
Journal of Object Technology
Published by AITO — Association Internationale pour les Technologies Objets, c© JOT 2011

Online at http://www.jot.fm.

Testing with Axioms in C++ 2011

Anya Helene Baggea Valentin Davida Magne Haveraaena

a. Bergen Language Design Laboratory, Department of Informatics,
University of Bergen, Norway, http://bldl.ii.uib.no/

Abstract Unit testing is an important part of modern software develop-
ment, where individual code units are tested in isolation. Such tests are
typically case-based, checking a likely error scenario or an error that has
previously been identified and fixed. Coming up with good test cases
is challenging, particularly when testing generic code, and focusing on
individual tests can distract from creating tests that cover the full func-
tionality.

Concepts provide a generic way of describing code interfaces for generic
code. Together with axioms, program behaviour can be specified alge-
braically in a formal or semi-formal way.

In this paper we show how concepts and axioms can be expressed in
standard C++ 2011, and explore how to generate generic unit tests, by
treating the axioms as code to be evaluated with test data. We also show
a generic way to generate test data for axiom-based testing in C++ 2011.

Keywords Algebraic Specification; Axiom-Based Testing; Axioms; C++;
C++0x; C++11; Concepts; Generative Programming; Mouldable Pro-
gramming; Test Generation; Unit Testing

1 Introduction

Modern software engineering practises encourage the use of unit testing to increase
software reliability. Test-driven development (TDD) [Bec02] dictates that software
should be extended by writing tests for a new feature first, before implementing
the feature. The tests provide a specification of the behaviour of the new feature,
and provide an easy way to check the implementation throughout development and
refactoring.

Less extreme methods call for tests for all program units, and for regression tests
to be written to ward off the reappearance of known bugs. Such methods may be
practised rigorously, or in an ad hoc manner. Common to all is that they rely on the
programmer to invent good test cases that cover both likely and unlikely errors. The
programmer must also be careful that the tests exercise the full expected feature set,
or the implementation will seem OK when all it does is implement the bare minimum
to pass the tests.

Anya Helene Bagge, Valentin David, Magne Haveraaen. Testing with Axioms in C++ 2011. In
Journal of Object Technology, vol. 10, 2011, pages 10:1–32. doi:10.5381/jot.2011.10.1.a10

http://www.jot.fm/copyright.html
http://www.jot.fm
http://bldl.ii.uib.no/
http://dx.doi.org/10.5381/jot.2011.10.1.a10
http://dx.doi.org/10.5381/jot.2011.10.1.a10


2 · Bagge, David, Haveraaen

1.1 Testing with Concepts and Axioms

We suggest writing tests based on axioms that formally specify expected behaviour,
rather than relying on ad hoc test cases. We integrate axioms with concepts that
describe code interfaces – basically, the types and operations that a program module
supports. Axiom-based testing provides reusable tests for implementations of con-
cepts. Also, by stating the requirements of generic code in terms of concepts, we
know what behaviour we must test for in arguments given to generic code.

Testing an implementation consists of stating (and checking) that it conforms to
the interface of the given concept, then generating suitable test data, and finally eval-
uating the axioms for the generated test data values using the implementation. If
any of the axioms evaluate to false, the implementation does not satisfy the concept
specification – which may mean that the implementation is buggy, or that the spec-
ification is wrong; if the results are to be reliable, the axiom must correctly express
the desired feature.

1.2 Concepts in C++ 2011

Concepts were proposed for inclusion in the C++111 standard as a modularisation
feature for generic programming. Concepts were designed to solve the problem of
incomprehensible error messages from deep inside C++ template code, providing a
sort of bounded polymorphism to the otherwise duck typed (at compile time) template
system, similar to how type classes work in Haskell [HHPW96]. The proposal also
allowed for axioms in concepts, opening the way to axiom-based optimisation [TJ07,
BH09] and testing [BDH09]. However, concepts were dropped [Str09] from the draft
standard [B+11b] before finalisation.

Since the proposed C++ standard no longer provides for concepts and axioms,
our approach has changed since our original implementation of axiom-based testing
for C++ [BDH09]. We now provide a library, Catsfoot, which adds alternative
concept support to C++11 as well as support for generating axiom tests, all using
template meta-programming. While we previously had to rely on an external tool to
support test generation, with limited C++ support, this is no longer necessary.

Our contributions in this article include:

• a technique and library for testing with concepts and axioms in C++11,

• a library for using concepts in C++11, and

• a generic test data generation library to be used with axiom-based testing.

Our Catsfoot concept library supports most of the features of the previous
C++0x draft [GSSW08] (with the exception of archetypes), though in this paper we
will focus mainly on using it for axiom-based testing, leaving the rest for a future
paper. Further information on the concept library, as well as the full source code re-
leased under the GNU LGPL license, is available at http://catsfoot.sourceforge.
net/ [Dav11].

We have tested all code examples in this paper with GCC 4.5.2 and 4.6.0 (with
the exception of one example, which does not run on current compiler releases). The
file containing the examples can be obtained from the website.

1At the time of writing, the new C++ Final Draft International Standard [B+11a] was awaiting
review and approval by ISO before publication.

Journal of Object Technology, vol. 10, 2011

http://catsfoot.sourceforge.net/
http://catsfoot.sourceforge.net/
http://dx.doi.org/10.5381/jot.2011.10.1.a10


Testing with Axioms in C++ 2011 · 3

The rest of the paper is organised as follows. In the next section, we introduce and
define concepts and axioms, and in Section 3 we show how to perform axiom-based
tests. Data generators are explained in Section 4, and in Section 5 we discuss specifi-
cations, different aspects of axiom-based testing and related work. The conclusion is
given in Section 6. There are also two appendices, Appendix A containing code and
examples referenced in the paper, and Appendix B which gives a quick overview of
the C++ definitions used in the paper.

2 Concepts

We will now introduce definitions of the terms we will use throughout the remainder
of the paper.

2.1 Concepts

A concept C〈p1, p2, . . . , pn〉 = (R,Φ) consists of a set of parameters p1, p2, . . . , pn, a
set of requirements R and a set of axioms Φ.

The concept parameters may be either types or operations, both encoded in the
C++ type system. For example, themonoid<T,Op,Id> concept has three parameters:
a type T, an operation Op and an identity element Id, expressed as a nullary operation.
In C++, we write concepts as a template class inheriting from concept:

1 template <typename T, typename Op, typename Id>
2 struct monoid: public concept {

We will use the concept monoid as a continuing example throughout this section.

2.2 Requirements

A requirement on one or more concept parameters may be either a predicate or an-
other concept. A predicate is a template meta-function which checks some property
of a type or function. For example, the predicate is_callable checks whether a
function accepts the given parameter list. This is compatible with all the predicates
defined in <type_traits> of the standard library, such as std::is_convertible and
std::is_constructible.

The requirement list is defined as a typedef requirements, with a concept_list
listing the requirements:

3 typedef concept_list<
4 // operations are callable with the given parameter types
5 is_callable<Op(T, T)>,
6 is_callable<Id()>,
7 // results are convertible to T
8 std::is_convertible<typename is_callable<Op(T, T)>
9 ::result_type, T>,

10 std::is_convertible<typename is_callable<Id()>
11 ::result_type, T>
12 > requirements;

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a10


4 · Bagge, David, Haveraaen

Encoding the requirements as a type in this way is a standard C++ meta-program-
ming trick, making them accessible to the template system at compile time. The
member result_type gives the return type of a is_callable operation.

New concepts can be built from simpler ones by using concepts as requirements.
For example, monoids for addition and multiplication could be part of a larger ring
concept (see Listing 2, page 10).

2.3 Axioms

An axiom performs some test on the relationship between the operations in the con-
cept. Each axiom contains one or more expressions or assertions with universally
quantified variables of the concept parameter types. For example, the monoid con-
cept has axioms for associativity (op(x, op(y, z)) == op(op(x, y), z)) and iden-
tity (op(x,id()) == x and op(id(),x) == x) for all values T x, y, z, operators
Op op and Id id.

Our axioms are represented as static member functions, with the universally quan-
tified variables as parameters. When running tests, we can then supply the axiom
functions with concrete test values of the appropriate types.

13 static void associativity(const Op& op, const T& a,
14 const T& b, const T& c) {
15 axiom_assert(op(a, op(b, c)) == op(op(a, b), c));
16 }
17
18 static void identity(const Op& op, const T& a, const Id& id) {
19 axiom_assert((op(id(), a) == a) && (op(a, id()) == a));
20 }

The axiom_assert call will take care of recording success or failure, and comput-
ing test coverage. The axiom_assert argument is the actual axiom. Multiple such
assertions can be put into the same function, and the programmer is free to use if to
create conditional axioms or, in fact, use arbitrary C++ code to compute the axiom
result.2 Hence, we are not restricted to a particular form of logic (e.g., conditional
equational logic, as used in the C++0x concept proposal).

The equality operator used in the axiom is the normal C++ equality defined for the
type (if it exists). In some cases it may be a good idea to make the equality operator
itself a parameter of the concept, so that the programmer has more control over the
semantics of equality. Similarly, other comparison operators should be parameters to
the concept, since they may not be defined for all types. See Section 5.6 for more
about defining and using equality.

The list of all axioms is obtainable through the function get_axioms(), which the
concept programmer must implement. For convenience, the AXIOMS macro is used to
implement get_axioms() correctly, given a list of axioms:

21 AXIOMS(associativity, identity);
22 }; // end of concept monoid

2Note that axiom_assert is currently defined as a macro, and in order to correctly determine
axiom coverage, it should not be placed inside a { } block.

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a10


Testing with Axioms in C++ 2011 · 5

2.4 Models

A model or implementation is a list of actual concept arguments 〈a1, a2, . . . , an〉 that
fulfil all the requirements of a concept and satisfy all the axioms. A concept expression
C〈a1, a2, . . . , an〉 is verified if 〈a1, a2, . . . , an〉 models C, with the actual arguments
substituted for the formal concept parameters. For example: 〈Z,+, 0〉modelsMonoid.
In C++, we express this using a type trait verified:

template <>
struct verified<monoid<int, op_plus, constant<int,0> > >
: public std::true_type
{};

The programmer must explicitly state that the model relationship holds.
The actual code implementing a model can – and often will – be generic template

code. All operations are wrapped as types – classes implementing operator() – when
they are used in concepts. This makes it easier to deal with them at the template
level. Our library contains wrappers for all standard C++ operators, such as op_plus
for +, op_lt for <; and constant<T,V> for constants; as well as convenience macros
for wrapping both member and non-member functions.

2.5 Axiom-Based Testing

We are now ready to define axiom-based testing: Axiom-based testing attempts to
demonstrate that an implementation 〈a1, a2, . . . , an〉 models a concept C (or, equiv-
alently, that verified<C〈a1, a2, . . . , an〉> is true), by experimentally searching for
counter-examples using the axioms of the concept and the data values and operations
of the model.

Testing is controlled separately from the model relationship, as we shall see in
Section 3, but each verified declaration implies an obligation on the programmer
to verify by testing (or proof) that the model relationship holds.

2.6 Predicates

Predicates can be used as part of the requirement list for a concept. A predicate is
implemented as a type which has a static member ::value as a Boolean constant, the
value of which is defined based on whether certain syntactic requirements are fulfilled.
For instance, a predicate can tell whether a type is callable with a certain signature.

The header <type_traits>, introduced in the C++11 standard, provides predi-
cates which can be used with our system. For example, is_lvalue_reference is a
predicate that tests whether a type represents an lvalue. It is implemented with a
default case, returning false:

template <typename T>
struct is_lvalue_reference: public std::false_type {
};

and a specialised case for references, returning true:

template <typename T>
struct is_lvalue_reference<T&>: public std::true_type {
};

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a10


6 · Bagge, David, Haveraaen

An automatic concept (or auto concept) has no axioms, and is automatically ver-
ified for all models that match the requirements. An auto concept must inherit from
auto_concept, and differs from a predicate only in how errors are reported in concept
checking; for a predicate, the error is reported directly, for an auto concept, the mes-
sage will refer to the specific requirement that failed. Auto concepts and predicates
have no role in testing, they are only used in concept checking. An example can be
seen in Listing A.5.

2.7 Concept Checking

Concept checking is the act of determining whether an implementation satisfies the
requirements of a concept [SL00]. Syntactic requirements, such as which operations
should be defined, are expressed through predicates and can be checked by seeing if
the predicate has a true value. For semantic requirements (axioms), we must rely on
the programmer promising that the requirements are fulfilled, using the verified trait.
Concepts and auto concepts in the requirement list are checked recursively.

Concept checking is performed prior to testing, and whenever requested by the pro-
grammer using assert_concept (for function templates) and class_assert_concept
(for class templates) to check that a set of template arguments model a given concept,
or when using ENABLE_IF to perform concept based overloading. The concept asserts
will trigger an error if the given concept expression fails the requirements. ENABLE_IF
is used for concept-controlled polymorphism [JWL03]; if inserted into a function tem-
plate argument list, it will disqualify the function from overload resolution if concept
checking fails. An example of ENABLE_IF can be seen in Listing A.5; more information
on non-testing use of the concept library can be found in the Catsfoot tutorial and
source distribution [Dav11].

2.8 Long Parameter Lists

Compared to the previous concept proposal [GSSW08], we make wider use of param-
eters; basically every type and operation in a concept is a parameter. This allows
for far more flexibility in matching a wide range of implementation styles with the
interface defined in a concept (i.e., by providing signature morphisms), eliminating
the need for the concept_map construct of the previous proposal. The cost of this
is somewhat more unwieldy parameter list, particularly for large concepts. We can
reduce this problem by making specialised version of concepts that bind some of
the arguments. For example, the plus_monoid in the following example binds the
operator to op_plus and the identity element to the default constructor:

1 template <typename T>
2 struct plus_monoid: public concept {
3 typedef
4 monoid<T, op_plus, wrapped_constructor<T()> >
5 requirements;
6 };
7
8 template <typename T>
9 struct verified<monoid<T, op_plus, wrapped_constructor<T()> > >

10 : public verified<plus_monoid<T> >
11 {};

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a10


Testing with Axioms in C++ 2011 · 7

The verified clause then states that if the user claim a type to be model of plus_monoid
it is also a monoid.

3 Testing Axioms

As we have seen in Section 2.3, an axiom is just a function that calls the macro
axiom_assert. This macro will throw an exception back to the test driver if the
axiom test fails, and do nothing on success. The user may redefine the macro to fit
the programming environment.

Our previous axiom-based testing scheme [BDH09] would generate test drivers
by parsing the concepts with external tools. However, C++11 provides a way to
make drivers using pure template meta-programming, with no external tool. Using
variadic templates, introduced in the standard, it is now possible to match a function
with arbitrary number of parameters and go through all its parameter types and select
the right data to pass as arguments.

We can test a single axiom in the following way:

test(generator,
monoid<int, op_plus, constant<int, 0>>::associativity);

where associativity is an axiom of the monoid concept (instantiated for 〈Z,+, 0〉),
and generator is a data generator (described in Section 4). The test function will
go through all the parameters of the axiom and get suitable argument values from
the generator, then call the axiom and report the outcome.

A simplified version of the test driver is shown in Listing 1. It shows how it is
possible to parse a parameter list of a function at compile-time, without the use of
reflection.

3.1 Testing Concepts

Testing just a single axiom at a time would be cumbersome. Using the test_all
function, we may automatically test all the axioms of a concept – including the axioms
of any recursively required concept:

test_all<monoid<int, op_plus, constant<int, 0>>>(generator);

The test_all function obtains a list of all axioms in a concept from the get_axioms
function (defined by the user using the AXIOMS macro). This list also contains the
name of each axiom as a string, used to print a short report on success. Each axiom
is tested in turn using test. After all axioms have been tested, test_all is called
recursively on all the requirements of the concept.

Support for concept testing is the reason for the AXIOMS macro. There is no way
to find the members of a class using template meta-programming, so the programmer
must supply the list of axioms manually. This also implies that we can define axioms
outside of concepts (i.e., as non-member functions), should we want to.

Such free-floating axioms can either be added to a concept by naming them in
the AXIOMS argument list, or be tested directly with test, as in the previous section.
This can be an easy way to add axioms to a project, without reorganising the code
around concepts.

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a10


8 · Bagge, David, Haveraaen

1 template <>
2 struct tester<> {
3 template <typename Generator, typename Fun, typename... Params>
4 static bool call(Generator, Fun f, Params... values) {
5 try {
6 f(values...);
7 return true;
8 } catch (axiom_failure af) {
9 return false;

10 }
11 }
12 };
13
14 template <typename T, typename... U>
15 struct tester<T, U...> {
16 template <typename Generator, typename Fun, typename... Params>
17 static bool call(Generator g, Fun f, Params... values) {
18 auto container = g.get(selector<T>());
19 for (auto i = container.begin();
20 i != container.end(); ++i) {
21 if (!tester<U...>::call(g, f, values..., *i))
22 return false;
23 }
24 return true;
25 }
26 };
27
28 template <typename Generator,
29 typename... T>
30 bool test(Generator g, void f(T...)) {
31 return tester<T...>::call(g, f);
32 }

Listing 1 – The function test starts by calling tester<T...>::call where T... represents
the list of the parameters of the axiom. Then this function tester<T...>::call will
call itself recursively, removing the first parameter until it reaches an empty list. In the
mean time values of each type will stack up, building an argument list. At the end, the
call static member will receive a value of each type and can then call the axiom.

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a10


Testing with Axioms in C++ 2011 · 9

1 code.cc:447: Axiom static void monoid<T, Op, Id>::identity(const Op&,
const T&, const Id&) [with T = int, Op = op_plus, Id = constant<
int, 1>] failed.

2
3 Expression was: (op(id(), a) == a) && (op(a, id()) == a)
4
5 Values were:
6 * Values of type op_plus are not printable
7 * -1
8 * Values of type constant<int, 1> are not printable

Figure 1 – Axiom failed report for monoid〈Z,+, 1〉. The library gives similar reports for
the other monoid axioms and test values.

3.2 Test Reports

On successful completion of a test, the default test driver will write ‘passed’ to the
console. An alternative implementation can easily provide feedback to a unit testing
framework or integrated editor. Any failures will result in a detailed problem report.
For example, if we try to see if 〈Z,+, 1〉 is a monoid (which it isn’t, since x + 1 6= x):

test_all<monoid<int, op_plus, constant<int, 1>>>(generator);

we get an axiom failed message, as shown in Figure 1.
As explained in Section 2.3, evaluation of axioms is done by axiom_assert. If the

axiom test succeeds, the axiom function will proceed and eventually return, otherwise
axiom_assert will throw an exception. This exception contains the argument values
and all other necessary information to generate the report – including the line number
and full name of the axiom, obtained using the compiler’s predefined macros. This
detailed information is available only on failure; the success message will simply report
the name of the axiom.

The printing of values depends on the << operator being defined for the value and
the error stream. This is handled using concept-based overloading; the code for this
is shown in Listing A.5.

3.3 Reusable Tests

A convenient effect of having concepts and their axioms separate from the classes that
implement them is that they can be freely reused for testing new types that model the
same concepts. If you already have a Stack concept with carefully selected axioms,
you get the tests for free when you implement a new stack class.

Having libraries of standard concepts for things such as algebraic classes [Got06]
(including monoid, ring, group and others that apply to numeric data types), con-
tainers (indexable, searchable, sorted, ...) as well as common type behaviour pred-
icates [GMWL08] (defined in <type_traits> in C++11) cuts down on the work
needed to implement tests. A well thought-out library is also far less likely to have
flawed or too-weak axioms compared to axioms or tests written by a programmer in
the middle of a busy project.

Another typical form of reuse is building more complex concepts on top of simpler
ones. For example, we may build a ring from monoid and group, with the operators

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a10


10 · Bagge, David, Haveraaen

1 template <typename T, typename MOp, typename AOp,
2 typename Minus, typename Zero, typename One>
3 struct ring: public concept {
4 typedef monoid<T, AOp, Zero> add_monoid;
5 typedef group<T, AOp, Minus, Zero> add_group;
6 typedef monoid<T, MOp, One> mul_monoid;
7
8 typedef concept_list<
9 mul_monoid,

10 add_group, // implies add_monoid
11 distributive<T, MOp, AOp>,
12 commutative<T, AOp>
13 > requirements;
14
15 // check that we also have add_monoid
16 class_assert_concept<add_monoid> check;
17 };

Listing 2 – An algebraic ring concept, built from monoid and group. The requirement
group<T, AOp, Minus, Zero> should imply monoid<T, AOp, Zero>; we check that
this is really the case with the assert at the end of the concept.

satisfying the distributive law (i.e., a × (b + c) = a × b + a × c) – see example in
Listing 2. This may be an interesting property to test; for instance, integers are rings,
but the int data type may not behave like a ring on architectures where numbers do
not wrap around on overflow.

3.4 Axioms for Object-Oriented (OO) code

To be as generic as possible and to support all programming paradigms in C++, we
have stayed away from object orientation in our approach. In general, we recommend
that axioms are written as algebraic expressions. OO programming can be handled
by wrapping object member functions into types, and imperative functions can also
be wrapped to avoid side-effects on arguments.

Listing 3 shows two examples of how member functions are wrapped into types.
In the first case, the class foo_wrapped provides a wrapper around any member
function Ret T::foo(Args...), as a call with signature Ret (T&, Args...); i.e.,
with the object as the first parameter. Similarly, the constant member function Ret
T::foo(Args...) const is wrapped as Ret (const T& Args...), with a const first
parameters.

We can generate such wrappers using the DEF_MEMBER_WRAPPER macro. For ex-
ample:

DEF_MEMBER_WRAPPER(foo);

The macro only needs to be called once per function name, as it will wrap any member
by that name, in any class, with any argument list. Unfortunately, there does not
seem to be a way to trigger the generation of such wrappers automatically.

Axioms often use functional style programming, potentially causing trouble with

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a10


Testing with Axioms in C++ 2011 · 11

1 struct foo_wrapped {
2 template<typename T, typename... Args,
3 typename Ret = decltype(std::declval<T>()
4 .foo(std::declval<Args>()...))>
5 Ret operator()(T&& object, Args&&... args) const {
6 return std::forward<T>(object).foo(std::forward<Args>(args)...);
7 }
8 };
9

10 struct foo_functionalized {
11 template<typename T, typename... Args,
12 typename = decltype(std::declval<T>()
13 .foo(std::declval<Args>()...))>
14 T operator()(const T& object, Args&&... args) const {
15 T ret(object);
16 ret.foo(std::forward<Args>(args)...);
17 return ret;
18 }
19 };

Listing 3 – Examples of method wrappers. The type parameter with a decltype expression
will both be used to infer the return type and to enable the call only when the argu-
ment list is legal for the original member function.

member functions that update their object. Members with side effect on the object
can be converted into functions – functionalised – returning the modified copy and
removing the side effect. In the example in Listing 3, foo_functionalized provides
a functionalised wrapper for foo.

Similarly, if a function has side-effects on its arguments, we can wrap it to avoid
the side effects. The wrapper will proceed through the argument list, try to make
each argument const, and simply copy it if that fails (this requires, of course, that a
copy constructor is defined for the type). Functions with arbitrary global side effects
cannot be wrapped; but such behaviour would be difficult to describe with axioms
anyway.

3.4.1 Inheritance

According to the Liskov substitution principle, functions expecting an object of a
base class should behave consistently when presented with an object of a subclass.
Hence, the subclass must satisfy the behaviour specification of the base class(es); i.e.,
it must model at least the same concepts, and we should test it with (at least) the
same axioms. The subclass may also model additional concepts, with more axioms to
test.

During testing, one may treat subclasses just like any other class, and test with the
applicable concepts (the base class concepts and the concepts of the subclass itself).
If one wishes to specifically test the inheritance and virtual dispatch behaviour, it is
possible to run the test on references instead of values:

test_all<base_concept<base_class&>>()(generator);

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a10


12 · Bagge, David, Haveraaen

and then use a data generator that provides object of both the base class and the
subclasses. Such a generator can be built using the random term generator (Sec-
tion 4.2) by supplying operations that construct objects of the subclasses (using the
term generators for the subclasses).

3.5 Exceptions

Depending on the approach taken when writing specifications, it may be interesting to
test exception behaviour. Lack of proper error detection and reporting is a common
and serious problem, and we may want to test that improper use of operations results
in an exception being thrown – for example, when popping an empty stack or creating
a rational number with a zero denominator.

The function throwing<E> can be used to test if an operation throws a particular
exception. It is instantiated with the exception type, and takes the operation and
arguments as arguments. For example:

axiom_assert(throwing<Exception>(fun, 0));

Of course, this is only necessary if we write axioms in a purely functional style;
otherwise we may use try/catch directly in the axiom.

Under the substitution principle, it is usually considered allowable for an imple-
mentation or an implementation subclass to accept a wider range of parameter values
than stated in the specification (in accordance with the principle of the previous sec-
tion), so exception testing in this manner should be used with care. A possibility is
to separate the specification of exception behaviour into another concept, or specify
preconditions in some other way.

3.6 Test Coverage

We can get some idea of the effectiveness of our axiom tests by measuring axiom
coverage and implementation code coverage. Axiom coverage tells us how much the
axioms have actually been tested, and can uncover problems like axioms that are
untested or under-tested because their conditions are never true on the given test
data. Code coverage of the implementation gives an indication of how good the
axioms and the test data are at exercising all parts of the code. Ideally we want
test sets that cover the entire implementation, including seldom used branches of if
statements and error handling code – possibly using other tests in addition to the
axiom based tests.

Our testing library measures axiom coverage and will warn about unused axioms.
We can measure code coverage using an external tool like gcov(1) or one of the various
commercial tools that are available.

Full axiom and code coverage is not necessarily sufficient to give confidence in the
implementation; if we have only used a few data points, a trivial faulty implementation
may still pass the test, even though it would easily break when exposed to a more
diverse selection of test data. We have no way to detect this directly, though we could
give warnings if tests are done with few data points.

Lack of full axiom coverage indicates a lack of diverse test data. Low code coverage
may also stem from a lack of test data or a deficiency in how the data is generated,
but is more likely due to not covering the full behaviour with axioms. This may not
be a problem in itself; it may be perfectly acceptable to cover some parts of the code
with other tests.

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a10


Testing with Axioms in C++ 2011 · 13

4 Data Generation

The second main component of axiom-based testing is data generation.
There are several possible strategies for generating test data: We may use user

selected data sets, randomly chosen generator terms, randomly chosen data structure
values, or data values harvested from an application.

The first option is the classical approach to testing and the one (implicitly)
favoured by test driven development. It relies on picking representative values that
exercise the full behaviour of the code. We may do this by guessing (e.g., pick common
boundary values like −1, 0, 1 and a few other values), reasoning (e.g., this function
does something different for positive and negative numbers, so pick one positive and
one negative number, plus zero to test the boundary – path coverage analysis can
give useful input here), and by using values that have caused problems in the past,
to expose regressions.

There are two main approaches to random testing: generate random terms or
expressions and use their values, or generating random data for each field (member
variable) of a class. QuickCheck [CH00] uses term generation, as does Prasetya et al.
for their Java-based testing system [PVB08]. Term generation assumes that all data
values can be generated by some sequence of the available operations – which is true
for algebraic data types, but not necessarily for all C++ classes (i.e., if the data
structure fields can be manipulated directly).

Random field value generation has its own problems. There is often a particular
relationship between the fields of a class, so that only some combinations are valid
(satisfies the data or class invariant). In practice, we may have to implement a specific
data generator for each class, to ensure that sensible and valid data is generated.

Harvesting the data produced by an application program is related to the term
generator method, in that it provides values computed by the public methods of the
classes, though harvesting ensures a statistical distribution of data much closer to
those that appear in practise. One way of harvesting application data would be to in-
sert the axiom tests directly as assertions into an application, using the available data
values as parameter arguments to the axiom. This would only be safe for functional-
style axioms, or with stateless data types or copy-assignable data types, otherwise we
risk that the axiom itself modifies the state of the application.

Studies of testing efficiency seem to indicate that random testing often outperforms
other test set designs [Gut99, HT90, Ham94]. For any fixed data set size, a carefully
chosen data set will normally be better than a random data set, but a slightly larger,
often cited as 20% larger, random data set is often just as good [Ham94]. Random
data generation offers an easy route to expand the data set to any reasonable size.

Our data generator library offers support for user selected data sets, and a combi-
nation of the two random data generator methods: term generation with user-provided
operations. Harvesting program data or instrumenting with axiom tests is difficult to
achieve without using an external tool.3

For advice on selecting data for testing, we refer the reader to any good book on
testing, such as Myers [Mye79].

3Though we may be able to do this for constrained template code that makes calls through
wrappers.

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a10


14 · Bagge, David, Haveraaen

1 auto generator =
2 choose
3 (list_data_generator<int>
4 ({-1, 0, 1, 2, 3,
5 std::numeric_limits<int>::min(),
6 std::numeric_limits<int>::max()}),
7 default_generator());

Listing 4 – Generating integers from a static set of values.

4.1 Data Generator Library

As we have seen in Section 3, we need to pass a data generator to the test or test_all
test drivers. In our system, a generator produces, for some type T, a fresh copy of
a container of data elements of that type. The library provides three basic generic
generators:

default_generator generates singletons from the default constructor of the type.
This is useful for wrapped state-less operations, for example.4

list_data_generator<T...> generates lists of values which do not change. This
generator is initialised by the content of those lists. This is useful for testing
boundary or extreme conditions, where the desired values must be determined
by the programmer.

term_generator<T...> generates random values based random terms of a given sig-
nature. The generator is initialised with a C++ random generator (see header
<random> in the standard) and a list of operations that makes the signature.
We describe this generator in Section 4.2.

Listing 4 illustrates the use of the list and default generators. Generators are
combined using the choose combinator, which implements a left choice: Data is
generated by the leftmost generator that can handle the requested type. In the
example, requests for integers are handled by the static list generator, while all other
types are handled by the default generator. This generator is sufficient for testing
concepts like monoid or ring ; though we may wish to have more data points or use
random data.

A useful approach is to combine static data with randomly generated data. Using
our current generator library, generators cannot be combined in this way; only a single
generator is used for each type. The alternative is to call the tests multiple times,
with both static and random generators. We hope to remove this restriction in the
future.

Programmers may also provide their own generators, based on the same inter-
face. The generator should have a member function template C generator.get(
selector<type>) where C is a container with element type Type&. The reference is
needed to support axioms with side effects (returning a container by copy, and not
by reference should take care of this requirement).

4Operations wrapped as types must be instantiated as objects before they can be used. They are
then passed to the axiom tests as normal test data.

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a10


Testing with Axioms in C++ 2011 · 15

4.2 Random Terms

In our experience, generating random values is easier than attempting to pick values
manually. There are however some difficulties in generating data randomly:

• We do not want to manually re-implement a generator for each type, nor do we
want to require that types conform to some particular interface for generating
random values.

• In some cases we need values that are related to each other in some way, in order
to satisfy axiom conditions and ensure proper coverage of our axiom tests.

We supply a random term generator library to simplify random data generation.
The term generator generates random values of one or more types from a set of
operations. When a value of a particular type is requested, the generator will select
an operation of the correct type at random, and generate an argument list for it
recursively. It handles some cases of supplying related values by reusing old values
when generating new values.

The example generator in Listing 5 can generate integers, integer sets, and iterators
for integer sets. It uses the following operations (given as C++ lambda expressions
in the code): int(), constructing a random integer, set<int>() constructing an
empty set, set<int>(set<int>, int) building a set from a set and an integer, and
set<int>::iterator(set<int>) building an iterator from a set.

The term generator tends to produce simple terms first, with more complicated
(nested) terms produced later. This means that errors are likely to be uncovered by
simple test values if possible; making the error reporting nicer and less overwhelming,
without the need to actively search for a simpler test case.

4.2.1 Generating Related Values

Obtaining related values is important in many common situations. For example, we
may have the following transitivity axiom:

static void transitivity(const Rel& rel,
const T& a, const T& b, const T& c) {

if (rel(a, b) && rel(b, c))
axiom_assert(rel(a, c));

}

If we pick random values for a, b and c, and use == for rel, we may end up never
generating a case where a == b and b == c, and the body of the axiom is never
tested. Ideally, we would like a mix of cases covering either, both and neither of a ==
b, b == c.

A similar situation occurs with C++ containers. Containers use iterators, and it
is often important to keep a universal quantifier on both a container and an iterator
so that we can test more than just the usual begin and end iterators in our axioms.
For instance, a C++ AssociativeContainer is a container that supports removal of
elements, which reduces the size by exactly 1. Listing 6 shows an axiom for erase. In
order to test erasure of other elements than the first and the last, we need to receive an
Iterator in addition to the set – but the given iterator must be an iterator from the
container. To test the axiom properly, we need this precondition to hold on at least
some values, e.g., we need to make sure the axiom is called with arguments of form

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a10


16 · Bagge, David, Haveraaen

1 auto int_set_generator =
2 term_generator_builder
3 <std::set<int>, // list of supported types
4 std::set<int>::iterator,
5 int>()
6 (engine, // random generator engine
7
8 // generate random integers
9 std::function<int()>([&engine] () {

10 return std::uniform_int_distribution<int>()(engine);
11 }),
12
13 // generate set: initial
14 constructor<std::set<int>()>(),
15
16 // generate set: insert
17 std::function<std::set<int>(std::set<int>, int)>
18 ([](std::set<int> in, int i) {
19 in.insert(i);
20 return std::move(in);
21 }),
22
23 // generate random iterator for a given set
24 std::function<std::set<int>::iterator(std::set<int>&)>
25 ([&engine] (std::set<int>& s) {
26 auto n = std::uniform_int_distribution<decltype(s.size())>
27 (0, s.size())(engine);
28 auto i = s.begin();
29 for (decltype(n) j = 0; j < n; ++j, ++i) ;
30 return i; // will point to random element in s
31 }));

Listing 5 – Generating random sets: The term_generator is initialised with a set of sup-
ported types (std::set<int>, std::set<int>::iterator and int), a random number
engine and set of operations for generating values of the supported types. When the
test driver requests a data value, it will select and call a random operation of the ap-
propriate type, recursively generating arguments to it.

1 static void erasure(AssociativeContainer c, Iterator i) {
2 if ((i == find(c, i)) && (i != end(c)))
3 axiom_assert(size(erase(c, i)) == size(c) - 1);
4 }

Listing 6 – Erasure axiom on an associative container.

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a10


Testing with Axioms in C++ 2011 · 17

(s, s.begin()+N) with N<s.size(). We cannot expect a pure random generator of
iterators to generate such iterators inside sets from another generator.

Our term generator library solves this by sometimes reusing old values. With some
probability (currently 50% by default), it will reuse a previously generated value, if
available.

For example, the integer set generator in Listing 5 will generate related sets and
iterators. Iterators are constructed from sets; since the generator will reuse old values,
chances are that we will at some point get both a set and an iterator generated from
that set.

5 Discussion

5.1 Specification in Programming Languages

Floyd and Hoare [Flo67, Hoa69] did important early work on specification and ver-
ification of data abstractions. This axiomatic or assertion-based approach has been
used in languages like Gypsy [AGB+77], Euclid [PHL+77], CLU [LAB+81, Lis93],
Alphard [SWL77, WLS76], Eiffel [Mey92b] – and more recently – Spec# [BLS05] and
JML [LBR06].

Early attempts at using specifications in programming languages focused on doc-
umentation and verification. Gypsy supported verification with the help of an inter-
active theorem prover. In the case of Euclid, verification was left to external tools,
but assertions could be tested at runtime. Alphard integrated specifications in the
language, but proofs had to be done by hand. In CLU, the requires, ensures and
modifies clauses were used in an informal way.

Eiffel [Mey92b] is a more modern design, formalising the idea of require and
ensures into design by contract [Mey92a]. Data structures are protected by a class
invariant (known in Euclid as a module invariant), which must hold on entry and
exit to any exported method. Eiffel also provides statement-level assertions and loop
invariants, and the compiler can automatically insert assertion checks if desired.

As Eiffel is an object-oriented language, it also deals with contracts and assertions
in the context of inheritance, polymorphism and dynamic binding. A subclass must
always obey the contract of the class or classes it inherits from, since objects of
a subclass can be assigned to and used as variables declared as the superclass (in
accordance with the substitution principle). Preconditions must therefore not be
stronger than those of the inherited classes, and postconditions may not be weaker.
It is allowed, however, to have weaker preconditions and stronger postconditions in
the subclass – this just means the subclass does a ‘better job’ at fulfilling the contract.

Class invariants are always at least as strong in subclasses – we may add additional
clauses to the invariant, but the invariants of inherited classes must still hold. In
contrast with C++, which uses static binding of methods by default, Eiffel always uses
dynamic binding (virtual functions in C++ terminology). This follows naturally
from the use of class invariants; with static binding, the method of a superclass may
be called to process an object of a subclass – but the superclass method has no
knowledge of, and cannot be expected to uphold the invariant of the subclass. The
design of contract inheritance ensures that methods always act according to their
defined contract, even in the face of inheritance and dynamic binding, thus making it
possible to reason about code that employs inheritance.

Spec# [BLS05] brings design by contract to C#, as a language extension with

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a10


18 · Bagge, David, Haveraaen

convenient syntax. It comes with a theorem-proving static checking tool that can
verify assertions. A similar solution for Java is the Java Modeling Language [LBR06],
where specifications are written as comments in the source code, allowing programs
to be compiled with a normal Java compiler. The comments are processed by a wide
range of tools, including the jmlc compiler which inserts runtime assertion checks,
verification tools like the Extended Static Checker (ESC/Java), unit testing tools and
integrated editors.

5.2 Algebraic Specification

Early work by Liskov and Zilles [LZ75] discuss techniques for formal specification of
abstract data types. They point out that specification should be done by relating
the operations of the abstract data type, rather than directly specifying the input /
output of each operation. The latter leads to over-specification, providing unnecessary
details and hiding the essential properties of the data type – for example, by enforcing
some order on the elements of an unordered set. Specifying operations in terms of
each other avoids bias towards particular representations or implementations. In
traditional unit testing, there is always a temptation to over-specify by focusing on
testing the input and output of every operation, though a disciplined developer can
still avoid over-specification.

Among the techniques discussed by Liskov and Zilles, they point out algebraic
specification [GTW78, GH78, GHM78, LZ75] as showing the most promise in terms
of usability and in avoiding over-specification. An algebraic specification consists of
a syntax description and a set of axioms; this maps to our idea of concepts, which
provide axioms together with a syntax description in the form of associated types and
operations.

The Tecton system [KMS81] pioneered concept-oriented programming, providing
structure types (similar to concepts, with axioms) and a set of operations to manip-
ulate them; including refinement (adding axioms), generalisation (e.g., by removing
axioms), adding new operations and providing implementations.

Extended ML [ST86] is an important early work on mixing programming lan-
guages with algebraic specification, which introduced algebraic specification into the
Standard ML language – rather than using axiomatic specifications with pre- and
postconditions as in Euclid or Eiffel. Extended ML separates signatures from imple-
mentations, and allows axioms to be given together with the signatures. It builds on
the idea of institutions [GB84], in order to achieve independence from the underlying
logic system.

Zalewski and Schupp [ZS07] discuss C++ concepts more closely from a specifica-
tion and institution point-of-view. The algebraic approach has the added benefit of
being directly usable for rewriting [TJ07, BH09] and as a basis for testing, as seen
in this paper. On the other hand, assertions are immediately useful as checks during
the runtime of a program.

As in Extended ML, C++ concepts separate the specification from the imple-
mentation. The same concept may apply to several different implementations, and
one should avoid putting undue constraints on the implementation (i.e., avoid over-
specification). Hence, we should limit axiom expressions to the operations provided
in the concept (together with C++’s primitive operations – on Boolean values, for
example – these can be considered implicitly defined in every concept).

Compared to the pre- and postcondition approach used by the systems in the
previous section, algebraic specification brings the focus to abstract or generic inter-

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a10


Testing with Axioms in C++ 2011 · 19

faces, rather than dealing with specific procedures on particular data types. Certain
relationships that are easily specified using axioms, cannot be specified using pre- and
postconditions; for example the relationship between equality and the hash function
(all equal values should have the same hash value), as shown in Listing A.2.

However, axioms are not a replacement for pre- and postconditions and assertions.
Preconditions are still needed for partial functions, where the axioms may not define
the behaviour at all (unless exception behaviour is specified, as in Section 3.5); and
class/data and loop invariants and code assertions apply at the implementation level,
and have no counterpart in a specification of an interface.

5.3 Axiom Selection

To ensure that the behaviour of the abstract data type is fully specified (or sufficiently
complete) one can divide the operations into constructors (the set of which can gen-
erate all possible values – prime candidates for the term generator in Section 4),
transformers (which can be defined in terms of constructors) and observers (which
yield values of another type). We can then construct axioms from the combination
of each constructor with every non-constructor. Guttag [Gut80] and Antoy [Ant89]
discuss further guidelines for constructing specifications.

There is no reason to believe that writing axioms (or test cases) is any less error-
prone than programming in general. Failure of a test can just as well indicate a
problem with the axioms or the equals operator as a problem in the implementation.
It is important to be aware of this while programming, so that bug-hunting is not
exclusively focused on implementation code. The same issue arises with hand-written
tests, though, so this is not specific to axiom-based testing. Also, since axioms have a
different form than implementation code (equation versus algorithm), it is less likely
that a bug in an axiom and in the implementation will ‘cover’ for each other so that
neither are detected. It is still possible, though; having multiple axioms covering
related behaviour will increase the chance of catching the bug.

Building libraries of well-tested concepts with axioms will increase confidence in
the completeness and correctness of the axioms, and reduces the training needed to
make effective use of axioms. Not all programmers can be expected to know all the
laws governing integer arithmetic – but using an existing axiom library and simply
stating that “my class should behave like an integer” is easy.

5.4 Axiom-Based Testing

The DAISTS [GMH81] system introduced axiom-based testing in the early eighties,
using formal algebraic specifications as a basis for unit testing. In DAISTS, a test
consists of axioms in the form of conditional equations; an implementation with an
equality operator; and a set of test data. DAISTS performs simple coverage analysis
to ensure that all the axioms and program code are exercised by the tests.

ASTOOT [DF94] applied the ideas of axiom-based testing to object-orientation,
with automated testing for Eiffel. Axioms were specified in an OO-like style, rather
than the functional notation used in DAISTS.

The Daistish system [HS96] brought these ideas to C++. Unlike ASTOOT, Dais-
tish used a functional notation for axioms, giving a notational gap between the con-
ditional equational form of the axioms and the methods of C++.

QuickCheck [CH00] is a popular axiom-based testing (property-based testing in
their terminology) system for Haskell, with spin-offs for several other languages.

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a10


20 · Bagge, David, Haveraaen

QuickCheck properties somewhat like free-floating axioms in Catsfoot (see Sec-
tion 3.1). QuickCheck provides a library for generating random data, including a
default generator (based on the algebraic structure of types), and also includes sup-
port for observing the distribution of test data and classifying test data, so that one
can check that the properties have been thoroughly exercised.

From a generic programming point of view, type classes in Haskell correspond to
C++ concepts. However, type classes do not have axioms, and hence QuickCheck is
not integrated with type classes in the way our axiom-based testing is integrated with
concepts.

(Lazy) SmallCheck [RNL08] provides exhaustive property-based testing for Haskell;
instead of generating random data values, all possible values are generated, up to some
depth. We have not pursued this data generation scheme, but it should be possible
to support something similar in our library, with a specialised version of the term
generator.

Traditional unit testing, as popularised by agile methods in the last decades, is
practically oriented, and does not rely on formal methods. Mainstream software
engineers have focused on development methods like TDD and extreme program-
ming [Bec98], while much formal methods research has focused on formal specifica-
tion and verification – which have been difficult to apply to mainstream languages
and mainstream development.

Verification attempts to prove the correctness of a program with respect to the
specification, or at least prove some properties of the program (such as the absence of
null pointer references or runtime exceptions). Testing is more pragmatic in nature,
easier to automate and closer to ordinary programming. Current verification tools
typically require highly-trained human assistance, but can give definitive answers;
testing can only give confidence in correctness, not certainty.

We have used axiom-based testing for the Sophus numerical C++ library [HB05],
and with the JAxT [HK08] tool for Java. JAX [SLA02] (Java Axioms) is another
approach to axiom-based testing in Java. Axiom-like features have also been added
to recent versions of JUnit [Saf07]. Gaudel and Le Gall [GG08] provide a survey of
the use of algebraic specification in testing.

Many of the existing axiom based testing approaches, such as JAX and Daistish,
rely on sufficiently complete specifications, provided by complete axiomatisations or
initial specifications. This gives extra properties on which to base tools. For exam-
ple, the approach of Antoy and Hamlet [AH00] uses initial specifications, which are
evaluated alongside the implementation, as a direct implementation [GHM78] of the
specification. All objects in the system contain both a concrete value and an abstract
value (in the form of a normalised term over constructors in the specification), and the
equations from the specification can be evaluated by treating them as rewrite rules
on the abstract value terms. A representation mapping translates between the ab-
stractions of the specification and the concrete data structures of the implementation.
Self-checking functions are made by doing an additional abstract evaluation according
to the specification, and – using the representation mapping – comparing the result of
normal execution and evaluating the specification. In this way, a whole program can
be described and evaluated in two distinct ways – using program code and algebraic
specification – providing good protection against programming errors. This is also
the disadvantage of the approach – the implementation work must basically be done
twice.

Axioms written in C++ concepts will normally be loose and incomplete, mak-

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a10


Testing with Axioms in C++ 2011 · 21

ing such testing techniques void. The approach described in this paper will work
equally well with an incomplete specification (though, it will of course not be able to
test unspecified behaviour). Based on our experience developing and testing Sophus
[HB05, HFMK05], we find such axioms useful.

5.5 Algebraic Axioms and Imperative Code

As discussed in Section 3.4, a particular problem occurs for code written in object-
oriented or imperative styles, relying on side-effects on arguments. Although this is
a poor fit for algebraic-style axioms, we can make a uniform algebraic-style interface
to implementation code using wrappers.

In the ASTOOT [DF94] system, algebraic specification of object-oriented pro-
grams is done in the LOBAS formalism which supports OO syntax. Each axiom
relates object states or values that are computed through a sequence of method calls;
optionally, observer functions may be called at the end each sequence to inspect the
objects. The system is purely algebraic, allowing no side-effects in operations, except
for modifying object state in methods – though Doong and Frankl [Doo93, DF91]
describe a relaxation of this. ASTOOT will automatically generate test drivers from
class interfaces, and also generates test cases from a LOBAS algebraic specification.
Automated tests can be augmented by manual test generation.

Chen et al. have developed the ideas of ASTOOT further, and applied them to
axiom-based testing of object-oriented code at the level of class clusters and compo-
nents [CTCC98, CTC01].

5.6 Equality in Axioms and Equality Testing

The original C++ concept proposal used equational axioms, leading to the question
of whether equivalence in the axioms were the same equivalence as that defined by
the equals operator of the type. In the end, a separate symbol was introduced,
indicating substitutability. Our situation is different, as all our axioms are basically
C++ Boolean expressions – of any kind, not just equations – and if equivalence is
used, it will be the C++ equivalence (if defined for the given type).

There are cases where equality can be expensive or even impossible to define so
that it corresponds to the behaviour expected by the axioms. There are also types on
which we want to have different equivalence relations depending on the behaviour.

We may handle this by parametrising the concept by the equality operator. It is
then treated like any other parameter, and the test driver will instantiate the concept
with the right equality for the behaviour intended.

The equality operator is an operation like any other, and should itself be tested.
The traditional equivalence relation is specified by the equivalence concept, shown in
Listing A.1, which states that it should be reflexive, transitive and symmetric. The
interaction between equality any other given operation is specified by the congruence
concept (also in Listing A.1). The congruence axiom states that any two calls to
the same operation with arguments that are pairwise equal, will yield equal results
(relative to the given equivalence relation). Ideally, we expect this to hold for all
operations for types with an equality operator. If we demand this behaviour, the
congruence concept should be required for all operations in a concept – unfortunately
we must specify this manually, as there is no way to generate a requirement for each
defined operation.

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a10


22 · Bagge, David, Haveraaen

If equality is missing for a type, we can define a custom equivalence relation. This
may be exact, optimistic or pessimistic, depending on the properties of the axioms.
For the use in equational axioms we can automatically generate such a relation over
a signature (a list of operations) [CTC01, CTCC98]. The axioms can then be tested
correctly. This approach randomly calls operations on the two objects, and compares
observable values of other types with a defined equality – i.e., it tests whether the
objects behave the same (behavioural equality). An optimistic equivalence will be
able to test equational equations.

We have experimented with such an infrastructure in C++, though we have not
pursued the approach very far. The implementation is similar to a random term
generator since it gets initialised with a C++ random number generator and a list of
operations. However, it also takes an extra data generator (for example to generate
indexes for an array-like structure) and returns a relation (i.e. a function returning
a Boolean and taking two parameters of the same type). This function can then
wrap this relation into a type and give it as parameter to a concept requiring the
equivalence relation.

5.7 Experiences with Axiom-Based Testing

We have experience with axiom-based testing from the Sophus numerical software
library [HB05]. This predates C++ axioms, so the tests were written by hand, based
on a formal algebraic specification. In our experience, the tests have been useful in
uncovering flaws in both the implementation and the specification, though we expect
to be able to do more rigorous testing with tool support.

The JAxT tool [HK08] provides axiom-based testing for Java, by generating tests
from algebraic specifications. The axioms are written as static methods and are
related to implementation classes through inheritance and interfaces. For any class
with axioms, the JAxT tool will generate code that calls the associated axioms. A
team of undergraduate students – supervised by the last author – successfully wrote
JAxT axioms for parts of the Java collection classes, discovering some weaknesses in
the interface specifications in the process.

The JAX [SLA02] method of combining axioms with the JUnit [BG11, Lou05]
testing framework has provided some valuable insight into the usefulness of axiom-
based testing. The JAX developers conducted informal trials where programmers
wrote code and tests using basic JUnit test cases and axiom testing, and found that
the axioms uncovered a number of errors that the basic test cases did not detect.

Initial experiences with DAISTS [GMH81] were positive and indicated that it
helped users to develop effective tests, avoid weak tests, and the use of insufficient
test data. With Daistish [HS96], the authors did trials similar to those done with JAX,
with programming teams reporting that their axioms found errors in code that had
already been subjected to traditional unit testing. Testing also uncovered numerous
incomplete and erroneous axioms – the Daistish team note that this is to be expected
since the programmers were students learning algebraic specification. This is probably
a factor, but some axiom errors can be expected even from trained programmers.

Gaudel and Le Gall [GG08] summarise further experiences and case studies on
testing with algebraic specifications.

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a10


Testing with Axioms in C++ 2011 · 23

5.8 Future Work

We have identified several areas for improvement throughout this paper. Areas of
particular research interest are:

• Perform proper trials to gauge the effectiveness of axiom-based testing in C++
and its impact on development.

• Testing of multi-threaded applications is notoriously difficult [Sen07], and it
would be interesting to see if axiom-based testing could be applied here.

• Refining or layering concepts quickly becomes cumbersome as the parameter
lists grow. This problem is probably difficult to solve within the constraints of
C++ 2011.

There is also engineering work to be done (in no particular order):

• A library of common concepts with axioms should be written. There has been
some work on this already [Got06]. Such concepts should eventually make their
way into the C++ standard, for consistency and interoperability.

• For truly effective testing, we will likely need more kinds of data generators,
and a set of combinators for the generators.

• Our term generator is fairly simplistic in terms of control over distribution of
the generated data. This is something we need to explore more.

• As we no longer rely on an external tool with limited C++ support, we can now
look into testing existing software like the STL. The GCC version of STL (at
least) already uses a simple form of concepts internally, which could be used as
a starting point.

6 Conclusion

Axiom-based testing is a technique for testing generic code in a generic way, based on
algebraic specification. In this paper, we have discussed how we can integrate algebraic
specification in C++ 2011 in the form of concepts using template meta-programming;
and how these concepts can be used in automated testing with different kinds of data
generators.

Compared to traditional unit testing, axiom-based testing offers a less ad hoc way
to specify and test behaviour, and we believe it is particularly well suited to test
generic code. Compared to pre- and postconditions, axioms are again more suited
for generic code, and allows for specification of relationships that cannot be covered
by pre- and postconditions – though axioms are not a replacement for assertions and
some forms of pre- and postconditions at the implementation level.

A Code Examples and Listings

A.1 Equivalence and Congruence

Specification of equivalence and congruence relations. The equivalence operator should
be reflexive, symmetric and transitive.

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a10


24 · Bagge, David, Haveraaen

1 template <typename T, typename Rel>
2 struct equivalence: public concept {
3 typedef concept_list<
4 is_callable<Rel(T, T)>,
5 std::is_convertible<typename is_callable<Rel(T, T)>::result_type,
6 bool>
7 > requirements;
8 static void reflexivity(const Rel& rel, const T& a) {
9 axiom_assert(rel(a,a));

10 }
11 static void symmetry(const Rel& rel, const T& a, const T& b) {
12 if (rel(a, b))
13 axiom_assert(rel(b, a));
14 }
15 static void transitivity(const Rel& rel,
16 const T& a, const T& b, const T& c) {
17 if (rel(a, b) && rel(b, c))
18 axiom_assert(rel(a, c));
19 }
20 AXIOMS(reflexivity, symmetry, transitivity);
21 };

Congruence is defined for a relation Rel over an operation Op(Args...). Calls
to Op with equivalent arguments should yield equivalent results. (This form of axiom
does not work currently with GCC but should according to the standard. We have
however a version working with GCC using tuples as workaround.)

1 template <typename Rel, typename Op, typename... Args>
2 struct congruence: public concept {
3 typedef concept_list<
4 equivalence<Args, Rel>...,
5 is_callable<Op(Args...)>,
6 equivalence<typename is_callable<Op(Args...)>::result_type,
7 Rel>
8 > requirements;
9 static void congruence_axiom(const Args&... args1, const Args&... args2,

10 const Op& op, const Rel& rel) {
11 if (rel(args1, args2)...)
12 axiom_assert(rel(op(args1...), op(args2...)));
13 }
14 AXIOMS(congruence_axiom);
15 };

A.2 Hashing

1 template <typename T, typename Hash>
2 struct hash: public concept {
3 typedef concept_list<
4 congruence<op_eq, Hash, T>
5 > requirements;

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a10


Testing with Axioms in C++ 2011 · 25

6 };

A.3 Testing Exceptions

This can test whether a function has thrown an exception or not.

1 template <typename T,
2 typename Fun, typename... Args,
3 ENABLE_IF(is_callable<Fun(Args...)>)>
4 bool throwing(Fun&& fun, Args&&... args) {
5 try {
6 std::forward<Fun>(fun)(std::forward<Args>(args)...);
7 } catch (T) {
8 return true;
9 }

10 return false;
11 }

A.4 AXIOMS Macro

The output of AXIOMS(associativity, identity):

1 static auto get_axioms()
2 -> decltype(::catsfoot::details::zip_vec_tuple
3 (::catsfoot::details::split_identifiers("associativity,␣identity"),
4 std::make_tuple(associativity, identity)))
5 { return ::catsfoot::details::zip_vec_tuple
6 (::catsfoot::details::split_identifiers("associativity,␣identity"),
7 std::make_tuple(associativity, identity)); };

The function get_axioms returns a list of pairs of names (as strings) and the corre-
sponding axioms.

A.5 The Printable Concept and Overloading

The concept printable is an auto concept. Any pair of 〈T,U〉 for which a left shift
operator (<<) is defined will model this concept (no verified declaration necessary).

1 template <typename T, typename U>
2 struct printable: public auto_concept {
3 typedef concept_list<is_callable<op_lsh(T, U)>> requirements;
4 };

This concept can then be used in concept-based overloading to select between
functions based on properties of the argument types:

5 template<typename Stream, typename T,
6 ENABLE_IF(printable<Stream&, T>)>
7 void print_if_printable(Stream& s, T t) {
8 s << t;
9 }

10 template<typename Stream, typename T,
11 ENABLE_IF_NOT(printable<Stream&, T>), typename = void>

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a10


26 · Bagge, David, Haveraaen

12 void print_if_printable(Stream& s, T) {
13 s << "Values␣of␣type␣" << type_to_string<T>() << "␣are␣not␣printable";
14 }

The first function is used if a << operator is available to print the value on the
stream; otherwise the other function is used, which prints a representation of the
value’s type.

B Quick definitions

We define here some parts of the API that we have used in the examples.
identifier type description

is_callable<T, Args...> predicate whether T is callable with parameters Args...
disamb<Args...>()(&f) function Returns the address of overloaded f that sat-

isfies call with Args... (eventually with im-
plicit conversions)

op_plus type Is default constructible. Is callable with T, U
only when operator+ is.

axiom_assert macro See Section 3
AXIOMS(A...) macro Implements get_axioms
get_axioms function Returns list of axioms of a concept.
DEF_WRAPPER(F...) macro Wrap function
DEF_WRAPPER_AS_FUNC(F...) macro Wrap function, functionalised
DEF_MEMBER_WRAPPER(F...) macro Wrap member
DEF_MEMBER_WRAPPER_AS_FUNC(F...) Wrap method, functionalised
ENABLE_IF(M) macro Used in a template parameter list to disqualify

a function from overloading unless M holds
ENABLE_IF_NOT(M) macro Used in a template parameter list to disqualify

a function from overloading if M holds
default_generator See Section 4.
list_data_generator See Section 4.
term_generator See Section 4.
tuple_generator See Section 4.
choose See Section 4.
constant<T,V> type Constant as operation.
concept_list<C...> type List of requirements (Section 2)
concept class All concepts should inherit from concepts, to

distinguish them from predicates.

B.1 New in C++ 2011
identifier type description

decltype(E) Gives the type of E
typename... T Variadic template parameter
T... Variadic template argument
std::is_convertible<T, U> T is convertible to U
[. . .] (T a, U b,. . .) {. . .} Lambda expression. Closure defined in [...]

(selected variables [x,&y], or any variable by
reference [&] or value [=])

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a10


Testing with Axioms in C++ 2011 · 27

References

[AGB+77] Allen L. Ambler, Donald I. Good, James C. Browne, Wilhelm F.
Burger, Richard M. Cohen, Charles G. Hoch, and Robert E. Wells.
Gypsy: A language for specification and implementation of verifiable
programs. In Proceedings of an ACM conference on Language design
for reliable software, pages 1–10, New York, NY, USA, 1977. ACM.
doi:10.1145/800022.808306.

[AH00] Sergio Antoy and Richard G. Hamlet. Automatically checking an im-
plementation against its formal specification. IEEE Trans. Software
Eng., 26(1):55–69, 2000. doi:10.1109/32.825766.

[Ant89] Sergio Antoy. Systematic design of algebraic specifications. In IWSSD
’89: Proceedings of the 5th international workshop on Software speci-
fication and design, pages 278–280, New York, NY, USA, 1989. ACM.
doi:10.1145/75199.75241.

[B+11a] Pete Becker et al. ISO/IEC 14882:2011: Programming languages –
C++ (final draft international standard). Technical Report N3290,
JTC1/SC22/WG21 – The C++ Standards Committee, April 2011.
Available from: http://www.open-std.org/jtc1/sc22/wg21/.

[B+11b] Pete Becker et al. Working draft, standard for programming language
C++. Technical Report N3242=11-0012, JTC1/SC22/WG21 – The
C++ Standards Committee, February 2011. Available from: http://
www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf.

[BDH09] Anya Helene Bagge, Valentin David, and Magne Haveraaen. The ax-
ioms strike back: Testing with concepts and axioms in C++. In GPCE
’09: Proceedings of the eighth international conference on Generative
programming and component engineering, pages 15–24, New York, NY,
USA, 2009. ACM. doi:10.1145/1621607.1621612.

[Bec98] Kent Beck. Extreme programming: A humanistic discipline of soft-
ware development. In Fundamental Approaches to Software Engineering
(FASE’98), volume 1382 of Lecture Notes in Computer Science, pages
1–6. Springer-Verlag, 1998. doi:10.1007/BFb0053579.

[Bec02] Kent Beck. Test-Driven Development: By Example. Addison-Wesley,
2002. ISBN:978-0-321-14653-3.

[BG11] Kent Beck and Erich Gamma. JUnit – Java Unit testing. 2011. Avail-
able from: http://www.junit.org/.

[BH09] Anya Helene Bagge and Magne Haveraaen. Axiom-based transforma-
tions: Optimisation and testing. In Jurgen J. Vinju and Adrian John-
stone, editors, Eighth Workshop on Language Descriptions, Tools and
Applications (LDTA 2008), volume 238 of Electronic Notes in Theoreti-
cal Computer Science, pages 17–33, Budapest, Hungary, 2009. Elsevier.
doi:10.1016/j.entcs.2009.09.038.

[BLS05] Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The Spec#
programming system: An overview. In Gilles Barthe, Lilian Burdy,
Marieke Huisman, Jean-Louis Lanet, and Traian Muntean, editors,
Proceedings of Construction and Analysis of Safe, Secure, and In-
teroperable Smart Devices (CASSIS 2004), volume 3362 of Lecture

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.1145/800022.808306
http://dx.doi.org/10.1109/32.825766
http://dx.doi.org/10.1145/75199.75241
http://www.open-std.org/jtc1/sc22/wg21/
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf
http://dx.doi.org/10.1145/1621607.1621612
http://dx.doi.org/10.1007/BFb0053579
http://www.junit.org/
http://dx.doi.org/10.1016/j.entcs.2009.09.038
http://dx.doi.org/10.5381/jot.2011.10.1.a10


28 · Bagge, David, Haveraaen

Notes in Computer Science, pages 49–69. Springer-Verlag, 2005. doi:
10.1007/978-3-540-30569-9_3.

[CH00] Koen Claessen and John Hughes. QuickCheck: A lightweight tool
for random testing of Haskell programs. In ICFP ’00: Proceedings of
the fifth ACM SIGPLAN international conference on Functional pro-
gramming, pages 268–279, New York, NY, USA, 2000. ACM Press.
doi:10.1145/351240.351266.

[CTC01] Huo Yan Chen, T. H. Tse, and T. Y. Chen. Taccle: a methodology for
object-oriented software testing at the class and cluster levels. ACM
Trans. Softw. Eng. Methodol., 10:56–109, January 2001. doi:10.1145/
366378.366380.

[CTCC98] Huo Yan Chen, T. H. Tse, F. T. Chan, and T. Y. Chen. In black and
white: an integrated approach to class-level testing of object-oriented
programs. ACM Trans. Softw. Eng. Methodol., 7:250–295, July 1998.
doi:10.1145/287000.287004.

[Dav11] Valentin David. Catsfoot, 2011. http://catsfoot.sourceforge.
net/.

[DF91] Roong-Ko Doong and Phyllis G. Frankl. Case studies on testing object-
oriented programs. In TAV4: Proceedings of the symposium on Testing,
analysis, and verification, pages 165–177, New York, NY, USA, 1991.
ACM Press. doi:10.1145/120807.120822.

[DF94] Roong-Ko Doong and Phyllis G. Frankl. The ASTOOT approach to
testing object-oriented programs. ACM Trans. Softw. Eng. Methodol.,
3(2):101–130, 1994. doi:10.1145/192218.192221.

[Doo93] Roong-Ko Doong. An approach to testing object-oriented programs.
PhD thesis, Polytechnic University, Brooklyn, NY, USA, 1993.

[Flo67] Robert W. Floyd. Assigning meanings to programs. In Mathematical
Aspects of Computer Science, volume 19 of Proceedings of Symposia in
Applied Mathematics, pages 19–32. American Mathematical Society,
1967.

[GB84] Joseph A. Goguen and Rod M. Burstall. Introducing institutions. In
Proceedings of the Carnegie Mellon Workshop on Logic of Programs,
volume 164 of Lecture Notes in Computer Science, pages 221–256, Lon-
don, UK, 1984. Springer-Verlag. doi:10.1007/3-540-12896-4_366.

[GG08] Marie-Claude Gaudel and Pascale Le Gall. Testing data types imple-
mentations from algebraic specifications. In Formal Methods and Test-
ing, volume 4949 of Lecture Notes in Computer Science, pages 209–239.
Springer-Verlag, 2008. doi:10.1007/978-3-540-78917-8.

[GH78] John V. Guttag and James J. Horning. The algebraic specification
of abstract data types. Acta Inf., 10:27–52, 1978. doi:10.1007/
BF00260922.

[GHM78] John V. Guttag, Ellis Horowitz, and David R. Musser. Abstract data
types and software validation. Commun. ACM, 21(12):1048–1064, 1978.
doi:10.1145/359657.359666.

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.1007/978-3-540-30569-9_3
http://dx.doi.org/10.1007/978-3-540-30569-9_3
http://dx.doi.org/10.1145/351240.351266
http://dx.doi.org/10.1145/366378.366380
http://dx.doi.org/10.1145/366378.366380
http://dx.doi.org/10.1145/287000.287004
http://catsfoot.sourceforge.net/
http://catsfoot.sourceforge.net/
http://dx.doi.org/10.1145/120807.120822
http://dx.doi.org/10.1145/192218.192221
http://dx.doi.org/10.1007/3-540-12896-4_366
http://dx.doi.org/10.1007/978-3-540-78917-8
http://dx.doi.org/10.1007/BF00260922
http://dx.doi.org/10.1007/BF00260922
http://dx.doi.org/10.1145/359657.359666
http://dx.doi.org/10.5381/jot.2011.10.1.a10


Testing with Axioms in C++ 2011 · 29

[GMH81] John D. Gannon, Paul R. McMullin, and Richard Hamlet. Data ab-
straction, implementation, specification, and testing. ACM Trans. Pro-
gram. Lang. Syst., 3(3):211–223, 1981. doi:10.1145/357139.357140.

[GMWL08] Douglas Gregor, Mat Marcus, Thoams Witt, and Andrew Lumsdaine.
Foundational concepts for the C++0x standard library (revision 5).
Technical Report N2774=08-0284, JTC1/SC22/WG21 – The C++
Standards Committee, September 2008. Available from: http://www.
open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2774.pdf.

[Got06] Peter Gottschling. Fundamental algebraic concepts in concept-enabled
C++. Technical Report TR638, Department of Computer Science,
Indiana University, 2006. Available from: https://www.cs.indiana.
edu/cgi-bin/techreports/TRNNN.cgi?trnum=TR638.

[GSSW08] Douglas Gregor, Bjarne Stroustrup, Jeremy Siek, and James Wid-
man. Proposed wording for concepts (revision 9). Technical Report
N2773=08-0283, JTC1/SC22/WG21 – The C++ Standards Commit-
tee, September 2008. Available from: http://www.open-std.org/
jtc1/sc22/wg21/docs/papers/2008/n2773.pdf.

[GTW78] Joseph Goguen, James Thatcher, and Eric Wagner. An initial alge-
bra approach to the specification, correctness and implementation of
abstract data types. In Raymond Yeh, editor, Current Trends in Pro-
gramming Methodology, volume 4, pages 80–149. Prentice Hall, 1978.
ISBN:978-0-13-195735-0.

[Gut80] John V. Guttag. Notes on type abstraction (version 2). IEEE Trans.
Softw. Eng., 6(1):13–23, 1980. doi:10.1109/TSE.1980.230209.

[Gut99] Walter J. Gutjahr. Partition testing vs. random testing: The influence
of uncertainty. IEEE Transactions on Software Engineering, 25(5):661–
674, 1999. doi:10.1109/32.815325.

[Ham94] Richard Hamlet. Random testing. In J Marciniak, editor, Encyclopedia
of Software Engineering, pages 970–978. Wiley, 1994. doi:10.1002/
0471028959.sof268.

[HB05] Magne Haveraaen and Enida Brkic. Structured testing in Sophus. In
Eivind Coward, editor, Norsk informatikkonferanse NIK’2005, pages
43–54. Tapir akademisk forlag, Trondheim, Norway, 2005. Available
from: http://www.nik.no/2005/.

[HFMK05] Magne Haveraaen, Helmer André Friis, and Hans Munthe-Kaas. Com-
putable scalar fields: a basis for PDE software. Journal of Logic
and Algebraic Programming, 65(1):36–49, September-October 2005.
doi:10.1016/j.jlap.2004.12.001.

[HHPW96] Cordelia V. Hall, Kevin Hammond, Simon L. Peyton Jones, and
Philip L. Wadler. Type classes in Haskell. ACM Trans. Program. Lang.
Syst., 18(2):109–138, 1996. doi:10.1145/227699.227700.

[HK08] Magne Haveraaen and Karl Trygve Kalleberg. JAxT and JDI: the
simplicity of JUnit applied to axioms and data invariants. In OOP-
SLA Companion ’08: Companion to the 23rd ACM SIGPLAN con-
ference on Object-oriented programming systems languages and ap-
plications, pages 731–732, New York, NY, USA, 2008. ACM. doi:
10.1145/1449814.1449834.

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.1145/357139.357140
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2774.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2774.pdf
https://www.cs.indiana.edu/cgi-bin/techreports/TRNNN.cgi?trnum=TR638
https://www.cs.indiana.edu/cgi-bin/techreports/TRNNN.cgi?trnum=TR638
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2773.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2773.pdf
http://dx.doi.org/10.1109/TSE.1980.230209
http://dx.doi.org/10.1109/32.815325
http://dx.doi.org/10.1002/0471028959.sof268
http://dx.doi.org/10.1002/0471028959.sof268
http://www.nik.no/2005/
http://dx.doi.org/10.1016/j.jlap.2004.12.001
http://dx.doi.org/10.1145/227699.227700
http://dx.doi.org/10.1145/1449814.1449834
http://dx.doi.org/10.1145/1449814.1449834
http://dx.doi.org/10.5381/jot.2011.10.1.a10


30 · Bagge, David, Haveraaen

[Hoa69] C. A. R. Hoare. An axiomatic basis for computer programming. Com-
mun. ACM, 12(10):576–580, 1969. doi:10.1145/363235.363259.

[HS96] Merlin Hughes and David Stotts. Daistish: systematic algebraic testing
for OO programs in the presence of side-effects. In ISSTA ’96: Proceed-
ings of the 1996 ACM SIGSOFT international symposium on Software
testing and analysis, pages 53–61, New York, NY, USA, 1996. ACM
Press. doi:10.1145/229000.226301.

[HT90] Dick Hamlet and Ross Taylor. Partition testing does not inspire con-
fidence. IEEE Trans. Softw. Eng., 16(12):1402–1411, 1990. doi:
10.1109/32.62448.

[JWL03] Jaakko Järvi, Jeremiah Willcock, and Andrew Lumsdaine. Concept-
controlled polymorphism. In Proceedings of the 2nd international
conference on Generative programming and component engineering,
GPCE ’03, pages 228–244, New York, NY, USA, 2003. Springer-Verlag.
doi:10.1007/978-3-540-39815-8_14.

[KMS81] Deepak Kapur, David R. Musser, and Alexander A. Stepanov. Tecton:
A language for manipulating generic objects. In J. Staunstrup, edi-
tor, Program Specification, Proceedings of a Workshop, Lecture Notes
in Computer Science, pages 402–414, Aarhus, Denmark, August 1981.
Springer-Verlag. doi:10.1007/3-540-11490-4_24.

[LAB+81] Barbara Liskov, Russell R. Atkinson, Toby Bloom, J. Eliot B. Moss,
J. Craig Schaffert, Robert Scheifler, and Alan Snyder. CLU Reference
Manual, volume 114 of Lecture Notes in Computer Science. Springer-
Verlag, 1981. doi:10.1007/BFb0035014.

[LBR06] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary design
of JML: A behavioral interface specification language for Java. SIG-
SOFT Software Engineering Notes, 31(3):1–38, 2006. doi:10.1145/
1127878.1127884.

[Lis93] Barbara Liskov. A history of CLU. In HOPL-II: The second ACM
SIGPLAN conference on History of programming languages, pages 133–
147, New York, NY, USA, 1993. ACM Press. doi:10.1145/154766.
155367.

[Lou05] Panagiotis Louridas. JUnit: Unit testing and coding in tandem. IEEE
Softw., 22(4):12–15, 2005. doi:10.1109/MS.2005.100.

[LZ75] Barbara Liskov and Stephen Zilles. Specification techniques for data
abstractions. In Proceedings of the international conference on Reli-
able software, pages 72–87, New York, NY, USA, 1975. ACM. doi:
10.1145/800027.808426.

[Mey92a] Bertrand Meyer. Applying “Design by contract”. Computer, 25(10):40–
51, 1992. doi:10.1109/2.161279.

[Mey92b] Bertrand Meyer. Eiffel: The language. Prentice-Hall, Inc., Upper Sad-
dle River, NJ, USA, 1992. ISBN:978-0-13-247925-7.

[Mye79] Glenford J. Myers. The Art of Software Testing. John Wiley & Sons,
Inc., 1st edition, February 1979. ISBN:978-0-471-04328-7.

[PHL+77] G. J. Popek, J. J. Horning, B. W. Lampson, J. G. Mitchell, and R. L.
London. Notes on the design of Euclid. In Proceedings of an ACM

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.1145/363235.363259
http://dx.doi.org/10.1145/229000.226301
http://dx.doi.org/10.1109/32.62448
http://dx.doi.org/10.1109/32.62448
http://dx.doi.org/10.1007/978-3-540-39815-8_14
http://dx.doi.org/10.1007/3-540-11490-4_24
http://dx.doi.org/10.1007/BFb0035014
http://dx.doi.org/10.1145/1127878.1127884
http://dx.doi.org/10.1145/1127878.1127884
http://dx.doi.org/10.1145/154766.155367
http://dx.doi.org/10.1145/154766.155367
http://dx.doi.org/10.1109/MS.2005.100
http://dx.doi.org/10.1145/800027.808426
http://dx.doi.org/10.1145/800027.808426
http://dx.doi.org/10.1109/2.161279
http://dx.doi.org/10.5381/jot.2011.10.1.a10


Testing with Axioms in C++ 2011 · 31

conference on Language design for reliable software, pages 11–18, 1977.
doi:10.1145/800022.808307.

[PVB08] Wishnu Prasetya, Tanya Vos, and Arthur Baars. Trace-based reflex-
ive testing of OO programs with T2. In International Conference
on Software Testing, Verification, and Validation (ICST’08), pages
151–160, Los Alamitos, CA, USA, 2008. IEEE Computer Society.
doi:10.1109/ICST.2008.12.

[RNL08] Colin Runciman, Matthew Naylor, and Fredrik Lindblad. Small-
Check and Lazy SmallCheck: Automatic exhaustive testing for small
values. In Proceedings of the first ACM SIGPLAN symposium on
Haskell, Haskell ’08, pages 37–48, New York, NY, USA, 2008. ACM.
doi:10.1145/1411286.1411292.

[Saf07] David Saff. Theory-infected: or how I learned to stop worrying and
love universal quantification. In OOPSLA ’07: Companion to the 22nd
ACM SIGPLAN conference on Object oriented programming systems
and applications companion, pages 846–847, New York, NY, USA, 2007.
ACM. doi:10.1145/1297846.1297919.

[Sen07] Koushik Sen. Effective random testing of concurrent programs. In
ASE ’07: Proceedings of the twenty-second IEEE/ACM international
conference on Automated software engineering, pages 323–332, New
York, NY, USA, 2007. ACM. doi:10.1145/1321631.1321679.

[SL00] Jeremy G. Siek and Andrew Lumsdaine. Concept checking: Binding
parametric polymorphism in C++. In Proceedings of the First Work-
shop on C++ Template Programming, Erfurt, Germany, October 2000.

[SLA02] P. David Stotts, Mark Lindsey, and Angus Antley. An informal
formal method for systematic JUnit test case generation. In Don
Wells and Laurie A. Williams, editors, Proceedings of XP/Agile Uni-
verse 2002, Second XP Universe and First Agile Universe Confer-
ence Chicago, IL, USA, August 4-7, 2002, volume 2418 of Lecture
Notes in Computer Science, pages 131–143. Springer-Verlag, 2002.
doi:10.1007/3-540-45672-4_13.

[ST86] Donald Sannella and Andrzej Tarlecki. Extended ML: An institution-
independent framework for formal program development. In Proceed-
ings of the Tutorial and Workshop on Category Theory and Computer
Programming, pages 364–389, London, UK, 1986. Springer-Verlag.
doi:10.1007/3-540-17162-2_133.

[Str09] Bjarne Stroustrup. The C++0x "remove concepts" decision. C/C++
Users Journal, July 22 2009. Available from: http://www.drdobbs.
com/cpp/218600111.

[SWL77] Mary Shaw, William A. Wulf, and Ralph L. London. Abstraction and
verification in Alphard: Defining and specifying iteration and genera-
tors. Commun. ACM, 20(8):553–564, 1977. doi:10.1145/359763.
359782.

[TJ07] Xiaolong Tang and Jaakko Järvi. Concept-based optimization. In
LCSD ’07: Proceedings of the 2007 Symposium on Library-Centric
Software Design, pages 97–108, New York, NY, USA, 2007. ACM.
doi:10.1145/1512762.1512772.

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.1145/800022.808307
http://dx.doi.org/10.1109/ICST.2008.12
http://dx.doi.org/10.1145/1411286.1411292
http://dx.doi.org/10.1145/1297846.1297919
http://dx.doi.org/10.1145/1321631.1321679
http://dx.doi.org/10.1007/3-540-45672-4_13
http://dx.doi.org/10.1007/3-540-17162-2_133
http://www.drdobbs.com/cpp/218600111
http://www.drdobbs.com/cpp/218600111
http://dx.doi.org/10.1145/359763.359782
http://dx.doi.org/10.1145/359763.359782
http://dx.doi.org/10.1145/1512762.1512772
http://dx.doi.org/10.5381/jot.2011.10.1.a10


32 · Bagge, David, Haveraaen

[WLS76] Wm. A. Wulf, Ralph L. London, and Mary Shaw. An introduction to
the construction and verification of Alphard programs. In ICSE ’76:
Proceedings of the 2nd international conference on Software engineer-
ing, page 390, Los Alamitos, CA, USA, 1976. IEEE Computer Society
Press. doi:10.1109/TSE.1976.233830.

[ZS07] Marcin Zalewski and Sibylle Schupp. C++ concepts as institutions: a
specification view on concepts. In LCSD ’07: Proceedings of the 2007
Symposium on Library-Centric Software Design, pages 76–87, New
York, NY, USA, 2007. ACM. doi:10.1145/1512762.1512770.

About the authors

Anya Helene Bagge is a post-doctor at the Bergen Language
Design Laboratory, Department of Informatics, University of
Bergen, Norway, and is currently a visiting researcher at Cen-
trumWiskunde & Informatica (CWI) in Amsterdam, The Nether-
lands. Her research interest is in tools for programming lan-
guage support and the design of programming languages. http:
//www.ii.uib.no/~anya/

Valentin David is a researcher at Bergen Language Design Lab-
oratory, University of Bergen, Norway. His research interest is in
tools for programming language support and advanced C++ pro-
gramming, and he is the main developer of the Catsfoot concept
and testing library. http://www.ii.uib.no/~valentin/

Magne Haveraaen is a professor at the Department of Informat-
ics and head of Bergen Language Design Laboratory, University of
Bergen, Norway. His research interest is in the theory and prag-
matics programming language design, high level programming for
dependency and high performance computing and numerical soft-
ware. Prof. Haveraaen was visiting Texas A&M University during
the work on this paper. http://www.ii.uib.no/~magne/

Acknowledgments Andrew Sutton also has tools for dealing with concepts in
C++2011, though he is emphasising the syntactic part over the axiomatic part. We
discussed and exchanged ideas with him. Some of the ideas of our implementation of
concepts are inspired by his work or our discussion.
Thanks to the reviewers and to Paul Griffioen for useful comments on drafts of this
paper. Thanks to the GPCE’09 reviewers and attendees for valuable feedback on
the previous version of this paper [BDH09].
This research is partially financed by the Research Council of Norway, under the
DMPL (Design of a Mouldable Programming Language) project.

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.1109/TSE.1976.233830
http://dx.doi.org/10.1145/1512762.1512770
http://www.ii.uib.no/~anya/
http://www.ii.uib.no/~anya/
http://www.ii.uib.no/~valentin/
http://www.ii.uib.no/~magne/
http://dx.doi.org/10.5381/jot.2011.10.1.a10

	Introduction
	Testing with Concepts and Axioms
	Concepts in C++ 2011

	Concepts
	Concepts
	Requirements
	Axioms
	Models
	Axiom-Based Testing
	Predicates
	Concept Checking
	Long Parameter Lists

	Testing Axioms
	Testing Concepts
	Test Reports
	Reusable Tests
	Axioms for OO code
	Inheritance

	Exceptions
	Test Coverage

	Data Generation
	Data Generator Library
	Random Terms
	Generating Related Values


	Discussion
	Specification in Programming Languages
	Algebraic Specification
	Axiom Selection
	Axiom-Based Testing
	Algebraic Axioms and Imperative Code
	Equality in Axioms and Equality Testing
	Experiences with Axiom-Based Testing
	Future Work

	Conclusion
	Code Examples and Listings
	Equivalence and Congruence
	Hashing
	Testing Exceptions
	AXIOMS Macro
	The Printable Concept and Overloading

	Quick definitions
	New in C++ 2011

	About the authors

