Computation of the Matrix Exponential
 by
 Generalized Polar Decomposition

Bari, 3 Dicembre 2003

Antonella Zanna
University of Bergen, Norway
email: anto@ii.uib.no
http://www.ii.uib.no/~anto

Example of Lie-group methods

- Order-four Gauss-Legendre:

$$
\begin{aligned}
F_{1} & =\frac{1}{4} A_{1}+\left(\frac{1}{4}-\frac{\sqrt{3}}{6}\right) A_{2}+\left(\frac{5}{144}-\frac{\sqrt{3}}{48}\right)\left[A_{1}, A_{2}\right], \\
A_{1} & =h A\left(t_{n}+c_{1} h, \operatorname{expm}\left(F_{1}\right) Y_{n}\right), \\
F_{2} & =\left(\frac{1}{4}+\frac{\sqrt{3}}{6}\right) A_{1}+\frac{1}{4} A_{2}-\left(\frac{5}{14}+\frac{\sqrt{3}}{48}\right)\left[A_{1}, A_{2}\right], \\
A_{2} & =h A\left(t_{n}+c_{2} h, \operatorname{expm}\left(F_{2}\right) Y_{n}\right), \\
\Theta & =\frac{1}{2}\left(A_{1}+A_{2}\right)-\frac{\sqrt{3}}{12}\left[A_{1}, A_{2}\right], \\
Y_{n+1} & =\operatorname{expm}(\Theta) Y_{n},
\end{aligned}
$$

where $c_{i}=\frac{1}{2} \pm \frac{\sqrt{3}}{6}, i=1,2$.

- Order-four Gauss-Lobatto:

$$
\begin{aligned}
F_{1}= & \boldsymbol{O} \\
A_{1}= & h A\left(t_{n}, Y_{n}\right) \\
F_{2}= & \frac{5}{24} A_{1}+\frac{1}{3} A_{2}-\frac{1}{24} A_{3} \\
& -\left(\frac{11}{480}\left[A_{1}, A_{2}\right]+\frac{5}{1152}\left[A_{1}, A_{3}\right]+\frac{1}{144}\left[A_{2}, A_{3}\right]\right) \\
A_{2}= & h A\left(t_{n}+\frac{1}{2} h, \operatorname{expm}\left(F_{2}\right) Y_{n}\right) \\
F_{3}= & \frac{1}{6} A_{1}+\frac{2}{3} A_{2}+\frac{1}{6} A_{3}-\left(\frac{1}{15}\left[A_{1}, A_{2}\right]+\frac{1}{60}\left[A_{1}, A_{3}\right]+\frac{1}{15}\left[A_{2}, A_{3}\right]\right) \\
A_{3}= & h A\left(t_{n}+h, \operatorname{expm}\left(F_{3}\right) Y_{n}\right) \\
\Theta= & \frac{1}{6} A_{1}+\frac{2}{3} A_{2}+\frac{1}{6} A_{3}-\left(\frac{1}{15}\left[A_{1}, A_{2}\right]+\frac{1}{60}\left[A_{1}, A_{3}\right]+\frac{1}{15}\left[A_{2}, A_{3}\right]\right) \\
Y_{n+1}= & \operatorname{expm}(\Theta) Y_{n}
\end{aligned}
$$

Relaxing the collocation conditions, it is possible to obtain explicit methods.

- An explicit order-three scheme:

$$
\begin{aligned}
A_{1} & =h A\left(t_{n}, Y_{n}\right) \\
A_{2} & =h A\left(t_{n}+\frac{1}{2} h, \operatorname{expm}\left(A_{1}\right) Y_{n}\right) \\
A_{3} & =h A\left(t_{n}+h, \operatorname{expm}\left(-A_{1}+2 A_{2}\right) Y_{n}\right) \\
\Theta & =\frac{1}{6} A_{1}+\frac{2}{3} A_{2}+\frac{1}{6} A_{3}-\left[A_{1}-A_{3}, \frac{1}{15} A_{2}+\frac{1}{60} A_{3}\right], \\
Y_{n+1} & =\operatorname{expm}(\Theta) Y_{n}
\end{aligned}
$$

Motivations

- Integration methods using exponentials in Gl need fast algorithms that approximate the matrix exponential

why?

- The numerical methods require repeated computations of exponentials/tangent maps
- Exact computation is not an issue - but it is crucial that the exponential approximation is in the Lie group.

why?

- The order is "decided" from the underlying ODE method
- Approximation from the Lie algebra to the Lie group is needed for intrinsic methods

1. Series expansions:

Taylor: $\quad \exp (A)=I+A+\frac{A^{2}}{2!}+\cdots$
Padé: $\quad \exp (A) \approx\left[D_{p q}(A)\right]^{-1} N_{p q}(A)$
2. ODE methods: Too expensive
3. Polynomial methods:
characteristic polynomial

$$
c(z)=\operatorname{det}(z I-A)=\prod_{i=0}^{r}\left(z-\lambda_{i}\right)^{\alpha_{i}}
$$

$\alpha_{i}:=$ alg. mult. of λ_{i}.
minimal polynomial

$$
p(z)=\prod_{i=1}^{r}\left(z-\lambda_{i}\right)^{j_{i}}
$$

$j_{i}:=\operatorname{dim}\left(J_{i}\right)$, largest Jordan block for λ_{i}.

$$
f(z)=q(z) d(z)+r(z)
$$

$$
d(z)=c(z), p(z) \text { and } \operatorname{deg}(r)<\operatorname{deg}(d) .
$$

4. Matrix decompositions: $\exp (A)=S \exp (B) S^{-1}$ Requires Schur decompositions, for repeated computations of the same exponential.

5. Splitting methods:

$$
\exp (A)=\lim _{m \rightarrow \infty}\left(\exp \left(\frac{B}{m}\right) \exp \left(\frac{C}{m}\right)\right)^{m}
$$

$$
A=B+C, m=2^{j}
$$

6. Krylov methods:

$$
\exp (A) \mathbf{v}=\beta V_{m} \exp \left(H_{m}\right) \mathbf{e}_{1}
$$

where $\beta=\|\mathbf{v}\|, \mathbf{v}_{1}=\mathbf{v} / \beta$, V_{m} is a basis of $\mathcal{K}_{m}=\left\{\mathbf{v}_{1}, A \mathbf{v}_{1}, \ldots, A^{m-1} \mathbf{v}_{1}\right\}$ and H_{m} upper Hessenberg.

Computation of the matrix exponential by GPDs

- These methods can be thought at splitting methods

$$
\exp (A) \approx \exp (B) \exp (C), \quad B+C=A
$$

- An introduction to the theory of GPD
- Application to the computation of exp: A first approach with full matrices
- Faster methods based on reduction to banded form
- A domain-decomposition approach for large problems
- Error analysis
- Some concluding remarks

Generalized polar decompositions

Ingredients:

- A Lie group (G, \cdot)
- An involutive automorphism $\sigma: G \rightarrow G$, (σ invertible, 1-to-1)

$$
\sigma(x y)=\sigma(x) \sigma(y), \quad \sigma^{2}(x)=x, \quad \forall x, y \in G
$$

What we can do with them:

- We can factorize

$$
z=x y \quad \text { GPD }
$$

where

$$
\sigma(x)=x^{-1}
$$

and

$$
\sigma(y)=y
$$

where x, y are appropriate group elements which are determined by z and σ.
In particular, if z is sufficiently close to the group identity $e, z=\exp (t Z)$, it is true that

$$
\exp (t Z)=\exp (X(t)) \exp (Y(t))
$$

and for t sufficiently small, the functions $X(t)$ and $Y(t)$ are uniquely determined.

Properties of the decomposition: at the group level

$$
z=\exp (t Z)=\exp (X(t)) \exp (Y(t))=x y \quad \text { GPD of } z
$$

with $\sigma(x)=x^{-1}, \sigma(y)=y$.
Consider the sets

$$
\begin{array}{lr}
G^{\sigma}=\{z \in G: \sigma(z)=z\} & \text { fixed points of } \sigma \\
G_{\sigma}=\left\{z \in G: \sigma(z)=z^{-1}\right\} & \text { anti-fixed points of } \sigma
\end{array}
$$

- G^{σ} has the structure of a group:

$$
z_{1}, z_{2} \in G^{\sigma} \quad \Rightarrow \quad z_{1} z_{2} \in G^{\sigma}, \quad z_{1}^{-1} \in G^{\sigma}
$$

- G_{σ} has the structure of a symmetric space,

$$
z_{1}, z_{2} \in G_{\sigma} \quad \Rightarrow \quad z_{1} \star z_{2}=z_{1} z_{2}^{-1} z_{1} \in G_{\sigma} .
$$

At the algebra level. .

Assume $z=\exp (t Z)$, where $Z \in \mathfrak{g}$, the Lie-algebra of G. The group automorphism σ induces a Lie-algebra map

$$
\mathrm{d} \sigma(Z)=\left.\frac{\mathrm{d}}{\mathrm{~d} t}\right|_{t=0} \sigma(\exp (t Z)), \quad Z \in \mathfrak{g}
$$

which is also an involutive automorphism since

$$
\mathrm{d} \sigma([A, B])=[\mathrm{d} \sigma(A), \mathrm{d} \sigma(B)], \quad A, B \in \mathfrak{g}, \quad \mathrm{~d} \sigma^{2}=\mathrm{id},
$$

We denote

$$
\begin{aligned}
\mathfrak{k} & =\{Z \in \mathfrak{g}: \mathrm{d} \sigma(Z)=Z\} \\
\mathfrak{p} & =\{Z \in \mathfrak{g}: \mathrm{d} \sigma(Z)=-Z\}
\end{aligned} \quad \text { subalgebra of } \mathfrak{g} .
$$

The subspaces \mathfrak{p} and \mathfrak{k} obey important inclusion properties:

$$
\begin{aligned}
& {[\mathfrak{k}, \mathfrak{k}] \subseteq \mathfrak{k},} \\
& {[\mathfrak{k}, \mathfrak{p}] \subseteq \mathfrak{p},} \\
& {[\mathfrak{p}, \mathfrak{p}] \subseteq \mathfrak{k},}
\end{aligned}
$$

$$
\begin{aligned}
& (+1) \times(+1)=(+1) \\
& (+1) \times(-1)=(-1) \\
& (-1) \times(-1)=(+1) .
\end{aligned}
$$

It is true that

$$
\mathfrak{g}=\mathfrak{p} \oplus \mathfrak{k},
$$

in other words, every $Z \in \mathfrak{g}$ can be uniquely written as

$$
Z=P+K, \quad \mathrm{~d} \sigma(P)=-P, \quad \mathrm{~d} \sigma(K)=K
$$

where

$$
P=\frac{1}{2}(Z-\mathrm{d} \sigma(Z)), \quad K=\frac{1}{2}(Z+\mathrm{d} \sigma(Z))
$$

In summary:

Group level	Algebra level
$G^{\sigma}:=\{z \in G: \sigma(z)=z\}$, subgrp	$\mathfrak{k}=\{Z \in \mathfrak{g}: \mathrm{d} \sigma(Z)=Z\}$, subalg.
$G_{\sigma}:=\left\{z \in G: \sigma(z)=z^{-1}\right\}$, symm. sp.	$\mathfrak{p}=\{Z \in \mathfrak{g}: \mathrm{d} \sigma(Z)=-Z\}$, LTS
$G=G_{\sigma} \cdot G^{\sigma}$	$\mathfrak{g}=\mathfrak{p} \oplus \mathfrak{k}$
$z=x y$	$Z=P+K$
$x=\exp (X(t)) \in G_{\sigma}$	$X(t)=\sum_{i=1}^{\infty} X_{i} t^{i} \in \mathfrak{p}, \quad X_{i} \in \mathfrak{p}$
$y=\exp (Y(t)) \in G^{\sigma}$	$Y(t)=\sum_{i=1}^{\infty} Y_{i} t^{i} \in \mathfrak{k}, \quad Y_{i} \in \mathfrak{k}$

The decomposition

$$
Z=P+K
$$

completely determines the functions $X(t)$ and $Y(t)$:

$$
\begin{aligned}
X= & P t-\frac{1}{2}[P, K] t^{2}-\frac{1}{6}[K,[P, K]] t^{3} \\
& +\left(\frac{1}{24}[P,[P,[P, K]]]-\frac{1}{24}[K,[K,[P, K]]]\right) t^{4} \\
& +\left(\frac{7}{360}[K,[P,[P,[P, K]]]]-\frac{1}{120}[K,[K,[K,[P, K]]]]-\frac{1}{180}[[P, K],[P,[P, K]]]\right) t^{5} \\
& +\mathcal{O}\left(t^{6}\right) \\
Y= & K t-\frac{1}{12}[P,[P, K]] t^{3}+\left(\frac{1}{120}[P,[P,[P,[P, K]]]]\right. \\
& \left.+\frac{1}{720}[K,[K,[P,[P, K]]]]-\frac{1}{240}[[P, K],[K,[P, K]]]\right) t^{5}+\mathcal{O}\left(t^{7}\right) .
\end{aligned}
$$

In general, all the terms in the expansion of $X(t)$ and $Y(t)$ are obtained by explicit recurrence relations in terms of P and K.

Examples

- Classical polar decomposition:

$$
\begin{aligned}
\sigma(z) & =z^{-\top}, \quad z \in G \\
\mathrm{~d} \sigma(Z) & =-Z^{\top}, \quad Z \in \mathfrak{g}
\end{aligned}
$$

The splitting:

$$
\begin{aligned}
P & =\frac{1}{2}(Z-\mathrm{d} \sigma(Z))=\frac{1}{2}\left(Z+Z^{\top}\right), & \text { symm. matrix } \\
K & =\frac{1}{2}(Z+\mathrm{d} \sigma(Z))=\frac{1}{2}\left(Z-Z^{\top}\right), & \text { skew-symm. matrix } \\
Z & =P+K & \\
\exp (Z) & \approx \exp (P) \exp (K) \quad \text { to first order } &
\end{aligned}
$$

we recover one of the splitting methods described in "19 dubious ways...".

- In this case, $\exp (t Z)=\exp (X(t)) \exp (Y(t))$ is the continuous analytic version of the classical polar decomposition of a matrix as the product of a symmetric PD matrix $(\exp (X(t)))$ and an orthogonal matrix $(\exp (Y(t)))$.
- Low-rank decompositions: Let $S=\operatorname{diag}(1,1,1 \ldots,-1)$ and

$$
\begin{aligned}
\sigma(z) & =S z S^{-1}, \quad z \in G \\
\mathrm{~d} \sigma(Z) & =S Z S^{-1}, \quad Z \in \mathfrak{g}
\end{aligned}
$$

The splitting:

$$
P=\frac{1}{2}(Z-\mathrm{d} \sigma(Z))=\left[\begin{array}{ccc|c}
0 & \cdots & 0 & z_{1, n} \\
\vdots & 0 & \cdots & \vdots \\
0 & \vdots & \ddots & z_{n-1,1} \\
\hline z_{n, 1} & \cdots & z_{n, n-1} & 0
\end{array}\right], \quad \text { rank-2 matrix }
$$

$$
K=\frac{1}{2}(Z+\mathrm{d} \sigma(Z))=\left[\begin{array}{ccc|c}
z_{1,1} & \cdots & z_{1, n-1} & 0 \\
\vdots & \cdots & \vdots & \\
z_{n-1,1} & \vdots & z_{n-1, n-1} & 0 \\
\hline 0 & \cdots & 0 & z_{n, n}
\end{array}\right], \quad \text { block diagonal matrix }
$$

$$
Z=P+K
$$

$\exp (Z) \approx \exp (P) \exp (K)$ to first order

Approximation of the matrix exponential

Recall that by GPD:

$$
\exp (t Z)=\exp (X(t)) \exp (Y(t))
$$

where

$$
\begin{aligned}
X= & P t-\frac{1}{2}[P, K] t^{2}-\frac{1}{6}[K,[P, K]] t^{3} \\
& +\left(\frac{1}{24}[P,[P,[P, K]]]-\frac{1}{24}[K,[K,[P, K]]]\right) t^{4} \\
& +\left(\frac{7}{360}[K,[P,[P,[P, K]]]]-\frac{1}{120}[K,[K,[K,[P, K]]]]-\frac{1}{180}[[P, K],[P,[P, K]]]\right) t^{5} \\
& +\mathcal{O}\left(t^{6}\right) \\
Y= & K t-\frac{1}{12}[P,[P, K]] t^{3}+\left(\frac{1}{120}[P,[P,[P,[P, K]]]]\right. \\
& \left.+\frac{1}{720}[K,[K,[P,[P, K]]]]-\frac{1}{240}[[P, K],[K,[P, K]]]\right) t^{5}+\mathcal{O}\left(t^{7}\right) .
\end{aligned}
$$

and

$$
Z=P+K, \quad P=\frac{1}{2}(Z-\mathrm{d} \sigma(Z)), \quad K=\frac{1}{2}(Z+\mathrm{d} \sigma(Z)) .
$$

A splitting method that approximates $\exp (t Z)$:

- Choose an appropriate σ.
- Split $Z=P+K$.
- Truncate the expansion

$$
X(t)=P t+\frac{1}{2} t^{2}[P, K]+\cdots, \quad Y(t)=K t-\frac{1}{12} t^{3}[P,[P, K]]+\cdots
$$

to desired order.

- Compute the exponential of $X(t) \in \mathfrak{p}$
- Set $Z_{1}=Y(t)$
- Repeat

In general, we iterate the procedure on the reduced space until we get a space of low dimension. At the end,

$$
\exp (t Z) \approx \exp \left(X^{[1]}\right) \exp \left(X^{[2]}\right) \cdots \exp \left(X^{[m]}\right) \exp \left(Y^{[m]}\right)
$$

What are good choices of σ ?

- The splitted factors should be easy to compute.
- Commutators should have a low complexity.
- Exponential/commutators of splitted parts should be easy to compute (either approximately or preferably exactly).

A good choice is splitting in matrices of low rank, for instance, borderded matrices: take

$$
S=\left[\begin{array}{ccc|c}
1 & 0 & \cdots & 0 \\
0 & 1 & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
\hline 0 & \cdots & 0 & -1
\end{array}\right], \quad \mathrm{d} \sigma(Z)=S Z S
$$

then

$$
P=\left[\begin{array}{ccc|c}
0 & \cdots & 0 & z_{1, n} \\
\vdots & 0 & \cdots & \vdots \\
0 & \vdots & \ddots & z_{n-1,1} \\
\hline z_{n, 1} & \cdots & z_{n, n-1} & 0
\end{array}\right], \quad K=\left[\begin{array}{ccc|c}
z_{1,1} & \cdots & z_{1, n-1} & 0 \\
\vdots & \cdots & \vdots & \\
z_{n-1,1} & \vdots & z_{n-1, n-1} & 0 \\
\hline 0 & \cdots & 0 & z_{n, n}
\end{array}\right] .
$$

Such automorphisms work for $\mathrm{GL}(n), \mathrm{SL}(n), \mathrm{SO}(n)$.
Note that the commutators appearing in the expansion can be computed in $\mathcal{O}\left(n^{2}\right)$ computations (n^{3} if the procedure is iterated for matrices of decreasing dimension)

An Euler-Rodrigues like formula for bordered matrices

The exponential of bordered matrices can be computed exactly by means of a formula similar to the Euler-Rodrigues formula for computing the exponential of a 3×3 skew-symmetric matrices.

Assume that $A \in \mathfrak{p}$ is of the form

$$
A=\left[\begin{array}{c|c}
O & \mathbf{a} \tag{3.1}\\
\hline \mathbf{b}^{T} & 0
\end{array}\right], \quad \mathbf{a}, \mathbf{b} \in \mathbb{R}^{n}
$$

Then,

$$
\exp (A)= \begin{cases}I+\frac{\sinh \theta}{\theta} A+\frac{1}{2}\left(\frac{\sinh (\theta / 2)}{\theta / 2}\right)^{2} A^{2}, & \text { if } \mathbf{a}^{T} \mathbf{b}>0, \theta=\sqrt{\mathbf{a}^{T} \mathbf{b}} \\ I+A+\frac{1}{2} A^{2}, & \text { if } \mathbf{a}^{T} \mathbf{b}=0, \\ I+\frac{\sin \theta}{\theta} A+\frac{1}{2}\left(\frac{\sin (\theta / 2)}{\theta / 2}\right)^{2} A^{2}, & \text { if } \mathbf{a}^{T} \mathbf{b}<0, \theta=\sqrt{-\mathbf{a}^{T} \mathbf{b}}\end{cases}
$$

where

$$
A^{2}=\left[\begin{array}{c|c}
\mathbf{a b}^{T} & \mathbf{0} \\
\hline \mathbf{0}^{T} & \theta^{2}
\end{array}\right]
$$

Minimal polynomial:

$$
p(z)=\lambda\left(\lambda^{2}-\mathbf{a}^{\top} \mathbf{b}\right), \quad \operatorname{deg}(p)=3
$$

Characteristic polynomial

$$
c(z)=\lambda^{n-2}\left(\lambda^{2}-\mathbf{a}^{\top} \mathbf{b}\right), \quad \operatorname{deg}(c)=n
$$

Note that $\exp (A)$ never needs being computed explicitely but always applied to a vector/matrix \mathbf{v}.

$$
\left[\begin{array}{c}
\mathbf{w}_{k} \\
w
\end{array}\right]=\exp (A) \mathbf{v}=\exp (A)\left[\begin{array}{c}
\mathbf{v}_{k} \\
v
\end{array}\right]=\left[\begin{array}{c}
\mathbf{v}_{k}+\zeta_{1} \mathbf{a} \\
\zeta_{2}
\end{array}\right]
$$

where

$$
\begin{aligned}
& \zeta_{1}=\left[\eta_{1} v+\eta_{2}\left(\mathbf{b}^{\top} \mathbf{v}_{k}\right)\right], \\
& \zeta_{2}=(1+\theta) v+\left(\mathbf{b}^{\top} \mathbf{v}_{k}\right) .
\end{aligned}
$$

Cost of the computation (including both addition and multiplication) of the 'Euler-Rodrigues' exponential. The (k, k) column corresponds to the case when \mathbf{a}, \mathbf{b} are full, the (k, p) corresponds to the case when \mathbf{a} is full while only the last p components of \mathbf{b} are nonzero and finally the (p, p) column corresponds to both \mathbf{a} and \mathbf{b} having only the last p components nonzero.

Cost of $\exp (A)$	(k, k)	(k, p)	(p, p)
$\mathbf{a}^{\top} \mathbf{b}$	$2 k$	$2 p$	$2 p$
$\mathbf{b}^{\top} \mathbf{v}_{k}$	$2 k$	$2 p$	$2 p$
$\zeta_{1} \mathbf{a}$	k	k	p
\mathbf{w}_{k}	k	k	p
total, stage k	$6 k$	$2 k+4 p$	$6 p$
total, summing $1 \leq k \leq n$ (vector)	$3 n^{2}$	$n^{2}+4 p n$	$6 p n$
matrix $(n$ vectors $)$	$2 n^{3}$	$n^{3}+2 p n^{2}$	$4 p n^{2}$

On the computation of commutators

Our first observation is that the involutions S are usually chosen so that $P=\Pi_{\mathfrak{p}}(Z)$ has low rank, hence only just a few nonzero eigenvalues.

- Use the theory of minimal polynomial, the least degree monic polynomial such that

$$
p\left(\operatorname{ad}_{A}\right)=0
$$

Lemma 3.1 Consider the bordered matrix A in (3.1) with $\mathrm{ab}^{\top} \neq O$. The minimal polynomial of ad_{A} is

$$
\begin{align*}
p(\lambda) & =\lambda(\lambda-2 \theta)(\lambda+2 \theta)(\lambda-\theta)(\lambda+\theta) \tag{3.2}\\
& =\lambda^{5}-5 \mathbf{b}^{\top} \mathbf{a} \lambda^{3}+4\left(\mathbf{b}^{\top} \mathbf{a}\right)^{2} \lambda
\end{align*}
$$

where $\theta=\sqrt{\mathbf{b}^{\top} \mathbf{a}}$. If $\mathbf{a b}^{\top}=O$, and \mathbf{a} and \mathbf{b} are not both zero, then the minimal polynomial is

$$
\begin{equation*}
p(\lambda)=\lambda^{3} \tag{3.3}
\end{equation*}
$$

Proof. If A has distinct eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}$ with algebraic multiplicities $r_{1}, r_{2}, \ldots, r_{m}$ respectively, the minimal polynomial of A has the form

$$
q(\lambda)=\prod_{i=1}^{m}\left(\lambda-\lambda_{i}\right)^{g_{i}}
$$

where g_{i} is the order of the largest Jordan block of A corresponding to the eigenvalue λ_{i}.

Let us assume first that $\mathbf{b}^{\top} \mathbf{a} \neq 0$. Assume that $\mathbf{v}=\left[\begin{array}{l}\mathbf{v}_{1} \\ v_{2}\end{array}\right]$ is eigenvector of A corresponding to the eigenvalue λ. Imposing $A \mathbf{v}=\lambda \mathbf{v}$, we have

$$
\begin{aligned}
\mathbf{a} v_{2} & =\lambda \mathbf{v}_{1} \\
\mathbf{b}^{\top} \mathbf{v}_{1} & =\lambda v_{2}
\end{aligned}
$$

and deduce immediately that the eigenvalues of A are $\lambda= \pm \theta= \pm \sqrt{\mathbf{b}^{\top} \mathbf{a}}$ and $\lambda=0$ with algebraic multiplicities one, one, and $n-2$ respectively. It is easily verified that these are also their geometric multiplicities: for $\lambda= \pm \theta$, eigenvectors are of the form $[\mathbf{a}, \pm 1]^{\top}$; for the zero eigenvalues, eigenvectors are of the form $\left[\mathbf{v}_{1}, 0\right]^{\top}, \mathbf{0} \neq \mathbf{v}_{1} \in R^{n-1}$, satisfying $\mathbf{b}^{\top} \mathbf{v}_{1}=0$, furthermore, it is possible to find $n-2$ of those that are linearly independent.
Since the eigenvalues and eigenvectors of ad A_{A} are the form $\lambda_{i}-\lambda_{j}$ and $\mathbf{y}_{i}^{\top} \mathbf{x}_{j}$ respectively, the λ_{i} s being eigenvalues of A with left and right eigenvector \mathbf{y}_{i} and \mathbf{x}_{i} respectively, we deduce that ad A_{A} has eigenvalues

$$
\lambda= \pm 2 \theta, \quad \lambda= \pm \theta
$$

with algebraic/geometric multiplicities one each, and

$$
\lambda=0
$$

with algebraic and geometric multiplicity $n^{2}-4$. This implies that all Jordan blocks have size one, from which it follows directly that the minimal polynomial of ad_{A} is of the form (3.2).
Next, if $\theta=0$ but $\mathbf{a b}^{\top} \neq O$, namely $\mathbf{a}, \mathbf{b} \neq \mathbf{0}$, the eigenvalues of A, that we write as $\left[\mathbf{v}_{1}, v_{2}\right]^{\top}$, must obey the conditions

$$
\begin{aligned}
\mathbf{a} v_{2} & =\mathbf{0} \\
\mathbf{b}^{\top} \mathbf{v}_{1} & =0
\end{aligned}
$$

Since $\mathbf{a} \neq 0$, it must necessarily be $v_{2}=0$. Therefore eigenvalues must be of the form $\left[\mathbf{v}_{1}, 0\right]$. Recall that \mathbf{v}_{1} has $n-1$ entries ($n-1$ free parameters) while the second equation $\mathbf{b}^{\top} \mathbf{v}_{1}=0$ gives only a linear constraint: This mean that we can find only $n-2$ linearly independent eigenvalues and two further linearly independent generalized eigenvalues. In terms of Jordan blocks, this means that A has a Jordan block of the form

$$
J(0)=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

hence λ^{3} is the minimal polynomial of A and, as a consequence, $A^{3}=O$. Passing to the adjoint operator ad_{A}, recall that, for an arbitrary matrix C,

$$
\begin{equation*}
\operatorname{ad}_{A}^{k} C=\sum_{i=0}^{k}\binom{k}{i}(-1)^{k-i} A^{i} C A^{k-i}, \quad k=1,2, \ldots \tag{3.4}
\end{equation*}
$$

Clearly, $\operatorname{ad}_{A}^{5} C=O$ since in all terms there appears a power A^{i} with $i \geq 3$. For lower order powers, there are always terms of the type $A^{i} C A^{k-i}$ where $i, k-i \leq 2$. This means that it is always possible to find a matrix C for which at least one of terms does not vanish. Hence the minimal polynomial of ad_{A} is

$$
p(\lambda)=\lambda^{5}
$$

Finally, in the case when either $\mathbf{a}=\mathbf{0}$ or $\mathbf{b}=\mathbf{0}$, by direct computation,

$$
A^{2}=O
$$

hence the minimal polynomial of A is λ^{2}. Insofar as ad_{A} is concerned, the first power to vanish in (3.4) is ad_{A}^{3}, and no lower power vanishes for arbitrary matrices C. Hence the minimal polynomial

$$
p(\lambda)=\lambda^{3}
$$

This completes the proof of the lemma.
Theorem 3.2 Assume that the matrix A is of the form (3.1). Then, for every $k=1,2, \ldots$, commutators by A can be computed as
when $\theta=\sqrt{\mathbf{b}^{\top} \mathbf{a}} \neq 0$, and

$$
\begin{align*}
C_{1}-C_{2} & =\frac{1}{6}\left(-\frac{\mathrm{ad}_{A}}{\theta}+\frac{\mathrm{ad}_{A}^{3}}{\theta^{3}}\right) \\
C_{3}-C_{4} & =\frac{1}{3}\left(\frac{4 \mathrm{ad}_{A}}{\theta}-\frac{\mathrm{ad}_{P}^{3}}{\theta^{3}}\right) \\
C_{1}+C_{2} & =\frac{1}{12}\left(-\frac{\mathrm{ad}_{A}^{2}}{\theta^{2}}+\frac{\mathrm{ad}_{A}^{4}}{\theta^{4}}\right) \tag{3.6}\\
C_{3}+C_{4} & =\frac{1}{3}\left(\frac{4 \mathrm{ad}_{A}^{2}}{\theta^{2}}-\frac{\operatorname{ad}_{A}^{4}}{\theta^{4}}\right)
\end{align*}
$$

If $\theta=0$ but $\mathbf{a b}^{\top} \neq O$, then

$$
\operatorname{ad}_{A}^{k}=O, \quad k=5,6,7, \ldots
$$

If $\theta=0$ and either \mathbf{a} or \mathbf{b} is a zero vector, then

$$
\operatorname{ad}_{A}^{k}=O, \quad k=3,4,5, \ldots
$$

Proof. It follows from the minimal polynomial (3.2).

Complexity of the algorithms for full matrices:

Order	$\mathfrak{s l}(n), \mathfrak{s o}(p, q)$		$\mathfrak{s o}(n)$	
2	vector	matrix	vector	matrix
splitting	$1 \frac{1}{3} n^{3}$	$1 \frac{1}{3} n^{3}$	$\frac{2}{3} n^{3}$	$\frac{2}{3} n^{3}$
assembly exp	$3 n^{2}$	$2 n^{3}$	$3 n^{2}$	$2 n^{3}$
total	$1 \frac{1}{3} n^{3}$	$3 \frac{1}{3} n^{3}$	$\frac{2}{3} n^{3}$	$2 \frac{2}{3} n^{3}$

Order	$\mathfrak{s l}(n), \mathfrak{s o}(p, q)$		$\mathfrak{s o}(n)$	
$3(4)$	vector	matrix	vector	matrix
splitting	$5(7) n^{3}$	$5(7) n^{3}$	$2 \frac{1}{2}(4) n^{3}$	$2 \frac{1}{2}(4) n^{3}$
assembly exp	$3 n^{2}$	$2 n^{3}$	$3 n^{2}$	$2 n^{3}$
total	$5(7) n^{3}$	$7(9) n^{3}$	$2 \frac{1}{2}(4) n^{3}$	$4 \frac{1}{2}(6) n^{3}$

These algorithms have a complexity that is comparable with other classical algorithms, like for instance diagonal Padé approximants.

Feasible algorithms are up to order 4, because for higher order the complexity becomes larger (although still $\mathcal{O}\left(n^{3}\right)$).

Faster algorithms

Combine Gl and classical Linear Algebra techniques

The main difference with the approach presented before is that the matrix Z is preprocessed and reduced to a 'sparse' form stable under commutation, which is

- tridiagonal (for symmetric and skew-symmetric matrices),
- upper Hessenberg (for matrices in $\mathfrak{s l}(n)$),
- butterfly form (for symplectic matrices).

$$
Z=V B V^{-1}
$$

Again, we split rows and columns and start computing commutators.
In the following example, we consider a skew-symmetric tridiagonal matrix.

- 'red' for the \mathfrak{p}-part, 'blue' for the \mathfrak{k}-part
- updated elements are denoted with dots instead of crosses

Order 1:

Order 2:

Order 3:

Order 4:

Order 5:

Main observations:

- Each extra order fills in two symmetric elements in the \mathfrak{p}-part.
- The fill-in in the \mathfrak{k}-part starts only at order 5 .
- As long as the matrices P, K are tridiagonal, the commutators $\operatorname{cost} \mathcal{O}(1)$.

The 'ugly' and the 'bad' fill-in

- The fill-in in the \mathfrak{p}-part is 'ugly' but not harmful: once once the \mathfrak{p}-term is computed up to desired order, one needs only compute the exponential.
- The fill-in in the \mathfrak{k}-part is much more dangerous: if not taken care of, it propagates and we lose the whole benefits of our tridiagonalization/reduction to Hessenberg

Therefore the fill-in elements in the \mathfrak{k} part must be annihilated by, for instance, Givens rotations ($\mathcal{O}(1)$ computations)

Order	Full		Tridiag	
2	vector	matrix	vector	matrix
Tridiag.	-	-	n^{3}	n^{3}
order cond.	$\frac{2}{3} n^{3}$	$\frac{2}{3} n^{3}$	$\mathcal{O}(n)$	$\mathcal{O}(n)$
assembly \exp	$3 n^{2}$	$2 n^{3}$	$6 p n$	$4 p n^{2}$
total	$\frac{2}{3} n^{3}$	$2 \frac{2}{3} n^{3}$	$n^{3}+\mathcal{O}(p n)$	$n^{3}+4 p n^{2}$

Order	Full		Tridiag	
3	vector	matrix	vector	matrix
Tridiag.	-	-	n^{3}	n^{3}
order cond.	$2 \frac{1}{2} n^{3}$	$2 \frac{1}{2} n^{3}$	$\mathcal{O}(n)$	$\mathcal{O}(n)$
assembly \exp	$3 n^{2}$	$2 n^{3}$	$6 p n$	$4 p n^{2}$
total	$2 \frac{1}{2} n^{3}$	$4 \frac{1}{2} n^{3}$	$n^{3}+\mathcal{O}(p n)$	$n^{3}+4 p n^{2}$

Comparison of cost of the approximation of the exponential without (Full) and with reduction to tridiagonal form (Tridiag) for splittings of order $2,3,4$. Only dominant terms are reported.

Order	Full		Tridiag	
4	vector	matrix	vector	matrix
Tridiag.	-	-	n^{3}	n^{3}
order cond.	$4 n^{3}$	$4 n^{3}$	$\mathcal{O}(n)$	$\mathcal{O}(n)$
assembly \exp	$3 n^{2}$	$2 n^{3}$	$6 p n$	$4 p n^{2}$
total	$4 n^{3}$	$6 n^{3}$	$n^{3}+\mathcal{O}(p n)$	$n^{3}+4 p n^{2}$

Matrices in GL(n), SL(n)

$$
\begin{aligned}
& z \in \mathrm{GL}(n) \Leftrightarrow \operatorname{det}(z) \neq 0 \\
& z \in \operatorname{SL}(n) \Leftrightarrow \operatorname{det}(z)=1 \\
& Z \in \mathfrak{g l}(n) \Leftrightarrow Z \text { is } n \times n \\
& Z \in \mathfrak{s l}(n) \Leftrightarrow \operatorname{tr}(Z)=1
\end{aligned}
$$

- Reduce to Hessenberg form by orthogonal transformations.

Order 5 terms for matrices in Hessenberg form:

Symplectic matrices

$$
\begin{aligned}
& z \in \operatorname{Sp}(n) \Leftrightarrow z J z^{\top}=J \\
& Z \in(n) \Leftrightarrow Z J+J Z^{\top}=O,
\end{aligned}
$$

where $J=\left[\begin{array}{cc}O_{n} & -I_{n} \\ I_{n} & O_{n}\end{array}\right]$

- Automorphisms $\sigma(z)=\mathcal{S} z \mathcal{S}$, where $\mathcal{S}=\left[\begin{array}{cc}S & O_{n} \\ O_{n} & S\end{array}\right]$

$$
S=\left[\begin{array}{ccc|c}
1 & 0 & \cdots & 0 \\
0 & 1 & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
\hline 0 & \cdots & 0 & -1
\end{array}\right]
$$

- Symplectic matrices are not necessarily closed under orthogonal transformations, hence cannot use Hessenberg/Tridiag forms
- Reduce to butterfly form by symplectic transformations: for matrices in the group

$$
\left[\begin{array}{ll}
D_{1} & T_{1} \\
D_{2} & T_{2}
\end{array}\right],
$$

D_{i} diagonal, T_{i} symmetric.

- At algebra level: $T_{2}=-D_{1}^{\top}$.

Order 5 terms for matrices in butterfly form:

Reduction to tridiagonal/Hessenberg/ butterfly form

- For tridiagonalization/Hessenberg use Householder reflections:

$$
H=I-\beta \mathbf{v} \mathbf{v}^{T}, \quad \beta=\frac{2}{\|\mathbf{v}\|^{2}}
$$

Then,

$$
H Z H=Z-\beta \mathbf{v v}^{T} Z-\beta Z \mathbf{v v}^{T}+\beta^{2} \underbrace{\mathbf{v v}^{T} Z \mathbf{v} \mathbf{v}^{T}}_{0 \text { if } Z \text { is skew }}
$$

Cost:

- n^{3} for symmetric/skew-symmetric matrices
$-\frac{10}{3} n^{3}$ for arbitrary matrices
- Reduction to butterfly form is done by means of symplectic transformations:
- symplectic Givens/Householder (orthosymplectic),
- symplectic Gauss transformations (not orthogonal)
as proposed by Faßbender, Benner, Watkins (at the group level, for QR-like iterations).
The basic idea of the algorithm is: at each step j,
- bring the j th column of M into the desired form
- bring the $(n+j)$ th row of M into the desired form.

The algorithm uses mostly the orthosymplectic transformations and only few non-orthogonal symplectic transformations, therefore one can expect relatively good stability properties.

- Cost of reduction to butterfly form

$$
20 \frac{2}{3} n^{3}
$$

for a matrix of dimension $2 n$.

- symplectic Givens transformations:,

$$
G=\left[\begin{array}{ccc|ccc}
I_{k-1} & & & & & \\
& c & & & s & \\
& & I_{n-k} & & & \\
\hline & & & I_{k-1} & & \\
& -s & & & c & \\
& & & & I_{n-k}
\end{array}\right]
$$

- symplectic Householder transformations:

$$
H=\left[\begin{array}{cc|c}
I_{k-1} & & \\
& Q & \\
& & I_{k-1} \\
\hline & & \\
\hline
\end{array}\right], \quad Q=I_{n-k+1}-\beta \mathbf{v \mathbf { v } ^ { \top }}, \quad \beta=\frac{2}{\|v\|^{2}},
$$

- symplectic Gauss transformations:

$$
L=\left[\begin{array}{cccc|cccc}
I_{k-2} & & & & & & & \\
& c & & & & & d & \\
& & c & & & & & \\
& & & I_{n-k} & & & & \\
\hline & & & & I_{k-2} & & & \\
& & & & & c^{-1} & & \\
& & & & & & c^{-1} & \\
& & & & & & I_{n-k}
\end{array}\right] .
$$

Comparison of cost of the approximation of the exponential without (Full) and with reduction to Hessenberg form (Hess) for splittings of order 2,3,4. Only dominant terms are reported.

Order	Full		Hess	
2	vector	matrix	vector	matrix
Hessenberg	-	-	$3 \frac{1}{3} n^{3}$	$3 \frac{1}{3} n^{3}$
order cond.	$1 \frac{1}{3} n^{3}$	$1 \frac{1}{3} n^{3}$	$\frac{1}{3} n^{3}$	$\frac{1}{3} n^{3}$
assembly exp	$3 n^{2}$	$2 n^{3}$	n^{2}	n^{3}
total	$1 \frac{1}{3} n^{3}$	$2 \frac{1}{3} n^{3}$	$3 \frac{2}{3} n^{3}$	$4 \frac{2}{3} n^{3}$

Order	Full		Hess	
3	vector	matrix	vector	matrix
Hessenberg	-	-	$3 \frac{1}{3} n^{3}$	$3 \frac{1}{3} n^{3}$
order cond.	$5 n^{3}$	$5 n^{3}$	$\frac{2}{3} n^{3}$	$\frac{2}{3} n^{3}$
assembly exp	$3 n^{2}$	$2 n^{3}$	n^{2}	n^{3}
total	$5 n^{3}$	$7 n^{3}$	$4 n^{3}$	$5 n^{3}$

Order	Full		Hess	
4	vector	matrix	vector	matrix
Hessenberg	-	-	$3 \frac{1}{3} n^{3}$	$3 \frac{1}{3} n^{3}$
order cond.	$7 n^{3}$	$7 n^{3}$	n^{3}	n^{3}
assembly exp	$3 n^{2}$	$2 n^{3}$	n^{2}	n^{3}
total	$7 n^{3}$	$9 n^{3}$	$4 \frac{1}{3} n^{3}$	$5 \frac{1}{3} n^{3}$

A divide and conquer approach

Consider $Z \in \mathfrak{s o}(n)$ and assume that it is already in tridiagonal form. Our point of departure is to consider an inner automorphism $\sigma(Z)=S Z S$ where

$$
S=\left[\begin{array}{cc}
I_{n_{1} \times n_{1}} & O_{n_{1} \times n_{2}} \\
O_{n_{2} \times n_{1}} & -I_{n_{2} \times n_{2}}
\end{array}\right],
$$

where $n_{1}+n_{2}=n$: an obvious choice is $n_{1}=\left\lfloor\frac{n}{2}\right\rfloor$, however, other choices are possible, e.g. the index corresponding to the least off-diagonal element.

With this choice,

$$
K=\left[\begin{array}{cc}
K_{1} & O \\
O & K_{2}
\end{array}\right], \quad P=\left[\begin{array}{cc}
O & P_{1} \\
P_{2} & O
\end{array}\right] .
$$

- both K_{1} and K_{2} are tridiagonal
- P_{1} and P_{2} have a single nonzero entry, in the lower left and upper right corner respectively.

K

$[\mathrm{P},[\mathrm{P},[\mathrm{P},[\mathrm{P}, \mathrm{K}]]]]$

$[\mathrm{K},[\mathrm{K},[\mathrm{P},[\mathrm{P}, \mathrm{K}]]]]$

[$\mathrm{P},[\mathrm{P}, \mathrm{K}]]$

4
1
4
\checkmark
Back
Close

order 5

The following observations form the basis for an efficient divide-and-conquer algorithm to compute the exponential function in $\mathfrak{s o}(n)$:

- All the commutators, hence $X(t)$ and $Y(t)$ (up to desired order) amount to $\mathcal{O}(1)$ flops.
- The exact exponential of X reduces to that of a small matrix and can be evaluated in $\mathcal{O}(1)$ flops.
- Y is a reducible matrix.
- The departure of Y from tridiagonal can be corrected in a small number of Givens rotations. Because of reducibility, we can act separately on each of the two components, hence the outcome is two tridiagonal matrices, of size $n_{1} \times n_{1}$ and $n_{2} \times n_{2}$, resp. Again, the cost is $\mathcal{O}(1)$ flops.

General matrices

Let $Z \in \mathfrak{g l}(n)$ or $\mathfrak{s l}(n)$ and suppose that we have already brought it to an upper Hessenberg form.

order 2

order 4

order 3

order 5

Cost of the algorithm

- Computation of the exponentials: We write

$$
\begin{aligned}
X_{[p]} & =X_{1} t+\cdots+X_{p} t^{p} \\
& =P t+\frac{1}{2}[P, K] t^{2}+\cdots=\left[\begin{array}{cc}
O & B_{1} \\
B_{2} & O
\end{array}\right]
\end{aligned}
$$

where p is the order of the approximation. Roughly speaking,

$$
\text { order } p \Leftrightarrow \text { fill-in of about } p \ll n \text { elements. }
$$

Then:
$X_{[p]}^{2 m}=\left[\begin{array}{cc}V^{m} & O \\ O & W^{m}\end{array}\right], \quad X_{[p]}^{2 m+1}=\left[\begin{array}{cc}V^{m} & O \\ O & W^{m}\end{array}\right]\left[\begin{array}{cc}O & B_{1} \\ B_{2} & O\end{array}\right], \quad V=B_{1} B_{2}, W=B_{2} B_{1}$,
and

$$
\exp \left(X_{[p]}\right)=\left[\begin{array}{cc}
C(V) & S(V) B_{1} \\
S(W) B_{2} & C(W)
\end{array}\right], \quad C(\theta)=\cosh \theta^{1 / 2}, \quad S(\theta)=\sinh \theta^{1 / 2}
$$

costs about $n_{1} n_{2} p \approx \frac{1}{4} p n^{2}$ for $n_{1}=n_{2}=n / 2$.
If $n=s^{2}$, iterating on matrices of lower dimensions, the cost of computing all the exponentials reduces to
$-\frac{1}{2} p n^{2}$ on a serial machine
$-\frac{1}{3} p n^{2}$ on a parallel machine

- Computation of commutators: 3 "expensive" commutators for order 4,7 for order 5 , amounting to
$-6 \sum_{s=1}^{\log _{2}(n / 2)} 2^{\log _{2}(n / 2)-s} 2^{3 s} \approx n^{3}$ for order $4 ; 14 \sum_{s=1}^{\log _{2}(n / 2)} 2^{\log _{2}(n / 2)-s} 2^{3 s} \approx 7 / 3 n^{3}$ for order 5 (serial machine)
$-6 \sum_{s=1}^{\log _{2}(n / 2)} 2^{3 s} \approx 6 / 7 n^{3}$ for order $4 ; 14 \sum_{s=1}^{\log _{2}(n / 2)} 2^{3 s} \approx 2 n^{3}$ for order 5 (parallel machine)

Error analysis

Although it is always true that

$$
\left\|\mathrm{e}^{A}\right\| \leq \mathrm{e}^{\|A\|},
$$

when dealing with error analysis of exponentials it is useful to consider the logarithmic norm μ of a matrix,

$$
\mu(A)=\max \left\{\mu: \mu \text { eigenvalue of } \frac{A+A^{*}}{2}\right\}
$$

which is the derivative of $\left\|\mathrm{e}^{t A}\right\|$: Set $\nu(t)=\left\|\mathrm{e}^{t A}\right\|$. Then, by differentiation, it is easy verified that

$$
\nu^{\prime}(t)=\mu(A) \nu(t), \quad t>0
$$

from which we deduce that $\nu(t)=\mathrm{e}^{t \mu(A)}$, for all $t \geq 0(\nu(0)=1)$. Therefore, the growth or decay of $\left\|\mathrm{e}^{t A}\right\|$ depends on whether the sign of $\mu(A)$ is positive or negative.
The logarithmic norm obeys the relations

$$
\begin{aligned}
\mu(A) & \leq\|A\| \\
\mu(A+B) & \leq \mu(A)+\|B\| \\
\left\|\mathrm{e}^{\alpha A}\right\| & \leq \mathrm{e}^{\alpha \mu(A)} \\
\left\|\mathrm{e}^{\alpha A}\right\| & \geq \mathrm{e}^{-\alpha \mu(-A)},
\end{aligned}
$$

with $\alpha \geq 0$.

Example of an error bound

Assume that $Z=P_{1}+\cdots+P_{m-1}+K_{m-1}$. Then, for all $t \geq 0$, it is true that

$$
\begin{aligned}
\left\|E_{2, m}(t)\right\| \leq & \sum_{i=1}^{m-1}\left(\frac{t^{3}}{3} \alpha_{i}+\frac{t^{4}}{4} \gamma_{i}(t)+\frac{t^{5}}{5} \delta_{i}(t)+\frac{t^{6}}{6} \eta_{i}(t)+\frac{t^{7}}{7} \theta_{i}(t)\right) \\
& \times \mathrm{e}^{\sum_{k=0}^{i-1}\left(t \mu\left(P_{k}\right)+\frac{1}{2} t^{2}\left\|\left[P_{k}, K_{k}\right]\right\|\right)+\frac{1}{2} t^{2}\left\|\left[P_{i}, K_{i}\right]\right\|} \max \left\{\mathrm{e}^{t\left(\mu\left(P_{i}\right)+\mu\left(K_{i}\right)\right)}, \mathrm{e}^{t \mu\left(P_{i}+K_{i}\right)}\right\},
\end{aligned}
$$

where the P_{i}, K_{i} are the splitted terms of Z and $\alpha_{i}, \gamma_{i}(t), \ldots, \theta_{i}(t)$ are the analytic functions depending on the norm of commutators of P_{i} and K_{i}.

Similar bounds yield for other splittings.

For skew-symmetric matrices:

Given that $\exp (t Z)$ and $\exp (t P)$ and $\exp (t K)$ are orthogonal, one always has that the trivial global error bound

$$
E(t) \leq\left\|\mathrm{e}^{t Z}\right\|+\left\|\mathrm{e}^{t P}\right\|\left\|\mathrm{e}^{t K}\right\|=2
$$

as a consequence of the triangle inequality. (The assertion is obviously true also for higher order of approximants and for a m-term splitting).
Moreover,

$$
Z \in \mathfrak{s o}(n) \Leftrightarrow \mu(Z)=0,
$$

hence the previous results mean essentially that:
For skew-symmetric matrices, the error is essentially local truncation error (until it reaches the trivial bound).

Estimated (solid line) and real errors (diamonds joined by dashed line) for 50×50 skew-symmetric matrices P, K versus $t \in\left[10^{-6}, 10^{2}\right]$.

Concluding remarks

- As long as $Z=P+K$, the GPD splittings are valid indipendently of the automorphism σ and can be thought as inverse BCH formulas:

$$
\text { BCH formula: } \quad \exp (t B) \exp (t C)=\exp \left(t(B+C)+\frac{1}{2} t^{2}[B, C]+\cdots\right)
$$

$$
\text { inverse } \mathrm{BCH}: \quad \exp (t Z)=\exp (X(t)) \exp (Y(t))
$$

The advantage is that, if such automorphism σ determining P, K exists, then the factors have the properties discussed above.

- Symmetric GPD possible,

$$
\begin{gathered}
\exp (t Z)=\exp (X(t)) \exp (Y(t)) \exp (X(t)) \\
X(t)=\frac{1}{2} P t+\frac{1}{24}[K,[P, K]] t^{3}-\left(\frac{1}{1440}[K,[P,[P,[P, K]]\right. \\
\left.+\frac{1}{240}[K,[K,[K,[P, K]]]]+\frac{1}{360}[[P, K],[P,[P, K]]]\right) t^{5}+\cdots \\
Y(t)=K t+\frac{1}{24}[P,[P, K]] t^{3}+\left(\frac{1}{1920}[P,[P,[P,[P, K]]]]\right. \\
\\
\left.\quad-\frac{13}{1440}[K,[K,[P,[P, K]]]]-\frac{1}{240}[[P, K],[K,[P, K]]]\right) t^{5}+\cdots
\end{gathered}
$$

and both $X(t)$ and $Y(t)$ expand in odd powers of t only.

What we got so far ...

- Methods that map Lie algebras to the corresponding Lie group
- They are 'cheap'
- $\mathcal{O}\left(n^{3}\right)$ with small constant, w.r.t. standard exponential routines.
- We can tackle most groups choosing the appropriate automorphisms
- High order is easily achievable
- Once the sparse form is obtained, the commutators that give the order conditions are cheap to compute $\mathcal{O}(1)$
- Easy scaling and squaring:

$$
\exp (Z)=Q \exp (\tilde{Z}) Q^{\top}, \quad \tilde{Z} \text { sparse }
$$

Apply scaling and squaring to $\exp (\tilde{Z})$: Divide \tilde{Z} by 2^{j}, compute splitting to desired order, apply to the vector(s) j-times. The exponentials \times vector are $\mathcal{O}\left(n^{2}\right)$.

Things that need to be explored further.

- Symmetric GPD
- Divide and conquer
- Stiff problems
$-\exp (Z)=\exp \left(\frac{\operatorname{tr}(Z)}{n}\right) \exp \left(Z-\frac{\operatorname{tr}(Z)}{n} I\right)$
- Commutators may introduce extra stiffness
- Commutator-free methods, Exponential Time Differentiation (ETD) methods
- Different choices of automorphisms (or, simply P, K) that lead to different splittings
- Example: Krylov. $\exp (A) \mathbf{v} \approx \beta V_{m} \exp \left(H_{m}\right) \mathbf{e}_{1}$. Choose $\mathrm{d} \sigma_{\mathbf{v}}(A)=\left(I-V_{m} V_{m}^{\top}\right)^{\top} A\left(I-V_{m} V_{m}^{\top}\right)$. Then

$$
A=P+K
$$

has the property that

$$
\exp (K) \mathbf{v}=\mathbf{v}, \quad \exp (P)=\beta V_{m} \exp \left(H_{m}\right) \mathbf{e}_{1}
$$

hence,

$$
\beta V_{m} \exp \left(H_{m}\right) \mathbf{e}_{1}=\exp (P) \exp (K) \mathbf{v}
$$

The commutators 'destroy' the approximation (order theory recovered, worse approximation).

- Very large problems (for which $\mathcal{O}\left(n^{3}\right)$ is not feasible): can something a la' Krylov be done?

References

On the theory of GPD:
Munthe-Kaas, Quispel and Zanna (2001), 'Generalized polar decompositions on Lie groups with involutive automorphisms', Found. Comp. Math. 1(3), 297-324.
Zanna (2000) 'Recurrence relations and convergence theory for the generalized polar decomposition on Lie groups', to appear in Math. Comp.
Lawson (1994), 'Polar and Ol'shanskii decompositions', J. Reine Angew. Math. 448, 191-219.
GPD for the matrix exponential:
Zanna and Munthe-Kaas (2002), 'Generalized polar decompositions for the approximation of the matrix exponential', SIAM J. Num. Anal. 23(3), 840-862.
Iserles and Zanna (2002), 'Efficient computation of the matrix exponential by generalized polar decompositions', to appear in SIAM J. Num. Anal.

SR for symplectic matrices:
Faßbender (2000), 'The parametrized SR algorithm for symplectic butterfly matrices', Math. Comp. 70(236), 15151541.

Stability and error analysis:
Zanna (2001), 'Error analysis for exponential splitting based on Generalized Polar Decompositions', Report in Informatics 220, University of Bergen, Norway.
Iserles and Zanna (2003), 'On the spectra of certain matrices generated by involutive automorphisms', to appear in SIAM J. Matrix Anal.
Sheng (1993), 'Global error estimates for exponential splitting', IMA J. Numer. Anal., 14, 27-57.
General theory for computation of exp:
Moler and van Loan (2003), 'Nineteen dubious ways to compute the matrix exponential - 25 years later', SIAM Rev.
Golub and van Loan (1989), 'Matrix Computation', John Hopkins, Baltimore.

