
Testing with Concepts and Axioms in C++

Anya Helene Bagge Valentin David Magne Haveraaen
University of Bergen, Norway

http://www.ii.uib.no/�{anya,valentin,magne}

Abstract
Unit testing is a popular way of increasing software reliabil-
ity. Axioms, known from program specification, allow func-
tionality to be described as rules or equations. We show a
method and prototype tool for using the proposed concept

and axiom features of the upcoming C++0x standard for au-
tomated unit testing.

Categories and Subject Descriptors D.1.5 [Programming
Techniques]: Object-oriented Programming; D.2.5 [Testing
and Debugging]: Testing Tools

General Terms Reliability, Languages, Design

Keywords Mouldable Programming, Generative Program-
ming, Program Transformation, Unit Testing, Test Genera-
tion, Axioms, Specifications, Concepts, C++, C++0x

1. Introduction
Concepts, in the upcoming C++0x standard [5], allow the
programmer to specify requirements for template parame-
ters. Generic sorting, for example, might require an array of
less-than comparable elements as argument.

A concept is an interface specification and contains a list
of abstract types, constraints on those types, operations on
those types and axioms for the operations. For example, we
might have stack concept, with stack and element types,
and push, pop, top and new operations. A concept map
declares that one or more types model a particular concept
– for example that Stack<T> models the stack concept with
element type T. An example concept with an axiom is shown
in Figure 1.

Axioms are simple conditional equations over the opera-
tions defined in the concept. The compiler is not obligated to
act on the axioms in any way, but it is free to assume that they
hold and use them for code transformations. With rewriting

Copyright is held by the author/owner(s).
OOPSLA’08, October 19–23, 2008, Nashville, Tennessee, USA.
ACM 978-1-60558-220-7/08/10.

concept Indexable<typename A, typename I,

typename E> {

requires std::EqualityComparable<A,A>,

std::EqualityComparable<E,E>,

SameShape<A, I>;

const E& operator[](const A&, const I&);

E& operator[](A&, const I&);

axiom ArrayEqual(A a, A b, I i) {

if (a == b)

a[i] == b[i];

if (a[i] != b[i])

a != b;

}

}

Figure 1. The concept Indexable has indexing operators and
an axiom ArrayEqual that states that two Indexables are
equal if and only if their elements are equal. A is an indexable
type, I is the index type, and E is the element type. A and I

are required to be of the same shape, i.e., the values of type
I are the allowable indices for the type A.

support in the compiler or an optimization tool, this opens
possibilities for domain-specific optimizations [1, 9].

Here, we focus on another use of axioms – automated
axiom-based testing. The basic idea is to use the axioms of
a concept as test oracles for testing classes that model the
concept. For each axiom, we generate a template test oracle,
which evaluates the condition and checks that the equation
is true. For each concept map (i.e., for each case of classes
modeling a concept), we generate test code that calls the
oracles with generated test data. At the top level we have
a main test routine that calls the test code for the classes we
want to test.

2. Axiom-Based Testing
The idea of axiom-based testing was introduced in the early
eighties in the DAISTS [4] system which supported test-
ing based on formal algebraic specifications. Experiences
with DAISTS were positive, uncovering errors not found
using traditional unit testing. More recent experiments with



JAX [8], an axiom-based testing system for Java, show sim-
ilar results.

Axiom-based testing has three requirements, in addition
to the implementation being tested:

• axioms, in the form of conditional equations
• an equality operation for evaluating the axioms
• a set of data points to exercise the implementation.

In the C++ proposal, axioms are part of concepts, and
are thus separate from concrete class implementations. The
same axioms – and axiom-based tests – can be used for all
classes that model a given concept, allowing reuse of exist-
ing, well-thought out axioms. For example, libraries of con-
cepts and axioms may be developed for standard algebraic
classes (monoid, ring, field) or data structures (trees, sequen-
tial containers, stacks).

Evaluation of tests assumes an implementation of equal-
ity (or other relevant comparison) for the types involved. In
the draft standard, it is legal to write axiom equalities where
there is no equality implementation (the semantics of this is
simply that it is legal to replace one side of the equality with
the other) – in this case the axioms won’t be directly usable
for testing. Test results are of course only as reliable as the
comparisons used – in practice, however, a varied selection
of axioms using both equalities and inequalities is likely to
uncover bugs hiding in the equality operator.

Generating test data is a difficult issue for any testing
scheme. Our generated test code works by iterating over a
sequence of test data points, using data generators that are
part of the implementation classes. Each class is expected
to have a data generator, which is an iterator supplying in-
stances of the class. In the simplest case, this may simply be
a predefined sequence of values (for example, −1, 0, 1, and
42 as integer test data), but typically it will be some combi-
nation of randomly generated test data and hand-picked data
values. We have built a small library for simplifying data
generation and combining different data sequences, inspired
by the QuickCheck system for Haskell [2].

In order to gain more experience with axiom-based test-
ing, we have built prototype tool which automatically gener-
ates test oracles and test code based on concepts and axioms.
It contains a grammar for C++ with concepts [3], and works
by reading an input program and generating code whenever
it encounters a concept declaration or a concept map.

3. Conclusion
We have investigated the use of concepts and axioms in the
draft C++0x proposal for generating automated unit tests.
Our method is based on generating test oracles from axioms,
and then generating test code whenever a class is declared as
modeling some concept.

We have built a proof-of-concept tool to test our method.
The standard proposal is still undergoing changes, and com-
piler support for concepts is still immature. Getting a larger

body of concept-enabled code would be an important step
in developing these ideas further. Integration with a testing
framework like CppUnit would also make the tool more suit-
able for general use.

Almost thirty years after DAISTS, axiom-based testing
may finally start to catch on. In addition to the work de-
scribed here, there is also work being done for Java, such
as JAX [8], JAxT [6], and theories [7] which are available
in recent versions of JUnit. The abstraction and separation
of concerns available with the concept feature makes axiom-
based testing in C++0x particularly appealing.

References
[1] Anya Helene Bagge and Magne Haveraaen. Axiom-based

transformations: Optimisation and testing. In Jurgen Vinju
and Adrian Johnstone, editors, Eighth Workshop on Language
Descriptions, Tools and Applications (LDTA 2008), Electronic
Notes in Theoretical Computer Science, Budapest, Hungary,
2008. Elsevier.

[2] Koen Claessen and John Hughes. Quickcheck: a lightweight
tool for random testing of haskell programs. In ICFP
’00: Proceedings of the fifth ACM SIGPLAN international
conference on Functional programming, pages 268–279, New
York, NY, USA, 2000. ACM Press.

[3] Valentin David. Preparing for C++0x. In OOPSLA ’08:
Companion to the 23rd ACM SIGPLAN conference on Object
oriented programming systems and applications companion,
New York, NY, USA, 2008. ACM.

[4] John Gannon, Paul McMullin, and Richard Hamlet. Data
abstraction, implementation, specification, and testing. ACM
Trans. Program. Lang. Syst., 3(3):211–223, 1981.

[5] Douglas Gregor, Bjarne Stroustrup, Jeremy Siek, and James
Widman. Proposed wording for concepts (revision 4).
Technical Report N2501=08-0011, JTC1/SC22/WG21 – The
C++ Standards Committee, February 2008.

[6] Magne Haveraaen and Karl Trygve Kalleberg. JAxT and JDI:
The simplicity of JUnit applied to axioms and data invariants.
In OOPSLA ’08: Companion to the 23rd ACM SIGPLAN
conference on Object oriented programming systems and
applications companion, New York, NY, USA, 2008. ACM.

[7] David Saff. Theory-infected: or how I learned to stop worrying
and love universal quantification. In OOPSLA ’07: Companion
to the 22nd ACM SIGPLAN conference on Object oriented
programming systems and applications companion, pages
846–847, New York, NY, USA, 2007. ACM.

[8] P. David Stotts, Mark Lindsey, and Angus Antley. An informal
formal method for systematic JUnit test case generation. In
Don Wells and Laurie A. Williams, editors, XP/Agile Universe,
volume 2418 of Lecture Notes in Computer Science, pages
131–143. Springer, 2002.

[9] Xiaolong Tang and Jaakko Järvi. Concept-based optimization.
In Proceedings of the ACM SIGPLAN Symposium on Library-
Centric Software Design (LCSD’07), New York, NY, USA,
2007. ACM.


