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Abstract
Dealing with failure and exceptional situations is an important
but tricky part of programming, especially when reusing existing
components. Traditionally, it has been up to the designer of a
library to decide whether to use a language’s exception mechanism,
return values, or other ways to indicate exceptional circumstances.
The library user has been bound by this choice, even though it
may be inconvenient for a particular use. Furthermore, normal
program code is often cluttered with code dealing with exceptional
circumstances.

This paper introduces an alert concept which gives a uniform
interface to all failure mechanisms. It separates the handling of an
exceptional situation from reporting it, and allows for retro-fitting
this for existing libraries. For instance, we may easily declare the
error codes of the POSIX C library for file handling, and then use
the library functions as if C had been extended with an exception
mechanism for these functions – a moulding of failure handling to
the user’s needs, independently of the library designer’s choices.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features; D.2.3 [Software En-
gineering]: Coding Tools and Techniques

General Terms Reliability, Languages, Design

Keywords Failure, Errors, Partiality, Guarding, Aspects, Separa-
tion of Concerns, Alert Reporting and Handling, Domain-Specific
Exception Language, Abstraction, Mouldable Programming

1. Introduction
Wherever there is software, there are errors and exceptional situa-
tions, and these must always be considered when writing and main-
taining programs. Programming failure handling code is a tedious
and error-prone task. Dealing with every possible exceptional sit-
uation leads to cluttered and hard to read code; not dealing with
errors can have costly or perhaps even fatal consequences.

Some have argued that error handling should be avoided alto-
gether. Instead, programs should be written so that errors never
occur. Algorithms should be formulated so as to remove the ex-
ceptional corner cases, as this improves both the readability and
maintainability of the code. This view is fundamental to the design
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of SPARK Ada [2], where the Ada exception mechanism has been
removed in an attempt at making validation and verification easier.
This ideal advocated by such a “keep errors out” approach is cer-
tainly desirable. It is generally preferable to write algorithms with
as few corner cases as possible.

In many cases, however, removing the errors altogether is sim-
ply not feasible [27]. Most modern applications run in multi-user,
multi-process environments where they share resources such as
storage and network with other applications. In these situations, op-
erations on files, network connections and similar operating system
resources can always fail, due to interaction with other programs
on the running system or external devices.

Errors and exceptional situations need not always be caused by
external factors, however. Even in situations where resource re-
quirements are known in advance and guaranteed to be available,
exceptional situations may occur, as none of the mainstream lan-
guages support resource-aware type systems [31].

As an example, consider the implementation of a simple abstract
data type, say, a hash table, that is intended for other developers to
reuse. In the case where the user (the caller) tries to look up a value
for a non-existent key, an exceptional situation has occurred. Some
possibilities for dealing with such a situation are:

• Undefinedness: this situation is outside the specified behaviour
of the hash table. The caller cannot have any expectations as to
what will happen.

• Termination: the program will terminate when this situation
occurs. It is up to the caller to ensure that this does not happen.

• Alert the caller: report that an exceptional condition occurred.
Given proper language mechanisms, alerts allow the user of
the hash table to implement alert handling, such as logging,
recovering from or ignoring the failure.

Undefinedness requires no language support, and termination
can usually be implemented by a call to an exit function. In lan-
guages supporting Design by Contract (discussed in Section 2.1),
termination is automatic if a function fails to satisfy declared con-
ditions either before or after invocation.

Several different alert reporting mechanisms are in common
use. Goodenough [10] first introduced the exception handling
mechanism1 that is now found in most modern languages, and is

1 The word ‘exception’ was coined as a way of emphasising that exceptions
are not just for handling errors, but can be used for any kind of exceptional
circumstance. However, it is easy to confuse the concept of handling excep-
tional circumstances and the exception handling language constructs found
in many languages. We have therefore elected to use the word ‘alert’ for
any reported exceptional situation, independent of the alert reporting mech-
anism and the alert handler, which receives the alert report and deals with
it appropriately. The word ‘exception’ on its own will refer to the language
construct.
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currently the recommended way of handling exceptional situations.
Returning a special error value, often -1 or null, or setting a global
variable is another common technique, often used in older code and
languages. Other than exceptions, most reporting mechanisms are
ad-hoc, in that there is no way to declare which mechanism is used.
Conventions do exist – for example, most POSIX [24] functions
report errors by returning -1 – but they are not declared explic-
itly in the code, making it difficult to automate alert handling. We
therefore propose that each function declares its alert reporting. For
example, a hash table lookup function may declare that it returns
null if the key was not found:

val lookup(tbl t, key k)
alert NotFound post(value == null);

Handling alerts is no easy task either. Different reporting mech-
anisms have different default handlers – exceptions, for example,
typically terminate the program if they are not caught, whereas re-
turn values are ignored if they are not explicitly tested. Further-
more, different alert reports are checked in radically different ways;
exceptions are received by a try/catch clause somewhere in the
call hierarchy, return values must be checked after each return –
often tedious and inconvenient. Changing the report mechanism
means changing all handlers. We propose a way of declaring han-
dlers which is independent of the alert reporting mechanism, and
which can apply at various granularities, from a single expression
to the whole program. For example, the following handler ensures
that NotFound errors from the lookup function is handled by sub-
stituting the string "(unknown)":

on NotFound in lookup() use "(unknown)";

Our contribution in this paper is a detailed discussion of failure
handling mechanisms and the proposal of a language construct
for alerts: Alert reporting may be declared for precondition and
postcondition violations, exceptions, error flags and return codes,
simplifying the task of staying alert for run-time problems. Alert
handlers can be defined independently of the reporting mechanism,
allowing a library implementor to alert its user in a way convenient
for the library, and a library user to handle the alert in a convenient
way at the call site. Alert handlers can be declared at a per-function
and per-call-site basis, but it is also possible to declare policies
common to a group of functions, such as a class or a library. In this
way we can relatively easily retro-fit alert declarations for legacy
code, e.g., the POSIX C library, easing the burden of checking in
all kinds of strange ways for relevant I/O errors. Hence we approach
mouldable programming, a way of moulding programming to our
needs, and not being forced to program in strange ways due to
arbitrary choices from language and library designers, or from
perceived expectations from a user community.

This paper is organised as follows. In Section 2, we elaborate
on the problem of handling failures and exceptional situations. In
Section 3, we discuss separation of concerns, and granularity. In
Section 4 we introduce our alert language extension, and continue
by discussing its implementation in Section 5. In Section 6 we
discuss related work, leading up to a concluding discussion of our
language extension in Section 7.

2. Problem
The problem we are facing, is implementing an alert protocol
between callers and callees that can transmit status information
from the callee about the validity of its computed result back to
the caller. Goodenough [10] points out that this is a way to extend
an operation’s domain (input space) or range (output space). The
caller will declare an alert handler for the types of alerts it wants to
handle, and the callee may report an alert during its computation,
thus becoming the (alert) reporter.

2.1 Alert Reporting Mechanisms

Current programming paradigms and languages provide a number
of ways for dealing with failure, dating back to the earliest days
of programming. Hill [12] discusses possible mechanisms, anno
1969, which includes specific return values, use of gotos to param-
eterised labels, callbacks, global error flags, and passing pointers to
variables which will receive an error status.

Return Values Designating at least one value in the domain of the
return type as an error marker is perhaps the most prevalent form
of alerting. This technique is frequently found in operating system
APIs, such as POSIX and Win32, in many language standard li-
braries, and in many frameworks. Functions returning objects often
use null as such a marker, functions returning numeric values for
file handles or indexes often use -1. If the return type only allows
for one error marker, an additional mechanism, such as a global
flag, is needed to distinguish between different kinds of errors.

The IEEE floating-point arithmetic standard [9] allows a wide
range of error return values. Some of these automatically propagate
through an expression, like NaN – “Not a Number”. NaN occurs
as a result of 0/0,

√−1, log(−1), etc. A more interesting error
value is +∞ or −∞, which is the result of e.g. M/m where a very
large number M is divided by a very small number m, resulting
in numerical overflow – a number too large to be represented
as a floating point number. Infinities propagate through addition,
subtraction and multiplication, but disappear after division. The
expression a + 4/(M/m) yields a, as 4 divided by infinity yields
0.

If the return value for failure can also be a valid return value,
for example if division by zero returns zero, we are faced with the
so-called semipredicate problem: it is not possible to know if the
return value signifies a failure or a valid value.

A property of the return value mechanism is that it will only
propagate the alert one level, to its immediate caller. Also, it re-
quires no alert handler setup or teardown, and thus has no overhead.

Global Error Flags Many older APIs, such as POSIX and Win32
use global error flags, often in conjunction with special return
values, to elaborate on a failed function. In Win32, the function
GetLastError is used to retrieve the failure code of the previously
executed system call. In POSIX, the global errno variableserves an
identical purpose.

The use of a global error flag variable is not thread safe. Unless
special consideration is taken, multiple threads in the same process
will share the same error flag variable, making it impossible to
know which of the previous threads’ system calls a given error
belongs to. This is alleviated by having global error function, like
GetLastError, instead.

Long Distance Jumps In C, the functions setjmp and longjmp
are used to transfer control directly from one stack frame to one
which is arbitrarily higher up. This report mechanism is often
used to propagate errors many levels, but can only send an integer
value. This is a low-level C/Unix-specific technique, which is also
found as RtlUnwind in Win32. Both alternatives rely on low-
level machine-specific register set saving and compiler knowledge.
Another drawback is the difficulty of freeing allocated resources
properly before the handlers for such resources leave the variable
scope.

Exceptions Today, the most common way of alerting is to use the
exception mechanism introduced in [10], in languages that provide
this, such as CLU [18], C++ [29], Java [11], Ada [30], ML [23] and
Python [32].

Raising an exception consists of two parts: First, a function,
say A, sets up an exception handler listening for a particular type
of exception E, using a try/catch (Java), handle (SML) or
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try/except (Python) construct. It then invokes the function B,
either directly or indirectly. B raises the exception E by invoking
the raise (Python, SML) or throw (Java) language construct, and
the search for an appropriate exception handler starts. Each stack
frame is consulted in succession, until one with a handler for E is
found. If no new handler for E is declared in the functions between
B and A on the stack, control is transferred from B to the handler
declared in A.

For the languages above, after the handler in A finishes, exe-
cution continue in A. In other languages, it is possible to either
resume after the raise statement in B, or restart B, see Section 6
for details.

Exceptions may be either checked – must be declared by all
functions that may throw them, both directly and indirectly – or
unchecked – may be thrown without being mentioned in a func-
tion’s list of throwable exceptions. In Java, checked exceptions are
the default, but unchecked exceptions are used for catastrophic er-
rors, such as out-of-memory errors and disk failure.

Exception handlers need not only be declared as markers on the
stack. They can also be attached to classes, statically giving each
class its own handler, or to objects giving each object a specific
handler. This is discussed in Section 6.

Condition System The PL/I ON condition system, allows the pro-
grammer to attach handler blocks for pre-defined language excep-
tions that may occur in expressions, such as division by zero and
end of file. These handlers are installed and removed dynamically.
Extensions of this idea can be found in Dylan, Smalltalk and Lisp,
which have systems for detecting exceptional situations based on
(a restricted description of) the state space of a program. When a
given failure condition is met, control is transferred to a specified
error handler which can elect to try error recovery followed by re-
sume, or terminate the function that threw the exception.

Event Handlers Event handlers and POSIX signal handlers both
provide a callback mechanism which may be used for passing
error notifications from the operating system to the application,
or between parts of an application. This model requires no special
language support, and is usually tied to the API or framework the
application was written with, e.g. POSIX (signals) or Win32 GDI
(events).

Guarding A pre-condition may be declared on a function, testing
beforehand whether the function will return normally with the
data. Effectively, pre-conditions ensure that the input falls within
a function’s domain, and attempts to ascertain whether the state
of the system allows the function to complete. Formulating such
a pre-condition may not always be possible, e.g., during complex
interaction with external resources.

Contracts A significant extension to guarding is design by con-
tract, described by Meyer [22]. In this technique, explicit pre- and
post-conditions are declared on every function. Whenever either
fails, the program terminates immediately. A contract should never
be checked by the caller; contract verification must happen during
the implementation phase, not at runtime. Eiffel [21] was the first
language to support and enforce contracts, but also comes with a
notion of exception handling. A routine may have a rescue han-
dler declared for it, which may either provide some default return
value, retry the routine, or fail. In the latter case, the failure will be
propagated to the method’s caller.

Goto The use of goto as an exception handling technique has al-
most disappeared with the introduction of various exception han-
dling language features. In some restricted domains, such as the
kernel code of operating systems, where space and performance
considerations outweigh readability, gotos are still prevalent.

2.2 Alert Handling Policies

Even using the same basic alert reporting, different usage policies
lead to large differences in alert handling in the design of frame-
works and libraries. The policy about retrying on failure, is one
example. Unix leaves it to the user to retry failing operating system
calls, for example if a long running kernel operation is preempted.
Windows (and BSD Unix variants), on the other hand, retries pre-
empted operations automatically.

In many languages, guiding principles exist about using the
exception handling feature of the language. This is the case for
Java, where the general recommendation is to use exceptions for
alerting. Despite such principles, there are numerous examples in
the library where error return values are used, among them in the
implementation of the hash table.

2.3 A Game of Anticipation

The state of the art is to use design experience on a case-by-
case basis to provide suitable alerts. Specifically, there exists no
declarative way to select the desired error handling mechanism for
part of a program. The need for design experience comes from
the fact that fundamental tradeoffs between the caller and callee
of an abstraction must be managed. The caller is the party which
will be implementing the alert handling. As the various handling
techniques have different affinities with alert reporting, and every
caller is potentially different, the implementer of the callee must
anticipate the handling techniques that will be used by the callers.

From the callee side, the ideal reporting mechanism may depend
on the implementation of an algorithm. For instance, if we are
within a deeply nested data traversal, it may be more convenient
to throw an exception than to use return values.

Another consideration is who should do error checking on the
input parameters. Should the callee accept erroneous input and
produce garbage? Should the callee do all checking? This decision
is usually coupled with significant performance tradeoffs.

The amount of anticipation required by the implementer of the
callee is significant, perhaps especially in core language libraries.
In Java, an example can be found in java.util.Queue, which
provides pairs of identical functions, save for differences in alert
reporting: poll() and remove() can both be used to remove the
head of a queue. poll() returns null if there is no head, whereas
remove() throws an exception in the same case. Similarly, add()
throws an exception if a new element cannot be added to a queue,
whereas offer() returns false if the insertion failed.

Determining a suitable reporting mechanism when implement-
ing a callee is compounded by another problem: the caller is the fi-
nal arbiter of what is normality and what is failure. Returning null
from a hash table lookup may in one application be completely ac-
ceptable, and not constitute a special case in the algorithm using
the hash table. In another application, it will be the sign of severe
data corruption and violation of crucial invariants. In the first case,
returning a null is neither an exceptional case, nor an error, and
this situation is therefore not a candidate for alert handling. In the
second, it is critical that proper alerting be used.

3. Separation of Concerns
Separation of Alert Reporting and Handling Although the
mechanisms in Section 2.1 are essentially equivalent in that they
all report exceptional situations (possibly with additional informa-
tion), the default action taken when an error occurs differs. For
return values and error flags, the default is to ignore the error. For
exceptions, the default is to propagate the exception through the
call hierarchy, possible leading to termination of the program. For
guarding, the default is not to guard, i.e., ignore the error.
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In all cases, the callee implicitly decides the default action in
case of an error, by choosing a given report mechanism. This is
unfortunate, since the goal of raising an alert to the caller is to let
the caller decide the appropriate course of action (otherwise, the
callee could simply handle everything on its own). Additionally,
the choice of alert mechanism is often based on implementation
pragmatics, rather than whether the default action is likely to be
appropriate for the severity of the error. If the callee is changed to
use a different mechanism, all call sites must be updated. Thus, we
have a tangling of alert mechanisms (callee implementation) and
alert handling (caller implementation).

Separation of Normality and Exceptionality With existing tech-
niques for handling exceptional situations, we get a tangling of a
program’s normal behaviour and its exceptional behaviour. If our
handling policy is to report small errors to the user and abort the
program on serious errors, we have to code this into all places
where errors are handled. Thus we end up with a mix of code deal-
ing with normal circumstances, and code dealing with exceptional
circumstances (alert behaviour). This leads to cluttered code and
maintainability problems: if we wish to change our policy for some
errors, we may need to change a lot of code in many different parts
of our program.

This problem has also been observed in [16], where aspects are
used to untangle the alert behaviour from the normal behaviour.
The authors advocate that alert handling code be put in separate
declarations – aspects – instead of being scattered around the code
(see Section 6).

Granularity In some cases, mixing normal and alert behaviour
may be beneficial; for example, by taking alerts into account lo-
cally, we may compensate, e.g., by substituting a different return
value. In some cases, such decisions must be made for each call
site; in other cases, we may be able to provide a common policy for
an entire class, a module or a set of functions.

An example of this is IEEE floating-point expressions. Here
a NaN is propagated through the expression and may be tested
for, while an overflow (±∞) may be propagated or consumed
depending on the expression itself.

4. Alert Language Extension
While the existing body of research on exception handling ad-
dresses many of the concerns we have mentioned above, one area
of the design space remains relatively unexplored: how to extract
and declare separately the handling of exceptional situations. This
is what we will address in the next sections.

Our mouldable abstraction of alert handling provides for sepa-
ration of mechanism and handlers, separation of normal behaviour
and failure behaviour, and allow decisions to be taken at the appro-
priate level of granularity, i.e. at the expression, statement, func-
tion, class, module or component level. Furthermore, our proposed
solution allows the callee to declare what is normality and what is
exceptional; allows the caller to declare the desired alert handling
policies; can be applied retroactively to existing libraries; and is
able to distinguish different types of errors.

A grammar for the alert extension is presented in Figures 3,
4 and 5. Although our prototype implementation (discussed in
Section 5) is an extension of the C language, we will discuss
the extension in terms of a C/C++/Java/C#-like language with an
exception facility.

The grammars in this paper are meant for human consumption,
and not for use directly in an implementation. Non-terminals writ-
ten in upright font are meant as hooks into the base language. Non-
terminals ending in name, type or expr are all names, types or ex-
pressions of the appropriate type. The notation “ *, ” and “ +, ” is
used for comma-separated lists.

declaration ::= alert { alert-def *, } super-alert* ;
alert-def ::= alert-name [(parameter-list)] super-alert*

super-alert ::= : alert-name

Figure 1. Grammar for the declaring new alerts.

EBADF Bad file descriptor
EINTR Interrupted system call
EIO Input/output error
ENOENT No such file or directory
ENOMEM Insufficient memory available

Figure 2. A small selection of POSIX error codes, used, e.g., for
open, read and write. The codes are set in the global errno
variable, and should be checked whenever a function raises an error
(typically by returning -1)

4.1 Distinguishing Different Alerts

Alerts are declared with the alert declaration, using syntax similar
to the enum declaration (see grammar in Figure 1):

alert {MyAlert};

Multiple comma-separated alerts can be declared in the same
declaration. For example, a selection of POSIX error codes is listed
in Figure 2. These errors can occur during normal file operations,
such as open, read and write. We can give each of them a unique
alert name with the following declaration, with different (case-
sensitive) names to avoid name clashes:2

alert {eBadF, eIntr, eIO, eNoEnt, eNoMem};

If we look at the selected error codes (and a POSIX reference),
we see that they fall into roughly four categories: temporary con-
ditions (EINTR); system problems outside the program’s control
(ENOMEM, EIO); problems that might be correctable with user
help (ENOENT); and programming errors (EBADF). Thus, it is
useful to be able to group them, so that we may, for example, auto-
matically retry temporary failures, ask the user for a new file name
on permission or missing file problems, and abort the program on
system errors and programmer errors. To do this, we organise our
alerts in a hierarchy, similar to an inheritance hierarchy in OO pro-
gramming (which is also used for exceptions – in Java, for exam-
ple):

alert {Retry, AskUser, FatalSys, FatalBug};
alert {eNoEnt : AskUser};

The colon separates a sub-alert from its super-alert in a declaration.
Multiple alerts can be assigned a common super-alert:

alert {eIO, eNoMem} : FatalBug;

Additionally, an alert may have more than one super-alert:

alert {StupidMistake};
alert {eBadF} : FatalBug : StupidMistake;

To avoid cycles in the inheritance graph, alerts must be declared
before they are used as super-alerts. The built-in alert Alert is the
super-alert of all other alerts.

Finally, we note that it is sometimes useful for the callee to pass
some information back to the caller. To do this, the alert must be
declared with one or more arguments. For example, an Error alert
which allows a message to be passed to the caller:

alert {Error(char *msg)};

2 Alert names are in a separate namespace, but error codes are commonly
declared with macros in C, which ignores namespace boundaries.
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declaration ::= fun-dcltr (alert alert-rep | throws-clause)* [fun-body]
declaration ::= alertrepdef alert-rep alert-rep-name ;
declaration ::= funspace funspace (alert alert-rep)+

alert-rep ::= [alert-name] pre [unless] ( cond-expr )
alert-rep ::= [alert-name] post [unless] ( cond-expr )
alert-rep ::= [alert-name] on throw exception-name
alert-rep ::= alert-rep-name
alert-rep ::= { alert-rep *, }

Figure 3. Grammar for specifying alert reporting. The funspace
non-terminal is defined in Figure 5.

We will see below how the values are passed from callee to caller.

4.2 Specifying the Alert Reports of a Function

Alert reports are specified at the callee side with an alert clause in
the function declaration, c.f. grammar in Figure 3. Possible report-
ing mechanisms include condition checks before (pre conditions,
useful for guarding) and after (post conditions, for checking return
values and global error flags) a call, and exceptions. For example,
to declare that a hash table lookup function lookup returns 0 on
failure, we write:

val lookup(tbl t, key k) alert post(value == 0);

To use a more specific alert than the default Alert, we simply add
the name of the desired alert:

val lookup(tbl t, key k) alert NotFound post(value == 0);

The post-clause takes an expression, which is evaluated after
the function call returns – if the expression is true, the function
has failed. The special keyword value can be used to check the
call’s return value (the type of value is that of the return type of
the callee). Similarly, the pre-clause takes a condition which is
checked before the function is called.

The condition expressions may be arbitrarily complex, but
should only use globally accessible names, arguments to the call,
and value. Arguments are referred to by the name they are given
in the function declaration, and have whatever values they have at
the time of checking (before or after the call).

// alert if table t cannot be expanded due to memory constraints
int insert(tbl t, key k, val v)
alert eNoMem post (value == -1 && errno == ENOMEM);

Specifying a condition with the unless keyword negates it, pro-
viding a more intuitive way of specifying invariants and pre/post
conditions (which are often specified in terms of what is normal,
and not in terms of what is exceptional).

// separate success/failure flag if no return values can be used for alerting
val lookup(tbl t, key k, bool *success)
alert NotFound post unless(*success);

Exceptions (if the language supports it) can be declared with a
throws (Java) or throw (C++) clause, provided that the exception
name has also been declared as an alert:

alert {AnException};
int f() throws AnException;

If a mapping between exceptions and alert names is desired, an on
throw clause may be used:

int f() throws AnException
alert Error on throw AnException;

In all cases, information may be passed to a handler using alert
parameters:

declaration ::= handler handler-name ( parameter-list ) statement
declaration ::= on alert-pattern statement

statement ::= retry [( argument-list )] [max int-expr] ;
statement ::= use expr ;
statement ::= handler-name ( argument-list ) ;
statement ::= statement-body on alert-pattern statement

alert-pattern ::= single-alert +, [in funspace]
alert-pattern ::= alert-pattern or alert-pattern
single-alert ::= alert-name [( parameter-list )]

expr ::= expr <: [alert-pattern] : handler
handler ::= expr | { statement }
handler ::= handler-name ( argument-list )

Figure 4. Grammar for alert handlers. The funspace non-terminal
is defined in Figure 5.

val lookup(tbl t, key k)
alert NotFound(k) post(value == null)

The callee must still provide some way sending this information, ei-
ther through updating of arguments, return values, global variables
or exception objects – alert parameters are merely a declaration of
whatever mechanism is used. For exceptions, the exception object
is available for use in alert parameters:

int f() throws AnException
alert Error(e.msg) on throw AnException(e);

4.3 Alert Handling

The alert handler will treat all alerts the same, whether they are re-
ported by return value, condition check, or exception. The grammar
for alert handlers is presented in Figure 4. There are two alert han-
dling constructs: on, for specifying an alert handler at any scoping
level, down to a single statement, and the handler operator, <::,
which specifies a handler for a single expression.

4.3.1 The on Construct

The on declaration takes a alert-pattern and a statement. The dec-
laration is lexically scoped and applies to all call sites it matches
within its block. The statement form of on applies to a single state-
ment. If more than one handler matches, the most specific one clos-
est in scope applies, or a compile-time error is given if there is more
than one equally suitable handler.

The alert pattern specifies for which combination of alerts
and callees the handler applies. The handler itself is a single or
compound (block) statement, which should provide a replacement
value, retry the computation, refer to another handler, or terminate
the caller. It is an error for a handler to complete without providing
a replacement return value when one is needed – in this case, we
terminate the program (though we could check statically whether
this can occur, and other design choices are certainly possible).

Within a handler, the use statement may be used to provide
a replacement value; use exits from the handler as if the callee
had returned normally with the value provided. For example, the
following defines a handler for NotFounds in the lookup function
which substitutes the value "Doe, Jane" for failed lookups (e.g.,
when mapping ID numbers to names):
on NotFound in lookup() use "Doe, Jane";

The following does the same for all alerts in lookup:
on Alert in lookup() use "Doe, Jane";
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The next two declarations both do the same for NotFound in all
functions (the % matches all functions3):

on NotFound in % use "Doe, Jane";
on NotFound use "Doe, Jane";

The following NotFound handler applies to just the preceding
print statement:

print(lookup(tbl, key)) on NotFound use "Doe, John";

The retry statement tries the failed call again (possibly with a
maximum retry count, specified with “max number” – the default
is to retry indefinitely). The retry statement also takes an optional
list of arguments, which will replace the arguments in the failed
call. It will exit from the handler, continuing execution at the point
of the call which reported the alert – except when the maximum
retry count has been reached, in which case execution continues
with the next statement after retry.

For example, the following specifies that on a NotFoundError,
we should ask the user for a new name and try again (maximum 5
times). If our recovery attempts fail, we substitute an empty string.

on NotFoundError in readfile(char *name) {
warn("trying again...");
char* name = askUser();
if(name != NULL) retry(name) max 5;
warn("giving up...");
use ""; }

4.3.2 The Handler Operator

The handler operator provides a convenient way of handling alerts
at the expression level. The left operand is an expression to be
evaluated, and the right operand is a handler to be used if an alert
was reported in the expression. Within the operator itself, one may
specify which alerts should be handled. Alerts are specified in the
same way as for on, the handler can be either an expression giving
a replacement value, a call to a previously defined handler, or a
statement list (enclosed in braces). In the following example, a
string is substituted if a lookup fails:

print("result: ", lookup(t,k) <:: "Unknown");

An alert pattern can be specified between the colons:

print("result: ", lookup(t,k) <:NotFound: "Unknown");

Furthermore, handler code can be provided, as for on:

fd = open(name, flags) <:eNoEnt: {
char *newname = askUser();
if(newname != NULL) retry(newname,flags);
else giveUp("couldn’t open file"); };

This will try to open a file, and if the file is not found, the user will
be asked for another name. If the user provides one, we try that
instead, otherwise, we abort with a message.

4.4 Abstraction

Our extension provides abstractions for alert handling and report-
ing. The handler construct declares handlers which may be used
later on by the on declaration or the handler operator. For example,

handler log(msg, dflt) {
print("An error occurred: ", msg);
use dflt; }

which may be used as:

on NotFound in % log("Lookup failed", "");
name = askUser()
<:eNoEnt: log("No response from user", "--");

3 The % was chosen to avoid confusion with pointers (*) in C/C++, and is
used in a similar fashion in AspectC++ [28].

Handler abstractions look deceptively like functions in both def-
inition and use, but are not functions, since the retry and use
statement would be tricky to implement in a separate function. In-
stead, the definitions are expanded inline wherever they are needed.
Hence, (mutually) recursive handlers are not allowed.

The alertrepdef declaration declares alert reporting mecha-
nisms for use in a function declaration. It follows the same pattern
as the C/C++ typedef construct. This is useful when several func-
tions share the same alert behaviour. For example,

alertrepdef alert Error post(value == 0) ErrorOnZero;

ErrorOnZero can then be used for functions raising errors with a
zero return value:

int f() alert ErrorOnZero;

4.5 Sending Information from Callee to Caller

Alerts can have associated values (alert parameters), allowing a
callee to provide additional information to a caller. A similar idea
is found in exception handling (e.g., in Java or C++), where excep-
tions are objects that may contain information relevant to the ex-
ceptions. As shown in Section 4.1, valued alerts should be declared
with arguments:

alert {Error(char *msg)};

At the callee side, we provide a suitable value in the alert clause:

int read(int fd, void *buf, size_t count)
alert Error("read error") post(value == -1);

The value can be obtained at the handler side from the alert pattern:

on Error(msg) in read() { print(msg); exit(1); };

In this example, msg is declared as a string, and gets the value
"read error" from the failed read(). If more than one alert is
given in the alert pattern, all of them must have the exact same
argument list. It is not necessary to mention the arguments if they
are not needed by the handler.

If the return value of the callee is to be available to a handler,
it must be passed as a parameter, as return values are not always
available (e.g., for exceptions and pre conditions), and there is no
way for the handler to distinguish between different alert reporting
mechanisms.

Note that, unlike exceptions, we need not construct an alert
object as an aggregate of values. Instead, code is generated in
the handler which obtains the information directly (which is why
only arguments, return values and global variables can be passed
from the reporter). Thus, as for alert conditions, we are restricted
to expressions which have the same meaning for both the callee
and the caller (i.e., global names and operators, constants and
arguments, either before or after the call).

In the case of functions which change their arguments (or mod-
ify global data structures), it is possible that the state of these vari-
ables is inconsistent when the handler is invoked. In this case, it
is up to the handler to put things in a consistent state or terminate
execution. Ideally, functions would ensure that the program state
is rolled back to a safe point before an alert is reported, or at the
very least, declare that this may not happen for some or all alerts.
This problem is also found with the common exception handling
mechanisms. We have not dealt with this problem yet.

4.6 Granularity and Funspaces

By granularity, we refer to the coarseness of a declaration in the
hierarchy from expression through statement, function declaration,
and optionally class, module and subsystem level, all the way
to the system level. Our language extension provides additional
granularity alternatives, among them groups of functions, which
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funspace ::= [return-type | %](function-name | %)
[( parameter-pattern-list )]

funspace ::= funspace funspace-name
funspace ::= { funspace *, }

declaration ::= funspacedef funspace funspace-name ;

Figure 5. Grammar for declaration of function spaces.

we call funspaces. Funspaces can be applied to both alert handling
and reporting.

4.6.1 Granularity of Handlers

In most languages, exception handlers are specified at the statement
level, and the exception declaration (e.g., throws in Java) occurs
along with the function declaration.

In our system, the declaration of both alert handlers and alert
reporters can occur at various levels of granularity. As we have
seen, handlers are declared with on declarations. These can occur at
any level in the scope hierarchy (from global, through namespace/-
package and class, down to blocks and single statements within a
function) and apply to the scope in which they are declared. Ad-
ditionally, handlers can be declared at the expression level using
the handler operator (<::). If multiple handlers are in conflict, the
most specific handler takes precedence, i.e. the one with the most
specific alert pattern at the finest level of granularity.

The concept of a scoping level can be refined using funspaces.
A funspace declares a set of functions, i.e. a subspace of the
namespace for function names. The grammar for funspaces and
funspace declarations is presented in Figure 5.

A funspace is basically a list of function patterns. For example,
(a non-exhaustive list of) the file operations of POSIX can be
declared as follows:

funspacedef { open(), close(), creat() } posix_io;

Each entry in the funspace list conforms to a pattern. For C and lan-
guages without overloading, giving a function’s name is sufficient.
In languages with overloading, the full signature must be given;

funspacedef {
int open(const char *pathname, int flags),
int open(const char *pathname, int flags, mode_t m),
int close(int fd),
int creat(const char *pathname, mode_t m) }
posix_io;

The pattern can also contain wildcards, with % matching any single
item, and .. matching any argument list. For example, The pattern
% %(const char*, mode_t)would match any function with any
return value, that takes two parameters: a const char* followed
by a mode_t, e.g. creat:

int creat(const char *pathname, mode_t mode);

Funspaces, being sets of functions, can be merged, allowing us
to construct the posix funspace from smaller, task-specific fun-
spaces.

funspacedef {
funspace posix_io,
funspace posix_memory,
funspace posix_process }
posix;

This is not merely a syntactic convenience. Different subsets of a
given API often use different sets of errors, each specific to that
subset. Sometimes, the same numerical error value is reused with
different meaning across different subsets. ENOMEM when returned
from mmap has a different meaning than ENOMEM returned from

alert {PrecondFailure, Whoops};
on PrecondFailure in * {fatal("Precond failed");}

int f(int x) alert PrecondFailure pre unless(x > 0)
alert Whoops post(value > 10);

int ff(int a, int b)
{ on Whoops in f() {print("whoops!"); use 0;}
return f(f(a));
}

int f(int x);

int ff(int a)
{ int r;
if(a > 0)
{ r = f(a);
if(r > 10) { print("whoops!"); r = 0; }
if(r > 0)
{ r = f(r);
if(r > 10) { print("whoops!"); r = 0; }
} else fatal("Precond failed");
} else fatal("Precond failed");
return r;
}

Figure 6. Comparison of the Alert extension to C (top), and the
corresponding normal C code (bottom).

stat. Using funspaces, these differences can be captured at the
granularity of function groups, rather than having to be specified
on per-function basis.

4.6.2 Granularity of Alert Reporting

In the previous sections we saw how alert reporting is declared on
individual functions. Using funspaces, reporting mechanisms may
conveniently be declared on groups of functions. The following
declares that the eNoMem alert will be reported on any function in
the POSIX funspace if it returns -1 and the global variable errno
is set to ENOMEM.

funspace posix alert eNoMem post(value == -1
&& errno == ENOMEM);

Both handlers and alerts can be declared at any scoping level and
on funspaces, but the declarations are completely independent.
For example, the alert eNoMem may be specified for all POSIX
functions, as above, while a handler for this alert could be declared
for only one expression inside a particular function in a given
program, e.g.,

f() { open("foo",O_RDONLY) <:eNoMem: exit(EXIT_FAILURE);}

Or, it could be declared for all POSIX functions:

on eNoMem in funspace posix { exit(EXIT_FAILURE); }

Multiple, overlapping funspaces may be declared, and both alerts
and handlers may be specified independently for each funspace.

4.7 Interfacing with Legacy Code

Introducing new failure handling disciplines typically means that
legacy code must be rewritten if it is to take advantage of it. This
is the case with exceptions, for instance: if you want exceptions in
an existing library which reports errors with return values, you will
have to either rewrite the library or write a wrapper for it.

Funspaces, together with handling and reporting abstractions
can be used to specify alert reporting mechanisms and handling
for a large number of existing functions in a few lines of code. This
makes reuse of existing libraries simpler, which is especially im-
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Figure 7. The compiler pipeline for our extended C language.

portant since many older libraries use exotic alert reporting mech-
anisms which may be inconsistent with newer code.

If the library comes with structured documentation, it may be
possible to automatically extract alert specifications from the doc-
umentation. For example, the POSIX standard [24] comes with
structured manual pages in HTML format, available online. A tool
could be written to extract from the manual pages function names,
return value style (“returns -1 on error”) and which error codes are
applicable to the function, and generate the necessary declarations.
We are currently exploring this option.

5. Implementation
We have made a prototype implementation [1] of the language ex-
tension for C that implements the compiler pipeline shown in Fig-
ure 7. The prototype is implemented using the Stratego/XT [5] pro-
gram transformation language, and the C-Transformers [3] frame-
work for C99 transformation.

The prototype consists of an extension to the C99 grammar [14]
(written in the grammar formalism SDF2 [33]) and a set of trans-
formations translating the extended C code to standard C. As seen
in Figure 7, the parser will recognise the extended C language and
produce an abstract syntax tree (AST). Minimal type analysis is
then performed to check that the handlers are type consistent with
the functions they will be applied to. Next, the alert extension is
“peeled off” in a desugaring step before the the AST is pretty-
printed into text and fed to a normal C compiler.

5.1 Translation scheme

The translation algorithm works roughly as follows (for C99, fol-
lowing traversals can be combined into one pass, since the language
requires declaration before use):

First, traverse the AST and look at all function declarations and
definitions. For each declaration or definition, extract the signature
(i.e., name, return type, argument types) and the alert mechanism
(i.e. pre/post conditions – exceptions are not available in C), and
store this for later.

Next, traverse the AST and look for scopes, function calls, on
handler declarations or handler operators. When seeing a scope,
create a new, nested scope for subsequent on handler declarations.
When later existing this scope, drop all handlers registered in this
scope. When seeing an on handler declaration, register its entire
definition in the current scope. When seeing a handler operator
(<::, expand the pattern in Figure 8. When seeing a function
call, check if the signature of the callee is matched by any of the
registered handlers. Check the textually closest handlers first and
proceed to parent scopes. If a matching handler is found, expand
the pattern in Figure 8.

Keep in mind that a function call is only rewritten if at least one
relevant handler is found for it. Let us call the closest (and thus
active) handler current-handler. Given a function call f (e1, ...) to
function t0 f (t1, ...) where t0 is the return type, f the name, t1, ...
the types of the formal arguments, and e0, ... the expressions for
the actual arguments, the instantiation of the template in Figure 8
occurs as follows: First, a local variable r of type t0 is declared,
and will hold the eventual return value. Then, each of the actual
arguments is evaluated and stored, each ex into a local variable vx.
Then, the expression for the pre condition of f is evaluated on
the variables vx (the expression <precond(v0, ...)> means that the
pre condition code is expanded in-place – care is taken to avoid

t0 r;
{ t1 v1 = e1; ...
if(<precond-f(v1, ...)>) {
<current-handler>;
} else {
r = f(v1, ...);
if(<postcond-f(r)>) {<current-handler>};

} }

Figure 8. Template for desugaring function calls.

accidental variable capture), and if it succeeds, we must invoke the
alert handler. The code for current-handler is expanded in place,
and use statements in the body are translated into assignments
to r. The process is similar for the post condition and the post
condition handler. An instantiation of this template was given in a
cleaned up, human-readable form in Figure 6.

5.2 Implementation issues

In C, which lacks function overloading, matching a function call
to the function’s declaration can be done easily just by comparing
names. In other languages, such as C++ and Java, overload analysis
is needed to distinguish functions sharing a common name.

Although overload analysis is unnecessary for C, we still need
to be able to determine the types of arbitrary expressions, in order
to declare temporary variables and type-check substituted values.
Support for this is lacking in Transformers, but was easily added.

A special problem occurs with function pointers, since it is in
general impossible to determine statically which function will be
called at runtime. In the case of dynamic loading, the function may
not even be written yet. A similar problem occurs with exceptions
in object oriented languages, where the preferred solution, in for ex-
ample Java, is to require the exceptions of a function in a subclass
to be an (improper) subset of the exceptions of the corresponding
function in the superclass. This technique translates to our alerts
as well: We can add a declaration about alerting to the type decla-
ration of the function pointer, i.e. the function pointer declaration
now also declares the alert mechanism for the function it will even-
tually point to, and type checking on the function signature, with
alert declarations, must be performed when function pointers are
assigned to. Arguably, this will make function pointers even more
difficult to read, but these syntactical issues can be remedied by ju-
dicious use of typedefs. Our current implementation does not yet
support this.

5.3 Compiling to Aspects

The application of alert handlers to function call sites is a separate,
cross-cutting concern, and can certainly be considered an aspect
in the sense used by Kiczales et al [15]. If we targeted AspectJ
rather than C, the template in Figure 8 could be realized as an
around advice, where the invocation of f is replaced with a call
to proceed. The pre and post condition expressions would be
placed before and after the call to proceed, respectively, in the
same fashion as now. Use statements in the handler body would
translate into returns.

The full granularity of handler declarations from expression
level to arbitrary function groups would be harder to capture faith-
fully, however. While funspaces can be captured by normal point-
cuts, by listing all function names in the point-cut, we do not see
any easy and robust way of encoding point-cuts that exactly match
expression level handlers.
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6. Related Work
Language support for exception handling has been introduced grad-
ually since the 1960’s. Research-wise, PL/I’s condition system and
later CLU [18, 17] and Ada’s structured exception handling have
perhaps been the most influential.

Hill [12] documents about ten different idioms for raising ex-
ceptions in languages such as Algol and Fortran, which at the time
did not have any exception handling facility. He advocates disci-
plined control transfer over special return values.

Randell [26], introduces a failure recovery system inspired by
“stand-by sparing”, as found in hardware designs. Their tech-
nique assumes a nested, block-structured language, and provides
transaction-like error recovery. Each block is a transaction, and
may have one or several recovery blocks associated with it. A block
has an acceptance test, which acts as a postcondition check. If a
block fails, by failing its postcondition check, the program state is
unrolled to the state before the block was entered, and the list of as-
sociated recovery blocks is tried in order, each time preceded by an
unroll, until one of the recovery blocks passes the acceptance test.
If the list is exhausted before recovery occurs, the error is passed
to the enclosing block. This technique does not support raising of
errors to handlers further up the call chain. MacLaren [20] critiques
the design for being too complex, and encouraging bad idioms, like
a global ON handler for file exceptions which set global error flags
that must be checked after by the caller of any file operation, thus
effectively degenerating to global error values.

Borgida [4] discusses language features for exception handling
with a focus on the interplay between exception handling and trans-
actions found in database and information systems. He advocates
the support for resumption, user-defined exception types, classifi-
cation of exception types, and preventing the handler from mod-
ifying the context of the alerter. The language presented supports
transactional unrolling in the case of unhandled exceptions and the
capture of accountability in transactions using exceptions.

In a sufficiently reflective language, such as Oberon, exception
handling may be entirely implemented by the user without extend-
ing the language, as is shown in [13]. Oberon allows reflection over
stack frames using “riders”. Exceptions are thrown by invoking a
rider that locates the appropriate handler in an enclosing procedure
on the stack. If the found handler returns, this is taken as termi-
nation, and the stack below the handler is cleaned. If the handler
invokes Resume, execution resumes at the point of exception.

Romanovsky and Sandén [27] discuss good and bad practices in
exception handling, dividing the problem into bad language design
and misuse due to insufficient training. They argue that languages
should support two kinds of exceptions with respect to their pro-
gram units (modules or packages): internal and external. External
exceptions must be declared and checked, i.e. a propagation disci-
pline must be declared and the compiler must enforce it. They ar-
gue further, based on experience with Ada, that exceptions in OO-
languages must be classes, and user-definable, so that information
may be passed from the exception raiser to the handler with the ex-
ception, and so that the exceptions may be classified based on type.
They also argue that exceptions can aid in, rather than complicate
program validation and verification. The critique of Romanovsky
and Sandén about a propagation discipline was addressed by Luck-
ham and Polak [19]. They describe a language extension to Ada for
specifying the propagation of exceptions. This extension has not
been included in later versions Ada, however.

Cui and Gannon [7] describe an alternative exception handling
system for Ada than the school of Goodenough [10]. Instead of be-
ing declared as part of the control structure, as markers on the stack,
exception handlers are dynamically attached to objects. When an
object raises an exception, its associated handler is invoked. The
authors refer to this as data-oriented exception handling. Our alert

system provides no easy way to support this form of exception han-
dling.

An argument against exception handling for embedded systems
– the difficulty of predicting timing constraints in the face of ex-
ceptions – is addressed by Chapman et al [6], where the authors
presents a model for static timing analysis of exceptions in a subset
of Ada83.

The Lisp condition system [25] is similar to PL/I’s ON, but
supports more of the features first described by Goodenough [10],
such as resumption.

Other functional languages, such as SML and Haskell, also sup-
port exceptions. Wadler [34] shows how exceptions may be realized
in purely functional programming languages, using monads.

Dony [8] describes an object-oriented exception handling for
Smalltalk, where users can define new exceptions, where exception
objects contain information passed from the alerter, and where dif-
ferent exceptions can be distinguished and organised in a hierarchy
based on their type. Like Goodenough’s approach, the possible ac-
tion of the handler are resumption, termination, and retry, but the
choice is determined by the type of the exception object, rather than
the alerting primitive. Smalltalk-80 allows the declaration of class-
handlers: per-class exception handlers. These do not take handlers
in the dynamic call context into account, as proposed by Goode-
nough; this is provided by Dony’s extension.

Lippert and Lopes [16] describe how to untangle error handling
code from algorithmic code using aspect-oriented programming.
The solution is applied to a framework constructed using design
by contract. Aspects are used to extract the contract checking code
from the rest of the framework. A drawback of the proposed so-
lution is that the contract is declared in documentation comments
along with the framework (algorithmic) code, whereas the contract
checking code is maintained elsewhere, thus opening up for devia-
tions between the declared contract and the actual contract check-
ing code.

7. Conclusion
The state of the art in alert handling provides reporting mechanisms
that are both efficient and expressive. However, with the excep-
tion of the aspect-oriented approach to separating out failure be-
haviour [16], failure handling code is largely rigid. The alert re-
porting and handling are tangled, and the implementer must always
choose a mechanism when implementing a function, but in doing
so, also makes an implicit choice about the handling policy.

We have presented a flexible alert language extension that sup-
ports decoupling of the reporting and handling mechanisms for ex-
ceptional behaviour. The extension user-defined alert handling and
reporting at a wide range of granularities. It allows the caller to
declare what is normal and what is exceptional, and to declare sep-
arately the desired handling policies. This improves reuse of ex-
isting libraries and components, as policies can now be specified
retroactively by the library user. We have sketched its implementa-
tion [1] based on the Transformers program transformation frame-
work. The extension functions as a compiler extension in the form
of a pre-processing step to the C compiler. The design space where
the alerter and handler are decoupled is largely unexplored. This
is unfortunate, since even the modest extensions we have shown
to a simple, imperative language with exceptions could improve
both the reuse of existing code bases and the clarity of failure han-
dling code. Some work on this topic has been done in the con-
text of aspect-orientation, but we believe that our alert declaration
language is more precise and concise than generic join-points and
advice. One could consider our language extension as a domain-
specific aspect language for error handling.

While our proposed extension has only been realized for two
rather simple languages, in the imperative style, we expect it to
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be transportable to other languages and paradigms. The syntax
should be modified to fit the conventions of the language; in this
paper, we have based the syntax on C-like languages; this would
be out of place in Python, for instance. A few obvious exten-
sions may be necessary. In general, funspace patterns may need
to be more like AspectJ [15] or AspectC++ [28] point-cuts, to
deal with function overloading and namespaces. In our subject lan-
guage, C with exceptions, this was not needed, since we only have
one global namespace and no overloading. It is important that fun-
spaces should continue to be function (or method) groups, so that
funspaces can cross-cut namespaces. This will keep the flexibility
of specifying alert mechanisms and handlers across namespaces.
More research is necessary to determine the best interaction be-
tween funspaces and method visibility, however.
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