
1/51

JJ
II
J
I

Back

Close

Computation of the Matrix Exponential
by
Generalized Polar Decomposition

Bari, 3 Dicembre 2003

Antonella Zanna
University of Bergen, Norway

email: anto@ii.uib.no
http://www.ii.uib.no/˜anto



2/51

JJ
II
J
I

Back

Close

Example of Lie-group methods Motivations
• Integration methods using exponentials in GI

need fast algorithms that approximate the
matrix exponential

why?

– The numerical methods require repeated
computations of exponentials/tangent
maps

• Exact computation is not an issue – but it is
crucial that the exponential approximation is
in the Lie group.

why?

– The order is “decided” from the underly-
ing ODE method

– Approximation from the Lie algebra to
the Lie group is needed for intrinsic meth-
ods



3/51

JJ
II
J
I

Back

Close

Class of methods from ”19 dubious ways. . . ”

1. Series expansions:

Taylor: exp(A) = I + A +
A2

2!
+ · · ·

Padé: exp(A) ≈ [Dpq(A)]−1Npq(A)

2. ODE methods: Too expensive

3. Polynomial methods:
characteristic polynomial

c(z) = det(zI − A) =
r∏

i=0

(z − λi)
αi

αi := alg. mult. of λi.

minimal polynomial

p(z) =
r∏

i=1

(z − λi)
ji

ji := dim(Ji), largest Jordan block for
λi.

f(z) = q(z)d(z) + r(z),

d(z) = c(z), p(z) and deg(r) < deg(d).

4. Matrix decompositions: exp(A) = S exp(B)S−1

Requires Schur decompositions, for repeated com-
putations of the same exponential.

5. Splitting methods:

exp(A) = lim
m→∞

(
exp

(B

m

)
exp

(C

m

))m

,

A = B + C, m = 2j.

6. Krylov methods:

exp(A)v = βVm exp(Hm)e1,

where β = ‖v‖, v1 = v/β,
Vm is a basis of Km = {v1, Av1, . . . , A

m−1v1}
and Hm upper Hessenberg.



4/51

JJ
II
J
I

Back

Close

Computation of the matrix exponential by GPDs

• These methods can be thought at splitting methods

exp(A) ≈ exp(B) exp(C), B + C = A

• An introduction to the theory of GPD

• Application to the computation of exp: A first approach with full matrices

• Faster methods based on reduction to banded form

• A domain-decomposition approach for large problems

• Error analysis

• Some concluding remarks



5/51

JJ
II
J
I

Back

Close

Generalized polar decompositions
Ingredients:

• A Lie group (G, · )

• An involutive automorphism σ : G → G, (σ invertible, 1-to-1)

σ(xy) = σ(x)σ(y), σ2(x) = x, ∀x, y ∈ G

What we can do with them:

• We can factorize
z = xy GPD

where
σ(x) = x−1

and
σ(y) = y

where x, y are appropriate group elements which are determined by z and σ.

In particular, if z is sufficiently close to the group identity e, z = exp(tZ), it is true that

exp(tZ) = exp(X(t)) exp(Y (t))

and for t sufficiently small, the functions X(t) and Y (t) are uniquely determined.



6/51

JJ
II
J
I

Back

Close

Properties of the decomposition: at the group level

z = exp(tZ) = exp(X(t)) exp(Y (t)) = xy GPD of z

with σ(x) = x−1, σ(y) = y.

Consider the sets

Gσ = {z ∈ G : σ(z) = z} fixed points of σ

Gσ = {z ∈ G : σ(z) = z−1} anti-fixed points of σ

• Gσ has the structure of a group:

z1, z2 ∈ Gσ ⇒ z1z2 ∈ Gσ, z−1
1 ∈ Gσ

• Gσ has the structure of a symmetric space,

z1, z2 ∈ Gσ ⇒ z1 ? z2 = z1z
−1
2 z1 ∈ Gσ.



7/51

JJ
II
J
I

Back

Close

At the algebra level. . .

Assume z = exp(tZ), where Z ∈ g, the Lie-algebra of G. The group automorphism σ induces a
Lie-algebra map

dσ(Z) =
d

dt

∣∣∣
t=0

σ(exp(tZ)), Z ∈ g

which is also an involutive automorphism since

dσ([A, B]) = [ dσ(A), dσ(B)], A, B ∈ g, dσ2 = id,

We denote

k = {Z ∈ g : dσ(Z) = Z} subalgebra of g

p = {Z ∈ g : dσ(Z) = −Z} Lie triple system.

The subspaces p and k obey important inclusion properties:

[k, k] ⊆ k,

[k, p] ⊆ p,

[p, p] ⊆ k,

(+1)× (+1) = (+1)

(+1)× (−1) = (−1)

(−1)× (−1) = (+1).



8/51

JJ
II
J
I

Back

Close

It is true that
g = p⊕ k,

in other words, every Z ∈ g can be uniquely written as

Z = P + K, dσ(P ) = −P, dσ(K) = K,

where

P =
1

2
(Z − dσ(Z)), K =

1

2
(Z + dσ(Z)).

In summary:

Group level Algebra level

Gσ := {z ∈ G : σ(z) = z}, subgrp k = {Z ∈ g : dσ(Z) = Z}, subalg.

Gσ := {z ∈ G : σ(z) = z−1}, symm. sp. p = {Z ∈ g : dσ(Z) = −Z}, LTS

G = Gσ ·Gσ g = p⊕ k

z = xy Z = P + K

x = exp(X(t)) ∈ Gσ X(t) =
∑∞

i=1 Xit
i ∈ p, Xi ∈ p

y = exp(Y (t)) ∈ Gσ Y (t) =
∑∞

i=1 Yit
i ∈ k, Yi ∈ k



9/51

JJ
II
J
I

Back

Close

The decomposition
Z = P + K

completely determines the functions X(t) and Y (t):

X = Pt− 1
2
[P, K]t2 − 1

6
[K, [P, K]]t3

+
(

1
24

[P, [P, [P, K]]]− 1
24

[K, [K, [P, K]]]
)
t4

+
(

7
360

[K, [P, [P, [P, K]]]]− 1
120

[K, [K, [K, [P, K]]]]− 1
180

[[P, K], [P, [P, K]]]
)
t5

+O(t6),

Y = Kt− 1
12

[P, [P, K]]t3 +
(

1
120

[P, [P, [P, [P, K]]]]

+ 1
720

[K, [K, [P, [P, K]]]]− 1
240

[[P, K], [K, [P, K]]]
)
t5 +O(t7).

In general, all the terms in the expansion of X(t) and Y (t) are obtained by explicit recurrence
relations in terms of P and K.



10/51

JJ
II
J
I

Back

Close

Examples

• Classical polar decomposition:

σ(z) = z−>, z ∈ G

dσ(Z) = −Z>, Z ∈ g

The splitting:

P =
1

2
(Z − dσ(Z)) =

1

2
(Z + Z>), symm. matrix

K =
1

2
(Z + dσ(Z)) =

1

2
(Z − Z>), skew-symm. matrix

Z = P + K

exp(Z) ≈ exp(P ) exp(K) to first order

we recover one of the splitting methods described in “19 dubious ways. . . ”.

• In this case, exp(tZ) = exp(X(t)) exp(Y (t)) is the continuous analytic version of the classical
polar decomposition of a matrix as the product of a symmetric PD matrix (exp(X(t))) and
an orthogonal matrix (exp(Y (t))).



11/51

JJ
II
J
I

Back

Close

• Low-rank decompositions: Let S = diag(1, 1, 1 . . . ,−1) and

σ(z) = SzS−1, z ∈ G

dσ(Z) = SZS−1, Z ∈ g

The splitting:

P =
1

2
(Z − dσ(Z)) =


0 · · · 0 z1,n
... 0 · · · ...

0
...

. . . zn−1,1

zn,1 · · · zn,n−1 0

 , rank-2 matrix

K =
1

2
(Z + dσ(Z)) =


z1,1 · · · z1,n−1 0
... · · · ...

zn−1,1
... zn−1,n−1 0

0 · · · 0 zn,n

 , block diagonal matrix

Z = P + K

exp(Z) ≈ exp(P ) exp(K) to first order



12/51

JJ
II
J
I

Back

Close

Approximation of the matrix exponential
Recall that by GPD:

exp(tZ) = exp(X(t)) exp(Y (t)),

where

X = Pt− 1
2
[P, K]t2 − 1

6
[K, [P, K]]t3

+
(

1
24

[P, [P, [P, K]]]− 1
24

[K, [K, [P, K]]]
)
t4

+
(

7
360

[K, [P, [P, [P, K]]]]− 1
120

[K, [K, [K, [P, K]]]]− 1
180

[[P, K], [P, [P, K]]]
)
t5

+O(t6),

Y = Kt− 1
12

[P, [P, K]]t3 +
(

1
120

[P, [P, [P, [P, K]]]]

+ 1
720

[K, [K, [P, [P, K]]]]− 1
240

[[P, K], [K, [P, K]]]
)
t5 +O(t7).

and

Z = P + K, P =
1

2
(Z − dσ(Z)), K =

1

2
(Z + dσ(Z)).



13/51

JJ
II
J
I

Back

Close

A splitting method that approximates exp(tZ):

• Choose an appropriate σ.

• Split Z = P + K.

• Truncate the expansion

X(t) = Pt +
1

2
t2[P, K] + · · · , Y (t) = Kt− 1

12
t3[P, [P, K]] + · · ·

to desired order.

• Compute the exponential of X(t) ∈ p

• Set Z1 = Y (t)

• Repeat

In general, we iterate the procedure on the reduced space until we get a space of low dimension.
At the end,

exp(tZ) ≈ exp(X [1]) exp(X [2]) · · · exp(X [m]) exp(Y [m]).



14/51

JJ
II
J
I

Back

Close

What are good choices of σ?

• The splitted factors should be easy to compute.

• Commutators should have a low complexity.

• Exponential/commutators of splitted parts should be easy to compute (either approximately
or preferably exactly).

A good choice is splitting in matrices of low rank, for instance, borderded matrices: take

S =


1 0 · · · 0

0 1
. . .

...
...

. . . . . . 0
0 · · · 0 −1

 , dσ(Z) = SZS,

then

P =


0 · · · 0 z1,n
... 0 · · · ...

0
...

. . . zn−1,1

zn,1 · · · zn,n−1 0

 , K =


z1,1 · · · z1,n−1 0
... · · · ...

zn−1,1
... zn−1,n−1 0

0 · · · 0 zn,n

 .

Such automorphisms work for GL(n), SL(n), SO(n).

Note that the commutators appearing in the expansion can be computed in O(n2) computations
(n3 if the procedure is iterated for matrices of decreasing dimension)



15/51

JJ
II
J
I

Back

Close

An Euler–Rodrigues like formula for bordered matrices

The exponential of bordered matrices can be computed exactly by means of a formula similar to
the Euler–Rodrigues formula for computing the exponential of a 3× 3 skew-symmetric matrices.

Assume that A ∈ p is of the form

A =

[
O a

bT 0

]
, a,b ∈ Rn. (3.1)

Then,

exp(A) =


I + sinh θ

θ
A + 1

2

(
sinh(θ/2)

θ/2

)2

A2, if aTb > 0, θ =
√

aTb,

I + A + 1
2
A2, if aTb = 0,

I + sin θ
θ

A + 1
2

(
sin(θ/2)

θ/2

)2

A2, if aTb < 0, θ =
√
−aTb

where

A2 =

[
abT 0

0T θ2

]
.

Minimal polynomial:

p(z) = λ(λ2 − a>b), deg(p) = 3

Characteristic polynomial

c(z) = λn−2(λ2 − a>b), deg(c) = n.



16/51

JJ
II
J
I

Back

Close

Note that exp(A) never needs being computed explicitely but always applied to a vector/matrix v.[
wk

w

]
= exp(A)v = exp(A)

[
vk

v

]
=

[
vk + ζ1a

ζ2

]
,

where

ζ1 = [η1v + η2(b
>vk)],

ζ2 = (1 + θ)v + (b>vk).

Cost of the computation (including both addition and multiplication) of the ‘Euler–Rodrigues’
exponential. The (k, k) column corresponds to the case when a,b are full, the (k, p) corresponds
to the case when a is full while only the last p components of b are nonzero and finally the (p, p)
column corresponds to both a and b having only the last p components nonzero.

Cost of exp(A) (k, k) (k, p) (p, p)

a>b 2k 2p 2p
b>vk 2k 2p 2p
ζ1a k k p
wk k k p
total, stage k 6k 2k + 4p 6p

total, summing 1 ≤ k ≤ n (vector) 3n2 n2 + 4pn 6pn

matrix (n vectors) 2n3 n3 + 2pn2 4pn2



17/51

JJ
II
J
I

Back

Close

On the computation of commutators

Our first observation is that the involutions S are usually chosen so that P = Πp(Z) has low rank,
hence only just a few nonzero eigenvalues.

• Use the theory of minimal polynomial, the least degree monic polynomial such that

p(adA) = 0.

Lemma 3.1 Consider the bordered matrix A in (3.1) with ab> 6= O. The minimal polynomial of
adA is

p(λ) = λ(λ− 2θ)(λ + 2θ)(λ− θ)(λ + θ) (3.2)

= λ5 − 5b>aλ3 + 4(b>a)2λ,

where θ =
√

b>a. If ab> = O, and a and b are not both zero, then the minimal polynomial is

p(λ) = λ3. (3.3)

Proof. If A has distinct eigenvalues λ1, λ2, . . . , λm with algebraic multiplicities r1, r2, . . . , rm re-
spectively, the minimal polynomial of A has the form

q(λ) =
m∏

i=1

(λ− λi)
gi ,

where gi is the order of the largest Jordan block of A corresponding to the eigenvalue λi.



18/51

JJ
II
J
I

Back

Close

Let us assume first that b>a 6= 0. Assume that v =

[
v1

v2

]
is eigenvector of A corresponding to

the eigenvalue λ. Imposing Av = λv, we have

av2 = λv1

b>v1 = λv2

and deduce immediately that the eigenvalues of A are λ = ±θ = ±
√

b>a and λ = 0 with
algebraic multiplicities one, one, and n− 2 respectively. It is easily verified that these are also their
geometric multiplicities: for λ = ±θ, eigenvectors are of the form [a,±1]>; for the zero eigenvalues,
eigenvectors are of the form [v1, 0]>, 0 6= v1 ∈ Rn−1, satisfying b>v1 = 0, furthermore, it is possible
to find n− 2 of those that are linearly independent.

Since the eigenvalues and eigenvectors of adA are the form λi − λj and y>i xj respectively, the λis
being eigenvalues of A with left and right eigenvector yi and xi respectively, we deduce that adA

has eigenvalues
λ = ±2θ, λ = ±θ

with algebraic/geometric multiplicities one each, and

λ = 0

with algebraic and geometric multiplicity n2 − 4. This implies that all Jordan blocks have size one,
from which it follows directly that the minimal polynomial of adA is of the form (3.2).

Next, if θ = 0 but ab> 6= O, namely a,b 6= 0, the eigenvalues of A, that we write as [v1, v2]
>,

must obey the conditions

av2 = 0

b>v1 = 0.



19/51

JJ
II
J
I

Back

Close

Since a 6= 0, it must necessarily be v2 = 0. Therefore eigenvalues must be of the form [v1, 0].
Recall that v1 has n− 1 entries (n− 1 free parameters) while the second equation b>v1 = 0 gives
only a linear constraint: This mean that we can find only n − 2 linearly independent eigenvalues
and two further linearly independent generalized eigenvalues. In terms of Jordan blocks, this means
that A has a Jordan block of the form

J(0) =

 0 1 0
0 0 1
0 0 0

 ,

hence λ3 is the minimal polynomial of A and, as a consequence, A3 = O. Passing to the adjoint
operator adA, recall that, for an arbitrary matrix C,

adk
AC =

k∑
i=0

(
k

i

)
(−1)k−iAiCAk−i, k = 1, 2, . . . . (3.4)

Clearly, ad5
AC = O since in all terms there appears a power Ai with i ≥ 3. For lower order powers,

there are always terms of the type AiCAk−i where i, k−i ≤ 2. This means that it is always possible
to find a matrix C for which at least one of terms does not vanish. Hence the minimal polynomial
of adA is

p(λ) = λ5.

Finally, in the case when either a = 0 or b = 0, by direct computation,

A2 = O,

hence the minimal polynomial of A is λ2. Insofar as adA is concerned, the first power to vanish in
(3.4) is ad3

A, and no lower power vanishes for arbitrary matrices C. Hence the minimal polynomial



20/51

JJ
II
J
I

Back

Close

is
p(λ) = λ3.

This completes the proof of the lemma. 2

Theorem 3.2 Assume that the matrix A is of the form (3.1). Then, for every k = 1, 2, . . .,
commutators by A can be computed as

adk
A = [C1 + (−1)kC2]2

kθk + [C3 + (−1)kC4]θ
k, k = 1, 2, . . . (3.5)

when θ =
√

b>a 6= 0, and

C1 − C2 =
1

6

(
−adA

θ
+

ad3
A

θ3

)
C3 − C4 =

1

3

(
4adA

θ
− ad3

P

θ3

)
C1 + C2 =

1

12

(
−ad2

A

θ2
+

ad4
A

θ4

)
C3 + C4 =

1

3

(
4ad2

A

θ2
− ad4

A

θ4

)
.

(3.6)

If θ = 0 but ab> 6= O, then
adk

A = O, k = 5, 6, 7, . . . .

If θ = 0 and either a or b is a zero vector, then

adk
A = O, k = 3, 4, 5, . . . .

Proof. It follows from the minimal polynomial (3.2). 2



21/51

JJ
II
J
I

Back

Close

Complexity of the algorithms for full matrices:

Order sl(n), so(p, q) so(n)

2 vector matrix vector matrix

splitting 11
3
n3 11

3
n3 2

3
n3 2

3
n3

assembly exp 3n2 2n3 3n2 2n3

total 11
3
n3 31

3
n3 2

3
n3 22

3
n3

Order sl(n), so(p, q) so(n)

3(4) vector matrix vector matrix

splitting 5(7)n3 5(7)n3 21
2
(4)n3 21

2
(4)n3

assembly exp 3n2 2n3 3n2 2n3

total 5(7)n3 7(9)n3 21
2
(4)n3 41

2
(6)n3

These algorithms have a complexity that is comparable with other classical algorithms, like for
instance diagonal Padé approximants.

Feasible algorithms are up to order 4, because for higher order the complexity becomes larger
(although still O(n3)).



22/51

JJ
II
J
I

Back

Close

Faster algorithms
Combine GI and classical Linear Algebra techniques

The main difference with the approach presented before is that the matrix Z is preprocessed and
reduced to a ‘sparse’ form stable under commutation, which is

• tridiagonal (for symmetric and skew-symmetric matrices),

• upper Hessenberg (for matrices in sl(n)),

• butterfly form (for symplectic matrices).

Z = V BV −1

Again, we split rows and columns and start computing commutators.

In the following example, we consider a skew-symmetric tridiagonal matrix.

• ’red’ for the p-part, ’blue’ for the k-part

• updated elements are denoted with dots instead of crosses



23/51

JJ
II
J
I

Back

Close

Order 1:

0 2 4 6 8 10 12 14 16 18 20

0

2

4

6

8

10

12

14

16

18

20

nz = 36



24/51

JJ
II
J
I

Back

Close

Order 2:

0 2 4 6 8 10 12 14 16 18 20

0

2

4

6

8

10

12

14

16

18

20

nz = 36



25/51

JJ
II
J
I

Back

Close

Order 3:

0 2 4 6 8 10 12 14 16 18 20

0

2

4

6

8

10

12

14

16

18

20

nz = 2



26/51

JJ
II
J
I

Back

Close

Order 4:

0 2 4 6 8 10 12 14 16 18 20

0

2

4

6

8

10

12

14

16

18

20

nz = 2



27/51

JJ
II
J
I

Back

Close

Order 5:

0 2 4 6 8 10 12 14 16 18 20

0

2

4

6

8

10

12

14

16

18

20

nz = 4



28/51

JJ
II
J
I

Back

Close

Main observations:

• Each extra order fills in two symmetric elements in the p-part.

• The fill-in in the k-part starts only at order 5.

• As long as the matrices P, K are tridiagonal, the commutators cost O(1).

The ‘ugly’ and the ‘bad’ fill-in
• The fill-in in the p-part is ‘ugly’ but not harmful: once once the p-term is computed up to

desired order, one needs only compute the exponential.

• The fill-in in the k-part is much more dangerous: if not taken care of, it propagates and we
lose the whole benefits of our tridiagonalization/reduction to Hessenberg

0 2 4 6 8 10 12 14 16 18 20

0

2

4

6

8

10

12

14

16

18

20

0 2 4 6 8 10 12 14 16 18 20

0

2

4

6

8

10

12

14

16

18

20

0 2 4 6 8 10 12 14 16 18 20

0

2

4

6

8

10

12

14

16

18

20

Therefore the fill-in elements in the k part must be annihilated by, for instance, Givens rotations
(O(1) computations)



29/51

JJ
II
J
I

Back

Close

Order Full Tridiag

2 vector matrix vector matrix

Tridiag. – – n3 n3

order cond. 2
3
n3 2

3
n3 O(n) O(n)

assembly exp 3n2 2n3 6pn 4pn2

total 2
3
n3 22

3
n3 n3 +O(pn) n3 + 4pn2

Order Full Tridiag

3 vector matrix vector matrix

Tridiag. – – n3 n3

order cond. 21
2
n3 21

2
n3 O(n) O(n)

assembly exp 3n2 2n3 6pn 4pn2

total 21
2
n3 41

2
n3 n3 +O(pn) n3 + 4pn2

Order Full Tridiag

4 vector matrix vector matrix

Tridiag. – – n3 n3

order cond. 4n3 4n3 O(n) O(n)

assembly exp 3n2 2n3 6pn 4pn2

total 4n3 6n3 n3 +O(pn) n3 + 4pn2

Comparison of cost of the approximation
of the exponential without (Full) and with
reduction to tridiagonal form (Tridiag) for
splittings of order 2, 3, 4. Only dominant
terms are reported.



30/51

JJ
II
J
I

Back

Close

Matrices in GL(n), SL(n)

z ∈ GL(n) ⇔ det(z) 6= 0 z ∈ SL(n) ⇔ det(z) = 1

Z ∈ gl(n) ⇔ Z is n× n Z ∈ sl(n) ⇔ tr(Z) = 1

• Tridiagonalization possible, but can be unstable.

• Reduce to Hessenberg form by orthogonal transformations.

Order 5 terms for matrices in Hessenberg form:

0 5 10

0

2

4

6

8

10

X
2

0 5 10

0

2

4

6

8

10

X
3

0 5 10

0

2

4

6

8

10

X
4

0 5 10

0

2

4

6

8

10

X
5

0 1 2 3 4 5 6 7 8 9 10 11

0

1

2

3

4

5

6

7

8

9

10

11



31/51

JJ
II
J
I

Back

Close

Symplectic matrices

z ∈ Sp(n) ⇔ zJz> = J

Z ∈( n) ⇔ ZJ + JZ> = O,

where J =

[
On −In

In On

]
• Automorphisms σ(z) = SzS, where S =

[
S On

On S

]

S =


1 0 · · · 0

0 1
. . .

...
...

. . . . . . 0
0 · · · 0 −1

 .

• Symplectic matrices are not necessarily closed under orthogonal transformations, hence cannot
use Hessenberg/Tridiag forms

• Reduce to butterfly form by symplectic transformations: for matrices in the group[
D1 T1

D2 T2

]
,

Di diagonal, Ti symmetric.

• At algebra level: T2 = −D>
1 .



32/51

JJ
II
J
I

Back

Close

Order 5 terms for matrices in butterfly form:

0 2 4 6 8 10 12 14 16 18 20

0

2

4

6

8

10

12

14

16

18

20

nz = 56
0 2 4 6 8 10 12 14 16 18 20

0

2

4

6

8

10

12

14

16

18

20

nz = 4



33/51

JJ
II
J
I

Back

Close

Reduction to tridiagonal/Hessenberg/
butterfly form
• For tridiagonalization/Hessenberg use Householder reflections:

H = I − βvvT , β =
2

‖v‖2

Then,
HZH = Z − βvvT Z − βZvvT + β2 vvT ZvvT︸ ︷︷ ︸

0 if Z is skew

Cost:

– n3 for symmetric/skew-symmetric matrices

– 10
3
n3 for arbitrary matrices



34/51

JJ
II
J
I

Back

Close

• Reduction to butterfly form is done by means of symplectic transformations:

– symplectic Givens/Householder (orthosymplectic),

– symplectic Gauss transformations (not orthogonal)

as proposed by Faßbender, Benner, Watkins (at the group level, for QR-like iterations).

The basic idea of the algorithm is: at each step j,

– bring the jth column of M into the desired form

– bring the (n + j)th row of M into the desired form.

The algorithm uses mostly the orthosymplectic transformations and only few non-orthogonal
symplectic transformations, therefore one can expect relatively good stability properties.

• Cost of reduction to butterfly form

20
2

3
n3

for a matrix of dimension 2n.



35/51

JJ
II
J
I

Back

Close

• symplectic Givens transformations:,

G =


Ik−1

c s
In−k

Ik−1

−s c
In−k

 ,

• symplectic Householder transformations:

H =


Ik−1

Q
Ik−1

Q

 , Q = In−k+1 − βvv>, β =
2

‖v‖2
,

• symplectic Gauss transformations:

L =



Ik−2

c d
c d

In−k

Ik−2

c−1

c−1

In−k


.



36/51

JJ
II
J
I

Back

Close

Comparison of cost of the approximation of the exponential without (Full) and with reduction to
Hessenberg form (Hess) for splittings of order 2, 3, 4. Only dominant terms are reported.

Order Full Hess

2 vector matrix vector matrix

Hessenberg – – 31
3
n3 31

3
n3

order cond. 11
3
n3 11

3
n3 1

3
n3 1

3
n3

assembly exp 3n2 2n3 n2 n3

total 11
3
n3 21

3
n3 32

3
n3 42

3
n3

Order Full Hess

3 vector matrix vector matrix

Hessenberg – – 31
3
n3 31

3
n3

order cond. 5n3 5n3 2
3
n3 2

3
n3

assembly exp 3n2 2n3 n2 n3

total 5n3 7n3 4n3 5n3

Order Full Hess

4 vector matrix vector matrix

Hessenberg – – 31
3
n3 31

3
n3

order cond. 7n3 7n3 n3 n3

assembly exp 3n2 2n3 n2 n3

total 7n3 9n3 41
3
n3 51

3
n3



37/51

JJ
II
J
I

Back

Close

A divide and conquer approach
Consider Z ∈ so(n) and assume that it is already in tridiagonal form. Our point of departure is to
consider an inner automorphism σ(Z) = SZS where

S =

[
In1×n1 On1×n2

On2×n1 −In2×n2

]
,

where n1 + n2 = n: an obvious choice is n1 = bn
2
c, however, other choices are possible, e.g. the

index corresponding to the least off-diagonal element.

With this choice,

K =

[
K1 O
O K2

]
, P =

[
O P1

P2 O

]
.

• both K1 and K2 are tridiagonal

• P1 and P2 have a single nonzero entry, in the lower left and upper right corner respectively.



38/51

JJ
II
J
I

Back

Close

0 20 40

0

10

20

30

40

P

0 20 40

0

10

20

30

40

[P,K]

0 20 40

0

10

20

30

40

[K,[P,K]]

0 20 40

0

10

20

30

40

[P,[P,[P,K]]]

0 20 40

0

10

20

30

40

[K,[K,[P,K]]]

0 20 40

0

10

20

30

40

[K,[P,[P,[P,K]]]]

0 20 40

0

10

20

30

40

[K,[K,[K,[P,K]]]]

0 20 40

0

10

20

30

40

[[P,K],[P,[P,K]]]



39/51

JJ
II
J
I

Back

Close

0 20 40

0

10

20

30

40

K

0 20 40

0

10

20

30

40

[P,[P,K]]

0 20 40

0

10

20

30

40

[P,[P,[P,[P,K]]]]

0 20 40

0

10

20

30

40

[K,[K,[P,[P,K]]]]

0 20 40

0

10

20

30

40

[[P,K],[K,[P,K]]]



40/51

JJ
II
J
I

Back

Close

0 10 20 30 40

0

10

20

30

40

order 2

0 10 20 30 40

0

10

20

30

40

order 3

0 10 20 30 40

0

10

20

30

40

order 4

0 10 20 30 40

0

10

20

30

40

order 5

The following observations form the basis for an efficient divide-and-conquer algorithm to compute
the exponential function in so(n):

• All the commutators, hence X(t) and Y (t) (up to desired order) amount to O(1) flops.

• The exact exponential of X reduces to that of a small matrix and can be evaluated in O(1)
flops.

• Y is a reducible matrix.

• The departure of Y from tridiagonal can be corrected in a small number of Givens rotations.
Because of reducibility, we can act separately on each of the two components, hence the
outcome is two tridiagonal matrices, of size n1×n1 and n2×n2, resp. Again, the cost is O(1)
flops.



41/51

JJ
II
J
I

Back

Close

General matrices

Let Z ∈ gl(n) or sl(n) and suppose that we have already brought it to an upper Hessenberg form.

0 20 40

0

10

20

30

40

[K,[K,[P,K]]]

0 20 40

0

10

20

30

40

P

0 20 40

0

10

20

30

40

[P,K]

0 20 40

0

10

20

30

40

[K,[P,K]]

0 20 40

0

10

20

30

40

[P,[P,[P,K]]]

0 20 40

0

10

20

30

40

[K,[P,[P,[P,K]]]]

0 20 40

0

10

20

30

40

[K,[K,[K,[P,K]]]]

0 20 40

0

10

20

30

40

[[P,K],[P,[P,K]]]

0 20 40

0

10

20

30

40

K

0 20 40

0

10

20

30

40

[P,[P,K]]

0 20 40

0

10

20

30

40

[P,[P,[P,[P,K]]]]

0 20 40

0

10

20

30

40

[K,[K,[P,[P,K]]]]

0 20 40

0

10

20

30

40

[[P,K],[K,[P,K]]]



42/51

JJ
II
J
I

Back

Close

0 10 20 30 40

0

10

20

30

40

order 5

0 10 20 30 40

0

10

20

30

40

order 4

0 10 20 30 40

0

10

20

30

40

order 3

0 10 20 30 40

0

10

20

30

40

order 2



43/51

JJ
II
J
I

Back

Close

Cost of the algorithm

• Computation of the exponentials: We write

X[p] = X1t + · · ·+ Xpt
p

= Pt +
1

2
[P, K]t2 + · · · =

[
O B1

B2 O

]
where p is the order of the approximation. Roughly speaking,

order p ⇔ fill-in of about p � n elements.

Then:

X2m
[p] =

[
V m O
O Wm

]
, X2m+1

[p] =

[
V m O
O Wm

] [
O B1

B2 O

]
, V = B1B2, W = B2B1,

and

exp(X[p]) =

[
C(V ) S(V )B1

S(W )B2 C(W )

]
, C(θ) = cosh θ1/2, S(θ) = sinh θ1/2

costs about n1n2p ≈ 1
4
pn2 for n1 = n2 = n/2.

If n = s2, iterating on matrices of lower dimensions, the cost of computing all the exponentials
reduces to

– 1
2
pn2 on a serial machine

– 1
3
pn2 on a parallel machine



44/51

JJ
II
J
I

Back

Close

• Computation of commutators: 3 “expensive” commutators for order 4, 7 for order 5, amounting
to

– 6

log2(n/2)∑
s=1

2log2(n/2)−s23s ≈ n3 for order 4; 14

log2(n/2)∑
s=1

2log2(n/2)−s23s ≈ 7/3n3 for order 5

(serial machine)

– 6

log2(n/2)∑
s=1

23s ≈ 6/7n3 for order 4; 14

log2(n/2)∑
s=1

23s ≈ 2n3 for order 5 (parallel machine)



45/51

JJ
II
J
I

Back

Close

Error analysis
Although it is always true that

‖eA‖ ≤ e‖A‖,

when dealing with error analysis of exponentials it is useful to consider the logarithmic norm µ of
a matrix,

µ(A) = max

{
µ : µ eigenvalue of

A + A∗

2

}
,

which is the derivative of ‖etA‖: Set ν(t) = ‖etA‖. Then, by differentiation, it is easy verified that

ν ′(t) = µ(A)ν(t), t > 0,

from which we deduce that ν(t) = etµ(A), for all t ≥ 0 (ν(0) = 1). Therefore, the growth or decay
of ‖etA‖ depends on whether the sign of µ(A) is positive or negative.

The logarithmic norm obeys the relations

µ(A)≤ ‖A‖,
µ(A + B)≤ µ(A) + ‖B‖,

‖eαA‖ ≤ eαµ(A),

‖eαA‖ ≥ e−αµ(−A),

with α ≥ 0.



46/51

JJ
II
J
I

Back

Close

Example of an error bound

Assume that Z = P1 + · · ·+ Pm−1 + Km−1. Then, for all t ≥ 0, it is true that

‖E2,m(t)‖ ≤
m−1∑
i=1

(t3

3
αi +

t4

4
γi(t) +

t5

5
δi(t) +

t6

6
ηi(t) +

t7

7
θi(t)

)
× e

Pi−1
k=0(tµ(Pk)+ 1

2
t2‖[Pk,Kk]‖)+ 1

2
t2‖[Pi,Ki]‖ max{et(µ(Pi)+µ(Ki)), etµ(Pi+Ki)},

where the Pi, Ki are the splitted terms of Z and αi, γi(t), . . . , θi(t) are the analytic functions
depending on the norm of commutators of Pi and Ki.

Similar bounds yield for other splittings.

For skew-symmetric matrices:
Given that exp(tZ) and exp(tP ) and exp(tK) are orthogonal, one always has that the trivial global
error bound

E(t) ≤ ‖etZ‖+ ‖etP‖‖etK‖ = 2

as a consequence of the triangle inequality. (The assertion is obviously true also for higher order of
approximants and for a m-term splitting).

Moreover,
Z ∈ so(n) ⇔ µ(Z) = 0,

hence the previous results mean essentially that:

For skew-symmetric matrices, the error is essentially local truncation error (until it reaches the
trivial bound).



47/51

JJ
II
J
I

Back

Close

10-5 100

10-10

100

E
2
(t)

10-5 100

10-20

10-10

100

E
3
(t)

10-5 100

10-10

100

E
2,sym

(t)

10-5 100

10-20

100

E
4,sym

(t)

Estimated (solid line) and real errors (diamonds joined by dashed line) for 50× 50 skew-symmetric
matrices P, K versus t ∈ [10−6, 102].



48/51

JJ
II
J
I

Back

Close

Concluding remarks
• As long as Z = P +K, the GPD splittings are valid indipendently of the automorphism σ and

can be thought as inverse BCH formulas:

BCH formula: exp(tB) exp(tC) = exp(t(B + C) +
1

2
t2[B, C] + · · ·)

inverse BCH: exp(tZ) = exp(X(t)) exp(Y (t))

The advantage is that, if such automorphism σ determining P, K exists, then the factors have
the properties discussed above.

• Symmetric GPD possible,

exp(tZ) = exp(X(t)) exp(Y (t)) exp(X(t))

X(t) = 1
2
Pt + 1

24
[K, [P, K]]t3 − ( 1

1440
[K, [P, [P, [P, K]]

+ 1
240

[K, [K, [K, [P, K]]]] + 1
360

[[P, K], [P, [P, K]]])t5 + · · ·

Y (t) = Kt + 1
24

[P, [P, K]]t3 + ( 1
1920

[P, [P, [P, [P, K]]]]

− 13
1440

[K, [K, [P, [P, K]]]]− 1
240

[[P, K], [K, [P, K]]])t5 + · · ·

and both X(t) and Y (t) expand in odd powers of t only.



49/51

JJ
II
J
I

Back

Close

What we got so far . . .

• Methods that map Lie algebras to the corresponding Lie group

• They are ‘cheap’

– O(n3) with small constant, w.r.t. standard exponential routines.

• We can tackle most groups choosing the appropriate automorphisms

• High order is easily achievable

– Once the sparse form is obtained, the commutators that give the order conditions are
cheap to compute O(1)

• Easy scaling and squaring:

exp(Z) = Q exp(Z̃)Q>, Z̃ sparse

Apply scaling and squaring to exp(Z̃): Divide Z̃ by 2j, compute splitting to desired order,
apply to the vector(s) j-times. The exponentials×vector are O(n2).

Things that need to be explored further. . .

• Symmetric GPD

• Divide and conquer



50/51

JJ
II
J
I

Back

Close

• Stiff problems

– exp(Z) = exp(tr(Z)
n

) exp(Z − tr(Z)
n

I)

– Commutators may introduce extra stiffness

– Commutator-free methods, Exponential Time Differentiation (ETD) methods

• Different choices of automorphisms (or, simply P, K) that lead to different splittings

– Example: Krylov. exp(A)v ≈ βVm exp(Hm)e1.

Choose dσv(A) = (I − VmV >
m )>A(I − VmV >

m ). Then

A = P + K,

has the property that

exp(K)v = v, exp(P ) = βVm exp(Hm)e1,

hence,
βVm exp(Hm)e1 = exp(P ) exp(K)v.

The commutators ‘destroy’ the approximation (order theory recovered, worse approxima-
tion).

• Very large problems (for which O(n3) is not feasible): can something a la’ Krylov be done?



51/51

JJ
II
J
I

Back

Close

References
On the theory of GPD:

Munthe-Kaas, Quispel and Zanna (2001), ’Generalized polar decompositions on Lie groups with involutive automor-
phisms’, Found. Comp. Math. 1(3), 297–324.
Zanna (2000) ’Recurrence relations and convergence theory for the generalized polar decomposition on Lie groups’,
to appear in Math. Comp.
Lawson (1994), ’Polar and Ol’shanskii decompositions’, J. Reine Angew. Math. 448, 191–219.

GPD for the matrix exponential:

Zanna and Munthe-Kaas (2002), ’Generalized polar decompositions for the approximation of the matrix exponential’,
SIAM J. Num. Anal. 23(3), 840–862.
Iserles and Zanna (2002), ’Efficient computation of the matrix exponential by generalized polar decompositions’, to
appear in SIAM J. Num. Anal.

SR for symplectic matrices:

Faßbender (2000), ’The parametrized SR algorithm for symplectic butterfly matrices’, Math. Comp. 70(236), 1515–
1541.

Stability and error analysis:

Zanna (2001), ‘Error analysis for exponential splitting based on Generalized Polar Decompositions’, Report in Infor-
matics 220, University of Bergen, Norway.
Iserles and Zanna (2003), ‘On the spectra of certain matrices generated by involutive automorphisms’, to appear in
SIAM J. Matrix Anal.
Sheng (1993), ‘Global error estimates for exponential splitting’, IMA J. Numer. Anal., 14, 27–57.

General theory for computation of exp:

Moler and van Loan (2003), ’Nineteen dubious ways to compute the matrix exponential — 25 years later’, SIAM
Rev.
Golub and van Loan (1989), ’Matrix Computation’, John Hopkins, Baltimore.


	Computation of the Matrix Exponential  by Generalized Polar Decomposition
	Generalized polar decompositions
	Approximation of the matrix exponential
	Faster algorithms
	Reduction to tridiagonal/Hessenberg/  butterfly form
	A divide and conquer approach
	Error analysis
	Concluding remarks

