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Abstract
Modern development practises encourage extensive testing of code
while it is still under development, using unit tests to check indi-
vidual code units in isolation. Such tests are typically case-based,
checking a likely error scenario or an error that has previously been
identified and fixed. Coming up with good test cases is challenging,
and focusing on individual tests can distract from creating tests that
cover the full functionality.

Axioms, known from program specification, allow for an alter-
native way of generating test cases, where the intended functional-
ity is described as rules or equations that can be checked automat-
ically. Axioms are proposed as part of the concept feature of the
upcoming C++0x standard.

In this paper, we describe how tests may be generated automati-
cally from axioms in C++ concepts, and supplied with appropriate
test data to form effective automated unit tests.

Categories and Subject Descriptors D.2.5 [Testing and Debug-
ging]: Testing Tools; D.1.5 [Programming Techniques]: Object-
oriented Programming

General Terms Reliability, Languages, Design

Keywords Algebraic Specification, Axiom-Based Testing Ax-
ioms, C++, C++0x Concepts, Generative Programming, Mould-
able Programming, Program Transformation, Test Generation, Unit
Testing,

1. Introduction
Modern software engineering practises encourage the use of unit
testing to increase software reliability. Test-driven development
(TDD) [7] dictates that software should be extended by writing
tests for a new feature first, before implementing the feature. The
tests provide a specification of the behaviour of the new feature,
and provide an easy way to check the implementation throughout
development and refactoring.

Less extreme methods call for tests for all program units, and
for regression tests to be written to ward off the reappearance of
known bugs. Such methods may be practised rigorously, or in an
ad hoc manner. Common to all is that they rely on the programmer
to invent good test cases that cover both likely, unlikely and even
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‘impossible’ errors. The programmer must also be careful that the
tests exercise the full expected feature set, or the implementation
will seem OK when all it does is implement the bare minimum to
pass the tests (as is common in TDD, where the tests are the actual
specification of expected behaviour).

1.1 Axiom-Based Testing
We suggest writing tests based on axioms that formally spec-
ify expected behaviour, rather than relying on ad hoc test cases.
Axiom-based testing was introduced in the early eighties in the
DAISTS [18] system, which used formal algebraic specifications
as a basis for unit testing. In DAISTS, a test consists of axioms in
the form of conditional equations, which serve as a test oracle, an
implementation with an equality operator; and a set of test data. A
simple coverage analysis is done of the test runs to ensure that all
the axioms and program code are exercised by the tests.

ASTOOT [17] applied the ideas of axiom-based testing to
object-orientation, with automated testing for Eiffel. Axioms were
specified in an OO-like style, rather than the functional notation
used in DAISTS.

The Daistish system [34] brought these ideas to C++. Unlike
ASTOOT, Daistish used a functional notation for axioms, giving
a notational gap between the conditional equational form of the
axioms and the methods of C++.

Traditional unit testing, as popularised by agile methods in the
last decades, is practically oriented, and does not rely on formal
methods. Mainstream software engineers have focused on devel-
opment methods like TDD and extreme programming [6], while
much formal methods research has focused on formal specification
and verification – which have been difficult to apply to mainstream
languages and mainstream development.

Research on axiom-based testing has continued, however, and
axioms are have been introduced as part of the new concept pro-
posal for the upcoming C++ standard [9, 23] – giving a mainstream
language built-in syntactic support for axioms. The CASCAT sys-
tem [47] provides a tool for testing Java components based on alge-
braic specification. Axiom-based testing has been employed in the
Sophus numerical C++ library [31], and also in the JAX [44] (Java
Axioms) testing approach and JAxT [33] tool. Axiom-like features
have also been added to recent versions of JUnit [40]. Gaudel and
Le Gall [20] provide a survey of the use of algebraic specification
in testing.

Axiom-based testing from concepts has two main parts that
instrument the implementation being tested:

• axioms, in the form of conditional equations, and
• suitable test data points.

Running an axiom-based test consists of evaluating the condi-
tion and (if it succeeds) the two sides of the equation using the
test data, and comparing the results, typically with the help of the



equality operator. For example, to test the following commutativity
axiom x + y = y + x, we may substitute 4 for x and 5 for y, evaluate
4 + 5 and 5 + 4, and then verify that 9 = 9. A good test data set for
this case would also include negative numbers and zero.

If the results are to be reliable, the axiom must correctly ex-
press the desired feature. Earlier it was considered crucial that the
code for the equality operator had to be correct [19]. We have dis-
cussed this previously [31], concluding that with testing the equiv-
alence and congruence properties of the equality operator, it can
be treated alongside any other function being tested. Another prob-
lem appears if the equality operator used in a concept axiom is not
implemented. This is known as the oracle problem, and can be han-
dled by techniques based on behavioural equivalence [19, 12], i.e.,
two values are considered equal if they cannot be distinguished by
any operation in the system. The ASTOOT [17] system is based
on behavioural equivalence, though in practise the user must still
define equivalence, either through an axiom, or by an equals oper-
ator in the implementation. Chen et al. [12] describe a system for
testing object-oriented programs, and provide a technique for de-
termining behavioural equivalence based on white-box heuristics.
In this paper, though, we will assume that an equality operator has
been implemented for every type that occurs in the left- or right-
hand side of an axiom.

Concepts and axioms are still a work in progress as far as C++
standardisation is concerned1. Previous work on C++ axioms has
mainly focused on their use for optimisation [4, 45]. Our contribu-
tions in this article include:

• a technique for using C++ axioms for testing, and
• a tool to support this technique.

The rest of the paper is organised as follows. In the next two
sections we introduce C++ concepts and axioms, and show how
to generate test oracles and test code from them. In Section 4, we
discuss how to generate test data, both random and user-selected.
We finish off with a discussion and conclusion in Sections 5 and 6.

2. Concepts
Concepts [23, 9] allow restrictions to be placed on template argu-
ments. A concept describes a specification for types. It lists the
members (functions, associated types, etc.) that are required for
some types to model the concept, and the axioms that apply to those
members. For example, the following Monoid2 concept requires the
existence of an identity_element and an operator, and gives an
Identity axiom (adapted from [9]):

concept Monoid<typename T>
: Semigroup<T> {
T op(T, T);
T identity_element();
axiom Identity(T x) {
op(x, identity_element()) == x;
op(identity_element(), x) == x;

} }

Axioms are simple conditional equations (or inequalities), uni-
versally quantified over the axiom parameters. Multiple equations
may be given inside an axiom – they are combined by logical and.
More complicated axioms, e.g., with existential quantification, can-
not be expressed directly. The sides of the equations are full C++
expressions, allowing use of things like the comma operator and
calls to any accessible function.

1 And, in fact, have recently been dropped from the final proposal.
2 A monoid is an algebraic class with an operator ⊕ and an identity element
e, such that x ⊕ e = e ⊕ x = x. For example, 〈int,+, 0〉 and 〈int, ∗, 1〉 are
monoids.

concept Indexable<typename A, typename I,
typename E>

: std::EqualityComparable<A,A>,
std::EqualityComparable<E,E> {
requires SameShape<A, I>;
const E& operator[](const A&, const I&);
E& operator[](A&, const I&);

axiom ArrayEqual(A a, A b, I i) {
if (a == b)
a[i] == b[i];

}
}

Figure 1. The concept Indexable has indexing operators and an
axiom ArrayEqual that states that two if Indexables are equal, then
their elements are equal. A is an indexable type, I is the index type,
and E is the element type. A and I are required to be of the same
shape, i.e., the values of type I are the allowable indices for the type
A. SameShape is a trivial concept used to state that the indexable
and index type are of compatible shapes/dimensions.

To state that a set of types model a concept, we use a concept
map. The concept map can specify a mapping between the imple-
mentation names (from the class) and the names used in the con-
cept, and can also be used to add extra code necessary to model
the concept. Any functions not mentioned explicitly in the con-
cept map is taken from the context – in many cases the body of
a concept map is quite short, or empty. In the concept map be-
low, we state that the FiniteInt class of bounded integers models
the Monoid concept, and give an operator that returns the addition
of elements and an identity_element function that returns the
FiniteInt::zero identity element.

template<int size>
concept_map Monoid<FiniteInt<size> >{
FiniteInt<size> op(const FiniteInt<size>& a,

const FiniteInt<size>& b) {
return a+b;
}
FiniteInt<size> identity_element() {
return FiniteInt<size>(0);

} }

Without the concept map body, we would have to provide op and
identity_element for FiniteInts directly.

Concepts may also be declared auto, in which case an implicit
concept map is provided for any set of types that have the relevant
functions declared. We feel it is best to avoid axioms in auto con-
cepts – since they may end up specifying behaviour for functions
without the programmer being aware of it (though, a few standard
cases like having equality, comparison or assignment operators can
probably safely be made auto). We will therefore only generate
tests for the cases where the programmer has explicitly used a con-
cept map to declare that the implementation models a concept.

3. From Axioms to Test Code
There are two steps involved in generating tests from concepts.
First, we generate a test oracle for each axiom in each concept. The
test oracle is a function having the same parameters as an axiom,
and returning true or false depending on whether the axiom holds
for the given arguments.

For example, consider the Indexable concept in Figure 1, in-
tended for data structures such as arrays. It has the usual indexing
operators you would expect, and an axiom ArrayEqual. The axiom



template <typename A,typename I,typename E>
requires Indexable<A, I, E>
struct Indexable_oracle
{
static bool ArrayEqual(A a, A b, I i)
{
if (a == b)
if (!(a[i] == b[i]))
return false;

return true;
}
};

Figure 2. Oracle code from the ArrayEqual axiom. The oracle
returns immediatly upon failure, otherwise we continue, as there
may be more than one equation in the axiom.

can be transformed into callable code by creating a normal C++
template class for the concept (Indexable_oracle), and making
the axiom a boolean function within that class – see Figure 2.

The second step is to generate test cases for each type that
models a concept. This is done by finding all the concept maps
within the program, and generating code for each of them. The test
case will use data iterators (see Section 4) to iterate through a set
of data values for each argument to the axioms, and then call the
test oracle for each combination of data values. Success or failure
of the oracle test is then reported to the testing framework.

For example, consider an ArrayFI class – an array indexed
by finite (bounded) integers. A simplified version of the class is
shown in Figure 4. It is supplied with two concept maps, relat-
ing the implementation to the SameShape and Indexable concepts.
The first stating that any ArrayFI of size size has the same shape
as a FiniteInt of size size – this is needed to fulfil the Same-
Shape requirement of the Indexable concept. The second states that
ArrayFI is Indexable with index type FiniteInt and element type
E. Note that the concept maps are templated, working on any inte-
ger size and element type E.

The test case (seen in Figure 3) consists of an Indexable_-
testCase class specialised for ArrayFI<size, E>, Finite-
Int<size> and E. The class contains a test function, ArrayEqual,
which iterates over the data generators and calls the generic test
oracle derived from the axiom. The two outer loops generate arrays
(*a_0 and *c_0), while the inner loop generates indexes (*d_0).
The test oracle (from Figure 2) will check that the array code be-
haves as expected for an Indexable structure. The HasDataSet
provides a mapping from a type to a data generator for that type
(reasonable defaults for this are generated automatically – see Sec-
tion 4).

3.1 Reusable Tests
A convenient effect of having concepts and their axioms separate
from the classes that implement them is that they can be freely
reused for testing new types that model the same concepts. If you
already have a Stack concept with carefully selected axioms, you
get the tests for free when you implement a new stack class.

Having libraries of standard concepts for things such as al-
gebraic classes [22] (including monoid, ring, group and others
that apply to numeric data types), containers (indexable, search-
able, sorted, ...) as well as common type behaviors [24] (Copy-
Assignable, EqualityComparable, ...) cuts down on the work
needed to implement tests. A well thought-out library is also far
less likely to have flawed or too-weak axioms than axioms or tests
written by a programmer in the middle of a busy project.

template<int size, typename E>
class ArrayFI {
private:
E data[size];
public:
E& operator[](const FiniteInt<size>& i) {
return data[i];
}
bool operator==(const ArrayFI& a){
for(int i = 0; i<size; ++i)
if (data[i] != a.data[i])
return false;

return true;
}
int getSize() const {
return size;
}
};

// Any ArrayFI has the same shape as
// a FiniteInt index type if the sizes match
template<int size, typename E>
concept_map SameShape<ArrayFI<size, E>,

FiniteInt<size> > { }

// ArrayFI<size,E> is Indexable, with index
// type FiniteInt<size> and element type E
template<int size, typename E>
concept_map Indexable<ArrayFI<size, E>,

FiniteInt<size>, E> { }

Figure 4. The ArrayFI class, parameterised with a size and an
element type.

3.2 Concept Combinations
Some combinations of classes can create interesting interactions
between concepts. For example, the FiniteInt type we used in
the implementation of ArrayFI satisfies the Monoid concept from
Section 2 (as well as several other algebraic concepts that are too
lengthy to include in this paper). If we extend our ArrayFI with
element-wise operations, an instance ArrayFI<FiniteInt> can
‘inherit’ the Monoid concept from the FiniteInt. For this to work,
we need to provide a concept map

template<typename A>
requires DefaultIndexable<A>,

Monoid<DefaultIndexable<A>
::element_type>,

std::CopyConstructible<A>
concept_map Monoid<A> {
A op(const A& a, const A& b) {
return Shape<A>::map(
Monoid<DefaultIndexable<A>

::element_type>::op,
a, b);

}
A identity_element() {
return Shape<A>::build(
Monoid<DefaultIndexable<A>

::element_type>
::identity_element());

}
}



template <int size,typename E>
requires Indexable<ArrayFI<size, E>, FiniteInt<size>, E>
struct Indexable_testCase<ArrayFI<size, E>, FiniteInt<size>, E>
{
static void ArrayEqual() {
typedef HasDataSet<ArrayFI<size, E>>::dataset_type dt_0;
dt_0 b_0 = HasDataSet<ArrayFI<size, E>>::get_dataset();
for (DataSet<dt_0>::iterator_type a_0 = DataSet<dt_0>:: begin(b_0)
; a_0 != DataSet<dt_0>::end(b_0); ++a_0) {
typedef HasDataSet<ArrayFI<size, E>>::dataset_type dt_1;
dt_1 d_0 = HasDataSet<ArrayFI<size, E>>::get_dataset();
for (DataSet<dt_1>::iterator_type c_0 = DataSet<dt_1>:: begin(d_0)
; c_0 != DataSet<dt1>::end(d_0); ++c_0) {
typedef HasDataSet<FiniteInt<size>>::dataset_type dt_2;
dt_2 f_0 = HasDataSet<FiniteInt<size>>::get_dataset();
for (DataSet<dt_2>::iterator_type e_0 = DataSet<dt_2>:: begin(f_0)
; e_0 != DataSet<dt_2>::end(f_0); ++e_0)

check(Indexable_oracle<ArrayFI<size, E>,
FiniteInt<size>, E>::ArrayEqual(*a_0,*c_0, *e_0),

"Indexable", "ArrayEqual");
} } } };

Figure 3. Concrete test code generated from a concept map. HasDataSet is used to select an appropriate data set for each data type. check
is a hook for reporting results to a testing framework.

The Indexable concept may be used in several different ways on
the same array type with different index and element types. As we
want the compilation process to automatically deduce which way to
index our data structure, we need to provide a default pair of index
type and element type to each Indexable through the following
concept DefaultIndexable:

concept DefaultIndexable<typename A> {
typename index_type;
typename element_type;
requires Indexable<A, index_type,

element_type>;
}

Then, for example, ArrayFI would only need a small concept
map like the one below to inherit all the axioms.

template <int size, typename E>
concept_map DefaultIndexable<

ArrayFI<size, E>> {
typedef FiniteInt<size>
index_type;
typedef E element_type;
}

Based on the above concepts and the concept maps, an ArrayFI-
<size, FiniteInt> would have test code for the ArrayEqual ax-
iom (instantiated from the template code in Figure 3), and for the
Monoid::Identity axiom. And, as ArrayFI<size, FiniteInt>
is itself a Monoid, we can use it as the element type for a new Index-
able Monoid ArrayFI<size1, ArrayFI<size2, FiniteInt>
>, and so on3. Such constructions are important in some problem
domains [32] and allow us to do some simple integration testing
with axioms as well.

3 Which raises the question – how many of these do we generate code for?
None and all. Since the generated test code uses templates, the basic test
case functions also handle the nested combinations. Only the basic variants
are called automatically by our tool’s code, though.

3.3 Test Drivers / Suites
So far we have generated test oracles from axioms, and test cases
that generate test data and call the oracles. To actually perform
the testing, we need to call the test cases as well. There are three
ways to do this: we may call the code manually, we may generate
code that calls all known test functions, or we may use a combined
approach.

By default, our tool will generate a main function filled with
calls to all non-template test functions. Guessing at sensible tem-
plate parameters is difficult in the case of unconstrained template
parameters and when there is a large or infinite number of choices
(as in the case of the nested arrays above). We therefore rely on the
user to choose which templated tests to run, as explained in Sec-
tion 4.

If we want fully automatic test program generation, we could
analyse existing application code and find suitable template instan-
tiation arguments there. Or, in cases where template parameters are
constrained by concepts, we could generate calls with all classes
that fulfil the concept constraint (with a cut-off in place to avoid
infinite nesting). This would allow quite exhaustive exercising of
code, including combinations that a programmer would likely never
think of.

Even if the tool does not automatically generate full test suites,
it could help the programmer by generating code templates. With
integration into an IDE – such as Eclipse – test suite building can
be done in a guided manner.

3.4 Axioms for Object-Oriented Code
The axiom examples we have used so far have mostly been in a
functional style where results are returned and there are no side-
effects on arguments. Realistic C++ code will often be written in a
more object-oriented style.

Object-oriented style favors side-effects on the first argument.
To capture side-effects in concepts, some functions will have to
have reference type arguments. If the first argument is a reference,
then the function can be defined in the concept map as a method
defined in a class. If the first argument is not a reference, or it is
a const reference, then the function is defined as const method.



concept BoundedStack<typename S> {
requires std::DefaultConstructible<S>,
std::EqualityComparable<S>;
std::EqualityComparable E;
E top(S);
E pop(S&);
void push(S&, E);
bool full(S);
bool empty(S);

axiom PushTop(S s, E e) {
if(!full(s))
(push(s,e), top(s)) == e; }

axiom PushPop(S s, E e) {
if(!full(s))
(push(s,e), pop(s)) == e;
if(full(s))
(push(s,e), pop(s), s) == s; }

axiom Empty1() {
empty(S()) == true; }
axiom Empty2(S s, E e) {
if(!full(s))
(push(s, e), empty(s)) == false; }
axiom Equal1() {
S() == S(); }
axiom Equal2(S s, E e) {
if(!full(s))
(push(s, e), s) != S(); }
axiom Equal3(S s1, S s2) {
if(!empty(s1) && (s1 == s2))
s1.top() == s2.top();

if(!empty(s1) && (s1 == s2))
(pop(s1), s1) == (pop(s2), s2);

}
}

Figure 5. An example of a bounded stack concept capturing side
effect of OO programming style, with a selection of axioms. The
comma operator (,) is used to first evaluate a call for the side effect
(left side), then choosing the value we’re interested in (right side).
S() constructs a new stack.

Non-const methods – methods that may change the object – is
the norm in C++ programming, which means that function decla-
rations in concepts will often have reference parameters. The side
effect of those functions have to be captured somehow by the ax-
iom. The comma operator can be useful for testing side effects. An
example is the following axiom:

axiom CopyPreservation(T x, U y) {
(x = y, x) == y;
}

This axiom states that after assigning y to x, the value of x should
be equal to y. The comma operator has the effect of first assigning
y to x, and then yielding the value of x.

Figure 5 shows the traditional bounded stack example also used
for DAISTS [18], Daistish [34] and JAX [44]. The BoundedStack
concept is written in a functional syntactic style, but the reference
of the first parameter on pop and push captures the object-oriented
style. These two stack operations modify the current object, rather
than return a new modified stack.

In our stack axioms, we have intentionally not specified what
happens when we attempt to push onto a full stack or pop an empty
stack. In a traditional bounded stack, pushing onto a full stack has
no effect. By leaving this behaviour undefined, we leave the door

...
bool PushFull_help(S s, E e) {
try { push(s, e); return false; }
catch(...) { return true; }
}
axiom PushFull(S s, E e) {
if(full(s))
PushFull_help(s, e) == true;

}

Figure 6. Checking for exceptions. The function PushFull_help
will return true if pushing onto a full stack throws an exception, and
false otherwise.

open for alternative solutions (handled by non-axiom test cases, for
example).

However, if we wish to specify that an exception should be
thrown when attempting to push onto a full stack, we would need
a small helper function to do the push, catch the exception and
return true or false – see Figure 6. With some small changes [4]
to the proposed C++ syntax, we could avoid the use of the helper
function.

This state-modifying style of axioms has some consequences
for test code generation, since the test oracles will modify the test
data. For this reason, the test oracles avoid reference arguments, en-
suring that the data is copied into the oracle function. This may not
be sufficient for all data structures, though. We are still unsure of
the best way to handle this, as we would like to keep data genera-
tion as simple and efficient as possible. Fortunately the const/non-
const status of parameters will give a clue as to when this may be
a problem – for example, the equals operator is safe, since Equali-
tyComparable specifies that it has const arguments. We could then
try to force copying of test data which is passed as non-const ar-
guments in axioms. Alternatively, one could simply expect the test
driver to generate fresh data for every oracle invocation.

4. Generating Test Data
Creating a test oracle from the concept axioms and a concept map
is straightforward, as described in the previous section. Such a
test oracle will normally have parameter variables (free variables)
that need to be instantiated by suitable values in order to actually
perform testing.

We have three cases to consider when we want to provide data
for a free variable:

• The parameter has a known, primitive C++ type.
• The parameter has a known, user-defined type. In this exposi-

tion we will not investigate the issues arising if the known type
can be subclassed.
• The parameter type is a template argument to the test oracle.

In this case, the template may have additional constraints, e.g.,
that a parameter models a given concept, see Section 3.3.

For the last case we will rely on concept maps to identify candidate
types. Though some authors [14] claim that fixing the test data set
for one such candidate will be sufficient, we believe test data sets
should exercise several of these in order to check that the stated
requirements are sufficient constraints on the template arguments.

We provide test data through associating test data generators
with each class. For the primitive types, we can use a random
generator library, to obtain an arbitrarily large selection of test data.
User defined classes should provide a test data generation interface,
allowing our testing tool to feed generated test data to the test



oracles. A test data generator for a class template may call upon
the data generators for the argument classes.

For a known type, whether primitive or user-defined, we see
several strategies for providing test data.

1. User selected data sets.

2. Randomly chosen generator terms.

3. Randomly chosen data structure values.

The first is the classical approach to testing and the one (implicitly)
favored by test driven development. Here the tester decides, e.g.,
that integer values -1, 0, 1 and 3 are of prime importance, or that
stacks S(), S().push(1) and S().push(1).pop() are specifi-
cally important. Such selected data sets are useful for regression
testing, where specific data sets that have exposed problems in the
past are rechecked with each revision of the code. The data sets
can also be targeted for other purposes, e.g., path coverage of the
implemented algorithms.

The second is favored by Claessen & Hughes in their QuickCheck
system [14] and by Prasetya et al. for their Java-based testing sys-
tem [39]. The idea is to let random expressions or sequences of
(public) methods compute data values of the appropriate type. By
choosing a suitable enumeration of terms this will always be possi-
ble and give good data coverage. For example, testing integer-like
types (with axioms such as associativity, commutativity, distribu-
tivity) we may use expressions 0, 0 + 1, (−1 + 0) ∗ 2, . . . and for
stacks sequences like S s(); s.push(1+-2); s.push(3|4);
s.pop(); may be used.

The third approach requires the tester to have access to the data
representation (data field attributes) of a type. For primitive types
such as floats, this means setting the bit patterns of a floating point
number directly. For a user-defined class this implies that each data
field is given a random value of the appropriate type, subject to
the constraints of the implementation. For instance, having a ra-
tional number class where we represent rational numbers as pairs
of integers (a nominator and a denominator, the denominator dif-
ferent from zero), we may choose random pairs of integers for the
attributes, discarding any pair where the denominator part would
be equal to 0. Such direct setting of attribute values may give ac-
cess to a larger range of test values than allowed by method 2, and
is needed if all or some of the data fields are publicly available.
Setting data attributes directly requires a filtering mechanism that
identifies all bad data combinations, i.e., a complete data (class) in-
variant. If the data invariant has narrow requirements on the data,
e.g., that the stack has a length field required to be equal to the
length of the linked list representing the data on the stack, inde-
pendently generating random integers and random linked lists will
probably turn up too few good combinations for this technique to
be worthwhile.

Harvesting the data produced by an application program is re-
lated to the second method, in that it provides values computed
by the public methods of the classes, though harvesting ensures a
statistical distribution of data much closer to those that appear in
practice. One way of harvesting application data would be to in-
sert the test oracles directly as assertions into an application, using
the available data values as parameter arguments to the oracle. This
would only be safe for stateless data types or copy-assignable data
types, otherwise we risk that the oracle itself modifies the state of
the application.

Currently, random test data generation seems to be favored
by the literature [25, 29, 30]. Studies of testing efficiency seem
to indicate that random testing outperforms most other test set
designs. For any fixed data set size, a carefully chosen data set
will normally be better than a random data set, but a slightly larger,
often cited as 20% larger, random data set is often just as good [30].

Random data generation offers an easy route to expand the data set
to any reasonable size.

Similarly to the data invariant, a conditional axiom itself rep-
resents a filtering mechanism. A conditional axiom contains an if-
statement, and only those data combinations that satisfy the condi-
tion will really be tried. Assume that we want to test the transitivity
axiom for equality on a user-defined rational number type.

if (a == b && b == c) a == c;

With the representation of rationals as pairs of integers sketched
above, we may compute the equality of n1

d1
and n2

d2
by the Boolean

expression n1*d2 == n2*d1 involving integer equality. Choosing
arbitrary combinations of integers for nominator and denominators,
chances are rather slim we ever will get to the truth part in the
transitivity axiom. As in QuickCheck we will provide a warning
in such cases, encouraging the user to provide data sets where
a significant amount of data reaches the body of the condition.
On the other hand, only choosing obviously equal nominator and
denominator pairs, skews the data set towards trivially satisfying an
axiom, and not providing good tests for the algorithms in general.

Claessen & Hughes also point out that different uses of a data
type may benefit from different data distributions. The observation
being that the data set of integers which best checks that the integers
form a monoid, may not be the ideal data set for array sizes when
generating finite array test sets. We see this observation on targeted
generation of data sets as very important, and expect the locality we
have by associating the data generators with each class will provide
this flexibility.

Once the test oracles and the test data machinery are in place, it
is easy to run the tests by iterating through the corresponding data
set for each of the free variables of each test oracle. However, this
easily leads to a combinatorial explosion in the testing size. A test
set of 100 elements is quite reasonable, but when we test axioms
with several free variables this may become a problem. Take the
transitivity axiom. It has three free variables, hence we will test it
for one million elements altogether. This may be OK for integers,
but what about one million finite arrays? We can deal with this
by providing the data generators with a parameter related to the
number of arguments in an axiom. Our test generator tool can then
fill in this parameter automatically based on the number of free
variables in an axiom.

4.1 Associating a Data Set with a Type
Any type that is part of a universal quantification on an axiom needs
to have a test data set associated with it. Our tool expects the user to
configure the data generation with a concept map, where relevant
types model a concept HasDataSet.

For any type, the user must then provide a concept map for Has-
DataSet with a function get_dataset, which provides the iterators
needed to obtain values of the type. The for-loops in Figure 3 show
how get_dataset is used to obtain test data. The exact mechanics
of iterators and data source (predefined values, random or generated
by some other scheme) is up to the user, but the library provided
with the testing tool provides a general implementation which can
be used as a basis for generating predefined and random values.

5. Discussion
There is no reason to believe that writing axioms (or test cases)
is any less error-prone than programming in general. Failure of
a test can just as well indicate a problem with the axioms or the
equals operator as a problem in the implementation. It is important
to be aware of this while programming, so that bug-hunting is
not exclusively focused on implementation code. The same issue
arises with hand-written tests, though, so this is not specific to
axiom-based testing. Also, since axioms have a different form than



implementation code (equation versus algorithm), it is unlikely
that a bug in an axiom and in the implementation will ‘cover’ for
each other so that neither are detected. It is still possible, though;
having several axioms covering related behaviour will make this
less likely.

Building libraries of well-tested concepts with axioms will in-
crease confidence in the completeness and correctness of the ax-
ioms, and reduces the training needed to make effective use of ax-
ioms. Not everyone can be expected to know all the laws governing
integer arithmetic – but using an existing axiom library and simply
stating that “my class should behave like an integer” is easy.

5.1 Equality Testing
Axiom-based testing (at least with equations) relies on a correct
implementation of equality. In many cases, problems with equality
will be uncovered in testing, but it is possible to write an imple-
mentation of equality that tries to hide most errors – for example,
by simply returning true for all arguments (which may be detected
when testing inequalities, unless a != operator has been provided
with the same problem).

We expect the equals operator to be a congruence relation – an
equality relation that is preserved by all functions. This means that
it has the usual reflexivity, symmetry and transitivity expected of an
equivalence relation, with the additional requirement that all equal
objects are treated the same by all functions, i.e. f (a) = f (b) if
a = b for all a, b, and f .4 A straightforward bitwise comparison
of two objects will often lack this property. In some cases, such as
with floating-point numbers, a usable equals operator will not be
truly transitive (due to a small amount of ‘fuzz’ when comparing,
to cover up round-off errors) – this has little impact on our use,
however.

The EqualityComparable concept in the standard library pro-
vides axioms for the equivalence relation of the equality opera-
tor and also ensures that inequality operator is the negation of the
equality.

It may not always be desirable that the equality operator is a
congruence. In the cases we want this property, the relevant axioms
should be tool generated, since they will involve every method
belonging to the class being tested.

A ‘bad’ equality operator, returning arbitrary results, will almost
certainly be caught during testing since it is basically tested by
every axiom in the system relevant for the particular type. Trivial
cases like equality always returning true is easily caught by testing
based on equality axioms, while more subtle bugs may only show
up in general testing, and will be more difficult to trace to the
equality operator.

Note that having an equality operator is not strictly necessary.
Any type that is EqualityComparable is observable in our test
oracles, i.e., can be tested on equality. But any type that can be
projected on an observable type becomes observable. A projection
or context is a term with placeholder for a variable [48]. This kind
of test oracle generation has not been developed in our tool yet and
we for the moment require tested types to be EqualityComparable.

Note, though, that even if equality is not generally available
for a type, it can be provided in a concept map, thus making it
available in any template context where the type is constrained to
EqualityComparable.

5.2 Algebraic Axioms and Imperative Code
As discussed in Section 3.4, a particular problem occurs for code
written in an object-oriented or imperative style, relying on side-
effects on arguments. Although this is a poor fit for algebraic-style

4 Informally speaking, since C++ functions may have side-effects or rely on
global data.

axioms, side-effects can be captured by using the comma opera-
tor. Another issue is that the concept itself must specify whether
side-effects occur or not, through the use of non-const reference
arguments. If an implementation has chosen a different approach,
a mapping between the two styles may be given in a concept map,
possibly at the expense of an extra temporary. A solution to this
problem is provided by mutification [5], which automatically maps
between algebraic and imperative/OO-style code.

In the ASTOOT [17] system, algebraic specification of object-
oriented programs is done in the LOBAS formalism which sup-
ports OO syntax. Each axiom relates object states or values that are
computed through a sequence of method calls; optionally, observer
functions may be called at the end each sequence to inspect the
objects. The system is purely algebraic, allowing no side-effects in
operations, except for modifying object state in methods – though
a relaxation of this is described by Doong and Frankl [15, 16]. AS-
TOOT will automatically generate test drivers from class interfaces,
and also generates test cases from a LOBAS algebraic specification.
Automated tests can be augmented by manual test generation.

As the C++ axiom proposal allows arbitrary expressions, the
ASTOOT / LOBAS-style can easily be used with C++ axioms;
though, without disciplined use within same restrictions, there is
a danger that side-effects will interfere with testing, as discussed in
Section 3.4.

The ideas of ASTOOT have been developed further by Chen et
al., and applied to axiom-based testing of object-oriented code at
the level of class clusters and components [12, 13].

5.3 Axiom Selection and Algebraic Specification
Early work by Liskov and Zilles [36] discuss techniques for formal
specification of abstract data types. They point out that specification
should be done by relating the various operations of the abstract
data type, rather than directly specifying the input / output of each
operation. The latter leads to over-specification, providing many
unnecessary details and hiding the essential properties of the data
type – for example, by enforcing some order on the elements of an
unordered set. Specifying operations in terms of each other avoids
bias towards particular representations or implementations. In tra-
ditional unit testing, there is always a temptation to over-specify by
focusing on testing the input and output of every operation, though
a disciplined developer can still avoid over-specification.

In the context of C++ concepts, the concept is separate from the
implementation and should avoid putting undue constraints on how
the concept may be implemented. Hence, axiom expressions should
be limited to using the operations provided in the concept (together
with C++’s primitive operations – on booleans, for example – these
can be considered implicitly defined in every concept).

Among the techniques discussed by Liskov and Zilles, algebraic
specification [21, 27, 28, 36] shows the most promise in terms of
usability and in avoiding over-specification. An algebraic specifica-
tion consists of a syntax description and a set of axioms; this maps
to the C++ idea of concepts, which provide axioms together with a
syntax description in the form of associated types and operations.

To ensure that the behaviour of the abstract data type is fully
specified (or sufficiently complete) one can divide the operations
into constructors (the set of which can generate all possible values),
transformers (which can be defined in terms of constructors) and
observers (which yield values of another type). Left-hand sides
for the axioms of a sufficiently complete specification can then be
constructed from the combination of each constructor with every
non-constructor. Further guidelines for constructing specifications
are discussed by Guttag [26] and Antoy [1].

Many of the existing axiom based testing approaches, such as
JAX and Daistish, rely on sufficiently complete specifications, pro-
vided by complete axiomatisations or initial specifications. This



gives extra properties on which to base tools. For example, the ap-
proach of Antoy and Hamlet [2] uses initial specifications, which
are evaluated alongside the implementation, as a direct implemen-
tation [28] of the specification. All objects in the system contain
both a concrete value and an abstract value (in the form of a nor-
malised term over constructors in the specification), and the equa-
tions from the specification can be evaluated by treating them as
rewrite rules on the abstract value terms. A representation map-
ping translates between the abstractions of the specification and the
concrete data structures of the implementation. Self-checking func-
tions are made by doing an additional abstract evaluation according
to the specification, and – using the representation mapping – com-
paring the result of normal execution and evaluating the specifica-
tion. In this way, a whole program can be described and evaluated
in two distinct ways – using program code and algebraic speci-
fication – providing good protection against programming errors.
This is also the disadvantage of the approach – the implementation
work must basically be done twice. The overhead of the abstract
evaluation and comparison can probably be lowered by running the
testing code in a separate thread on a multicore system.

Axioms written in C++ concepts will normally be loose and
incomplete, making many of these testing techniques void. The
approach described in this paper will work equally well with an
incomplete specification (though, it will of course not be able to
test unspecified behaviour). Our experience with developing and
testing Sophus [31, 32] shows that such axioms are very useful.

5.4 Experiences with Axiom-Based Testing
There is currently no large body of code around that uses C++
axioms, since the standard proposal is not yet finished and compiler
support is still not mature.5 A version of the Matrix Template
Library [42] (MTL) with concepts and axioms is in development
and we plan to apply our tool to it as soon as it is ready.

We have experience with axiom-based testing from the Sophus
numerical software library [31]. This predates C++ axioms, so the
tests were written by hand, based on a formal algebraic specifica-
tion. In our experience, the tests have been useful in uncovering
flaws in both the implementation and the specification, though we
expect to be able to do more rigorous testing with tool support.

The JAxT tool [33, 35] provides axiom-based testing for Java,
by generating tests from algebraic specifications. The axioms are
written as static methods and are related to implementation classes
through inheritance and interfaces. For any class with axioms, the
JAxT tool will generate code that calls the associated axioms. A
team of undergraduate students successfully wrote JAxT axioms for
parts of the Java collection classes, discovering some weaknesses
in the interface specifications in the process [38].

The JAX [44] method of combining axioms with the JUnit [8,
37] testing framework has provided some valuable insight into the
usefulness of axiom-based testing. The JAX developers conducted
several informal trials where programmers wrote code and tests
using basic JUnit test cases and axiom testing, and found that the
axioms uncovered a number of errors that the basic test cases did
not detect.

Initial experiences with DAISTS [18] were positive and indi-
cated that it helped users to develop effective tests, avoid weak
tests, and the use of insufficient test data. With Daistish [34], the
authors did trials similar to those done with JAX, with program-
ming teams reporting that their axioms found errors in code that
had already been subjected to traditional unit testing. Testing also
uncovered numerous incomplete and erroneous axioms – the Dais-
tish team note that this is to be expected since the programmers

5 The prototype ConceptGCC compiler works well in some cases, but is not
complete yet.

were students learning algebraic specification. This is probably a
factor, but some axiom errors can be expected even from trained
programmers.

Further experiences and case studies are summarised by Gaudel
and Le Gall [20].

5.5 Tool Implementation
Our implementation is based on the Transformers C++ parsing
toolkit [10, 46] and the Stratego program transformation lan-
guage [11]. We have extended Transformers with the new syntax
for concepts and axioms, and written a tool, extract-tests, that
reads C++ with concepts and generates testing code from the con-
cepts and concept maps in the code [3].

As part of our concepts extension to Transformers, we also have
an embedding of the Concept C++ grammar into Stratego, so that
Stratego transformation rules can be written using concrete C++
syntax. This makes it easy to modify the code templates for the
generated code, for instance, changing the test oracles to report
success / failure to a testing framework. As an example we use a
back-end for test oracles that instead of returning a boolean, throws
an exception for the CUTE library [43] with the line number of the
axiom, so we get test results reported within the Eclipse IDE.

Together with the tool, we have a utility library with basic
data generation support, and hooks into a testing framework. This
library provides a concept for test data generators. Each type to be
tested is expected to have an associated data generator specified
through a concept map. This allows the user to specify which
generator to use, to create any new kind of generator, and finally
to combine streams of generated data.

Since compiling Concept C++ is usually slow, and since gener-
ating code directly for pure C++ is complex, the tool is delivered
with a Concept C++ to C++ tool translation. Though this tool is not
complete, it can still give a sufficient translation to be able to work
on a big part of Concept C++ with a standard pure C++ compiler.

5.6 Future Work
We have identified several areas for improvement throughout this
paper. Areas of particular research interest are:

• Perform proper trials to gauge the effectiveness of axiom-based
testing and its impact on development.
• Testing of multi-threaded applications is notoriously diffi-

cult [41], and it would be interesting to see if axiom-based
testing could be applied here.
• As discussed in Section 4, there are many open issues with data

generation. These will likely only be resolved once we apply
the method to realistic-sized projects (like MTL).

There are also much engineering work to be done (in no particular
order):

• A library of common concepts with axioms should be written.
There has been some work on this already [22]. Such concepts
should eventually make their way into the C++ standard, for
consistency and interoperability.
• Our tool is still experimental, and would need many improve-

ments to be ready for production use. In particular, the under-
lying framework needs to be developed to handle the kind full-
featured C++ code found in mainstream application.
• The tool should be extended with the ability to generate meta-

axioms for testing, e.g., congruence axioms for the equality
operator or axioms checking the preservation of class invariants
in all methods.
• Generate oracles that can test equality on observable types that

have no direct equality comparison operator.



6. Conclusion
The use of axioms and “informal formal methods” has seen a
surge in popularity recently. We have presented a method for doing
axiom-based testing in the context of proposed concept and axiom
features for C++, along with a tool to make generation of such tests
automatic.

Both the C++ standard, and programming tools such as com-
pilers are still in development and should be considered ‘unsta-
ble’. However, our initial experiments with simple test cases show
promise, and experiences with axiom-based testing from other lan-
guages (both our own and others’) encourage us to push forward
with tool development and larger-scale experiments.
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