USA, 2000. ACM Press.

9] R.-K. Doong and P. G. Frankl. The ASTOOT approach to
testing object-oriented programs. ACM Trans. Softw. Eng.
Methodol., 3(2):101-130, 1994.

[10] H. Ehrig and B. Mahr. Fundamentals of Algebraic
Specification 1: Equations und Initial Semantics, volume 6
of EATCS Monographs on Theoretical Computer Science.
Springer, 1985.

[11] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson,

J. B. Saxe, and R. Stata. Extended static checking for java.
In Proceedings of the ACM SIGPLAN 2002 Conference on
Programming Language Design and Implementation, PLDI
’02, pages 234245, New York, NY, USA, 2002. ACM.

[12] R. W. Floyd. Assigning meanings to programs. In
Mathematical Aspects of Computer Science, volume 19 of
Proceedings of Symposia in Applied Mathematics, pages
19-32. American Mathematical Society, 1967.

[13] J. D. Gannon, P. R. McMullin, and R. G. Hamlet.
Data-abstraction implementation, specification, and testing.
ACM Trans. Program. Lang. Syst., 3(3):211-223, 1981.

[14] J. Goguen, J. Thatcher, and E. Wagner. An initial algebra
approach to the specification, correctness and
implementation of abstract data types. In R. Yeh, editor,
Current Trends in Programming Methodology, volume 4,
pages 80-149. Prentice Hall, 1978.

[15] J. Gosling, B. Joy, G. Steele, and G. Bracha. Java™™
Language Specification, The (8rd Edition). Addison-Wesley
Professional, 2005.

[16] P. Gottschling and A. Lumsdaine. Integrating semantics
and compilation: Using C++ concepts to develop robust
and efficient reusable libraries. In Y. Smaragdakis and J. G.
Siek, editors, GPCE, pages 67-76. ACM, 2008.

(17]

(18]

(19]

20]

(21]

(22]

23]

[24]

25]

D. Gregor, J. Jarvi, J. Siek, B. Stroustrup, G. Dos Reis,
and A. Lumsdaine. Concepts: linguistic support for generic
programming in C++. In OOPSLA ’06: Proceedings of the
21st annual ACM SIGPLAN conference on Object-oriented
programming systems, languages, and applications, pages
291-310, New York, NY, USA, 2006. ACM.

J. V. Guttag, J. J. Horning, and J. M. Wing. The Larch
family of specification languages. IEEE Softw., 2(5):24-36,
1985.

M. Haveraaen and K. T. Kalleberg. JAxT and JDI: the
simplicity of JUnit applied to axioms and data invariants.
In OOPSLA Companion ’08: Companion to the 23rd ACM
SIGPLAN conference on Object-oriented programming
systems languages and applications, pages 731-732, New
York, NY, USA, 2008. ACM.

M. Haveraaen and E. G. Wagner. Guarded algebras:
Disguising partiality so you won’t know whether it’s there.
In Recent Trends In Algebraic Development Techniques,
volume 1827 of Lecture Notes in Computer Science, pages
3-11. Springer-Verlag, 2000.

C. A. R. Hoare. An axiomatic basis for computer
programming. Commun. ACM, 12(10):576-580, 1969.

D. Kapur, D. R. Musser, and A. A. Stepanov. Tecton: A
language for manipulating generic objects. In

J. Staunstrup, editor, Program Specification, Proceedings of
a Workshop, Lecture Notes in Computer Science, pages
402-414, Aarhus, Denmark, Aug. 1981. Springer-Verlag.

G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary
design of JML: A behavioral interface specification
language for Java. SIGSOFT Software Engineering Notes,
31(3):1-38, 2006.

K. R. M. Leino. Dafny: An automatic program verifier for
functional correctness. In E. M. Clarke and A. Voronkov,
editors, Logic for Programming, Artificial Intelligence, and
Reasoning - 16th International Conference, LPAR-16,
Dakar, Senegal, April 25-May 1, 2010, Revised Selected
Papers, volume 6355 of Lecture Notes in Computer
Science, pages 348-370. Springer, 2010.

B. Liskov, R. R. Atkinson, T. Bloom, J. E. B. Moss, J. C.
Schaffert, R. Scheifler, and A. Snyder. CLU Reference
Manual, volume 114 of Lecture Notes in Computer Science.
Springer-Verlag, 1981.

[26]

27]

(28]

(29]

(30]

(31]

(32]

33]

(34]
(35]

(36]

(37]

B. Liskov and S. Zilles. Specification techniques for data
abstractions. In Proceedings of the international conference
on Reliable software, pages 72—87, New York, NY, USA,
1975. ACM.

B. Meyer. Eiffel: The language. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1992.

P. D. Mosses. The use of sorts in algebraic specifications. In
M. Bidoit and C. Choppy, editors, COMPASS/ADT,
volume 655 of Lecture Notes in Computer Science, pages
66-92. Springer, 1991.

D. R. Musser and A. A. Stepanov. Generic programming,.
In P. M. Gianni, editor, Symbolic and Algebraic
Computation, International Symposium ISSAC’88, Rome,
Ttaly, July 4-8, 1988, Proceedings, volume 358 of Lecture
Notes in Computer Science, pages 13—25. Springer, 1988.
G. J. Popek, J. J. Horning, B. W. Lampson, J. G. Mitchell,
and R. L. London. Notes on the design of Euclid. In
Proceedings of an ACM conference on Language design for
reliable software, pages 11-18, 1977.

D. Sannella and A. Tarlecki. Extended ML: An
institution-independent framework for formal program
development. In Proceedings of the Tutorial and Workshop
on Category Theory and Computer Programming, pages
364-389, London, UK, 1986. Springer-Verlag.

D. Sannella and A. Tarlecki. Algebraic methods for
specification and formal development of programs. ACM
Comput. Surv., page 10, 1999.

M. Shaw, W. A. Wulf, and R. L. London. Abstraction and
verification in Alphard: Defining and specifying iteration
and generators. Commun. ACM, 20(8):553-564, 1977.
SPARK Team. SPARK Generics — A User View. Technical
Report S.P0468.42.25, Altran, January 2012. Draft.

A. Stepanov and P. McJones. Elements of Programming.
Addison-Wesley Professional, 1st edition, 2009.

S. T. Taft, R. A. Duff, R. Brukardt, E. Plodereder,

P. Leroy, and E. Schonberg. Ada 2012 Reference Manual.
Language and Standard Libraries - International Standard
ISO/IEC 8652/2012 (E), volume 8339 of Lecture Notes in
Computer Science. Springer, 2013.

X. Tang and J. Jarvi. Concept-based optimization. In
LCSD ’07: Proceedings of the 2007 Symposium on
Library-Centric Software Design, pages 97-108, New York,
NY, USA, 2007. ACM.

