On the spectral properties of certain matrices generated by involutive automorphisms

This talk is based on a work in collaboration with A. Iserles.

Antonella Zanna

University of Bergen, Norway
email: anto@ii.uib.no
http://www.ii.uib.no/~anto

Motivations

- Integration methods using exponentials in Gl need fast algorithms that approximate the matrix exponential.
- Exact computation is not an issue - but it is crucial that the exponential approximation is in the Lie group.
- Matrix exponential $\exp (t Z)$ computed by GPDs: based on a splitting

$$
Z=P+K
$$

where P and K are obtained by projecting A onto the + and - eigenspaces of an involutive automorphism in the algebra \mathfrak{g}.

- Numerical stability: If Z is 'nice', it is important that also K and P are 'nice', otherwise we might generate very large matrices in the course of computation.

Relate the eigenvalues of the matrices Z with those of P and K

Generalized polar decompositions

Ingredients:

- A Lie group G
- An involutive automorphism σ

What we can do with them:

- We can factorize

$$
z=x y \quad \text { GPD }
$$

where

$$
\sigma(x)=x^{-1}
$$

and

$$
\sigma(y)=y
$$

where x, y are appropriate group elements which are determined by z and σ.
In particular, if $z=\exp (t Z)$, it is true that

$$
\exp (t Z)=\exp (X(t)) \exp (Y(t))
$$

and for t sufficiently small, the functions $X(t)$ and $Y(t)$ are uniquely determined.

$$
\begin{aligned}
X= & P t-\frac{1}{2}[P, K] t^{2}-\frac{1}{6}[K,[P, K]] t^{3} \\
& +\left(\frac{1}{24}[P,[P,[P, K]]]-\frac{1}{24}[K,[K,[P, K]]]\right) t^{4} \\
& +\left(\frac{7}{360}[K,[P,[P,[P, K]]]]-\frac{1}{120}[K,[K,[K,[P, K]]]]-\frac{1}{180}[[P, K],[P,[P, K]]]\right) t^{5} \\
& +\mathcal{O}\left(t^{6}\right), \\
Y= & K t-\frac{1}{12}[P,[P, K]] t^{3}+\left(\frac{1}{120}[P,[P,[P,[P, K]]]]\right. \\
& \left.+\frac{1}{720}[K,[K,[P,[P, K]]]]-\frac{1}{240}[[P, K],[K,[P, K]]]\right) t^{5}+\mathcal{O}\left(t^{7}\right) .
\end{aligned}
$$

In general, all the terms in the expansion of $X(t)$ and $Y(t)$ are obtained by explicit recurrence relations in terms of P and K.

At the algebra level

Assume $Z \in \mathfrak{g}$. A Lie-algebra automorphism is a one-to-one map $\mathrm{d} \sigma: \mathfrak{g} \times \mathfrak{g}$ such that

$$
\mathrm{d} \sigma([A, B])=[\mathrm{d} \sigma(A), \mathrm{d} \sigma(B)], \quad A, B \in \mathfrak{g}
$$

moreove it is involutive if $\mathrm{d} \sigma^{2}=\mathrm{id}$.
We are interested in inner automorphisms, i.e. automorphisms of the form

$$
\mathrm{d} \sigma(Z)=H Z H^{-1}
$$

for some involutive matrix $H\left(H^{2}=I\right)$.
For reasons of stability, we consider involutory matrices $H \in \mathbb{C}$ that are unitary, i.e. $H^{-1}=H^{T}$.

Theorem 1 Every involution in $\mathrm{U}(n)$ is of the type

$$
H=I-2 \sum_{k=1}^{s} \mathbf{u}_{k} \mathbf{u}_{k}^{*}
$$

where $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{s}\right\}$ is an orthonormal basis of a subspace of \mathbb{C}^{n}, for $s=1,2, \ldots, n$.

Proof. H is unitary hence normal, therefore the matrix $I-H$ is normal and has a full set of orthonormal eigenvectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}$,

$$
I-H=\sum_{k=1}^{n} \alpha_{k} \mathbf{u}_{k} \mathbf{u}_{k}^{*}
$$

the α_{k} being the respective eigenvalues. Hence, $H=I-\sum_{k=1}^{n} \alpha_{k} \mathbf{u}_{k} \mathbf{u}_{k}^{*}$. From $H^{2}=I$,

$$
\begin{aligned}
O=H^{2}-I & =-2 \sum_{k=1}^{n} \alpha_{k} \mathbf{u}_{k} \mathbf{u}_{k}^{*}+\sum_{k, l=1}^{n} \alpha_{k} \alpha_{j} \mathbf{u}_{k} \mathbf{u}_{k}^{*} \mathbf{u}_{j} \mathbf{u}_{j}^{*} \\
& =\sum_{k=1}^{n}\left(\alpha_{k}-2\right) \alpha_{k} \mathbf{u}_{k} \mathbf{u}_{k}^{*}
\end{aligned}
$$

because of the orthonormality of the eigenvectors \mathbf{u}_{k}. Since the \mathbf{u}_{k} are also linearly independent, it must be

$$
\begin{aligned}
& \alpha_{j}=2 \text { for } j=1, \ldots, s \\
& \alpha_{l}=0 \text { for } l=s+1, \ldots, n
\end{aligned}
$$

Some background theory: The field of values of a matrix

Let $A \in M_{n}[\mathbb{C}]$. The field of values or numerical range of a matrix A is the subset of the complex plane

$$
F(A)=\left\{\mathbf{x}^{*} A \mathbf{x}: \mathbf{x}^{*} \mathbf{x}=1\right\} .
$$

Some properties:

- For every $A, F(A)$ is a convex set.
- For every A,

$$
\sigma(A) \subset F(A)
$$

From $A \mathrm{x}=\lambda \mathrm{x}$ we have $\lambda=\mathrm{x}^{*} A \mathrm{x} \in F(A)$.

- If D diagonal,

$$
F(D)=\operatorname{conv} \sigma(D)
$$

Trivially, conv $\sigma(D) \subseteq F(D)$. If $\kappa \in F(D)$ then $\kappa=\mathbf{x}^{*} D \mathbf{x}$ with $\mathbf{x}=\sum_{k=1}^{n} x_{k} \mathbf{e}_{k}$ and $\sum_{k=1}^{n}\left|x_{k}\right|^{2}=1$.
Then, $\kappa=\left(\sum_{k=1}^{n} \overline{x_{k}} \mathbf{e}_{k}^{T}\right) D\left(\sum_{j=1}^{n} x_{j} \mathbf{e}_{j}\right)=\sum_{k=1}^{n}\left|x_{k}\right|^{2} d_{k, k} \in \operatorname{conv} \sigma(D)$.

- If U is a unitary matrix,

$$
F\left(U A U^{*}\right)=F(A)
$$

- If A is normal, i.e. $A^{*} A=A A^{*}$, then

$$
F(A)=\operatorname{conv} \sigma(A)
$$

- If $A=B+C$, then

$$
\sigma(A) \subseteq F(A) \subseteq F(B)+F(C)
$$

(subadditive property)
Moreover, if B, C are normal with eigenvalues $\left\{\beta_{i}\right\}$ and $\left\{\gamma_{i}\right\}$,

$$
\sigma(A) \subseteq \operatorname{conv} \sigma(B)+\operatorname{conv} \sigma(C)=\operatorname{conv}\left\{\left(\beta_{i}+\gamma_{j}\right), i, j=1,2, \ldots, n\right\}
$$

On the spectrum of the matrix P

Recall that

$$
P=\frac{1}{2}(Z-H Z H) .
$$

Proposition 2 If κ is an eigenvalue of P with eigenvector \mathbf{y}, then $-\kappa$ is also eigenvalue of P with eigenvector $H \mathbf{y}$.

Proof. Since by construction $-P=\mathrm{d} \sigma(P)=H P H$ and H is an involution, it follows that $P H=-H P$.
We have

$$
P(H \mathbf{y})=-H P \mathbf{y}=-\kappa(H \mathbf{y})
$$

Proposition 3 Assume that $H=I-2 U U^{*}$, where $U=\left[\mathbf{u}_{1}, \ldots \mathbf{u}_{s}\right]$. Then the matrix P has rank at most $2 s$ and if Z is normal with eigenvalues λ_{i}, then

$$
\sigma(P) \subseteq \frac{1}{2} \operatorname{conv}\left\{\left(\lambda_{i}-\lambda_{j}\right), i, j=1, \ldots, n\right\}
$$

and, consequently,

$$
\rho(P) \leq \frac{1}{2} \operatorname{diam} \operatorname{conv} \sigma(Z)
$$

Proof. We verify the last two assertions.
Let us study $\sigma(P)$.

$$
P=\frac{1}{2}(Z-H Z H)
$$

Recall: if B and C are normal, with eigenvalues β_{i} and γ_{i} respectively, then
$\sigma(B+C) \subseteq \operatorname{conv}\left\{\left(\beta_{i}+\gamma_{j}\right), i, j=1, \ldots, n\right\}$.
$\sigma(P) \subseteq \frac{1}{2} \operatorname{conv}\left\{\left(\lambda_{i}-\lambda_{j}\right), i, j=1, \ldots, n\right\}$

Hence

$$
\begin{aligned}
\rho(P) & \leq \frac{1}{2} \max \left|\lambda_{i}-\lambda_{j}\right| \\
& =\frac{1}{2} \operatorname{diam} \operatorname{conv} \sigma(Z)
\end{aligned}
$$

On the spectrum of the matrix K

We denote by μ_{1}, \ldots, μ_{n} the eigenvalues of K with eigenvectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$. By construction,

$$
K=\frac{1}{2}(Z+\mathrm{d} \sigma(Z))=\frac{1}{2}(Z+H Z H)
$$

Lemma 4 Assume that Z is normal. Then,

$$
\sigma(K) \subset \operatorname{conv} \sigma(Z)
$$

Proof. First note that, if $B=C+D$ then

$$
F(B) \subseteq F(C)+F(D), \quad F(\alpha B)=\alpha F(B), \quad \alpha \in \mathbb{C}
$$

We have:

$$
\begin{aligned}
\sigma(K) \subseteq F(K) & \subseteq \frac{1}{2} F(Z+H Z H) \\
& \subseteq \frac{1}{2}(F(Z)+F(H Z H))=\frac{1}{2}(\operatorname{conv} \sigma(Z)+\operatorname{conv} \sigma(Z)) \\
& =\operatorname{conv} \sigma(Z)
\end{aligned}
$$

(Note that K need not be normal).

Theorem 5 Assume that Z is normal and that $H=I-2 \sum_{k=1}^{s} \mathbf{u}_{k} \mathbf{u}_{k}^{*}$, where $\mathbf{u}_{1}, \ldots, \mathbf{u}_{s}$ is a set of orthonormal complex vectors. Then,

$$
\|Z-K\|_{F} \leq \frac{\sqrt{2 s}}{2} \operatorname{diam} \text { conv } \sigma(Z)
$$

where $\operatorname{diam} \Omega$ is the diameter of the set Ω.
Proof. From $Z=K+P$ we deduce that

$$
\|Z-K\|_{F}^{2}=\|P\|_{F}^{2}=\sum_{i=1}^{2 s}\left|\kappa_{i}\right|^{2}=2 \sum_{k=1}^{s}\left|\kappa_{i}\right|^{2}
$$

where $\kappa_{1}, \ldots, \kappa_{s}, \kappa_{s+1}=-\kappa_{1}, \ldots, \kappa_{2 s}=-\kappa_{s}$ are the eigenvalues of P.

$$
\|Z-K\|_{F}^{2} \leq 2 s \rho(P)^{2}, \quad \rho(P)=\max \left|\kappa_{i}\right|
$$

From the characterization of P,

$$
\rho(P) \leq \frac{1}{2} \operatorname{diam} \operatorname{conv} \sigma(Z)
$$

hence

$$
\|Z-K\|_{F}^{2} \leq \frac{s}{2}(\operatorname{diam} \operatorname{conv} \sigma(Z))^{2}
$$

from which the result follows by taking the square root of both sides.

Remark: The spectra of P and K depend on the distribution of the eigenvalues of Z on the complex plane.

Figure 1: Eigenvalues of K (triangles) and of Z (asterisks) in $M_{100}[\mathbb{C}]$ for $s=1$.

Figure 2: Eigenvalues of K (triangles) and of Z (asterisks) in $M_{100}[\mathbb{C}]$ for $s=50$.

4
-
4
\checkmark
Back
Close

Figure 3: Convex hulls of $\sigma(Z)$ and $\sigma(K)$ for various normal $Z, n=200, s=100$.

The eigenvalues of K as zeros of a rational function

Assume that Z is normal and denote by λ_{k} the eigenvalues of Z and by μ_{k} the eigenvalues of K.
Theorem 6 Either $\mu \in \sigma(Z)$ or it is a zero of the rational function

$$
\psi(x)=\sum_{k=1}^{n} \frac{\left|\zeta_{k}\right|^{2}}{\lambda_{k}-x}
$$

where $\sum_{k=1}^{n} \zeta_{k} \mathbf{x}_{k}=\sum_{l=1}^{s}\left(\mathbf{u}_{l}^{*} A \mathbf{v}\right) \mathbf{u}_{l}$, where $K \mathbf{v}=\mu \mathbf{v}$ and the \mathbf{x}_{k} are eigenvectors of Z.

Interlacing properties of the eigenvalues of

K
Assume that Z is Hermitian with distinct eigenvalues and let $s=1$, thus $\mathbf{u}_{1}=\mathbf{u}$.
Assume that \mathbf{u} is not orthogonal to any eigenvalue of Z.

$$
\psi(x)=\sum_{k=1}^{n} \frac{\left|\zeta_{k}\right|^{2}}{\lambda_{k}-x}
$$

Then function ψ is of type $(n-1) / n$ therefore it has precisely $n-1$ real zeros.
Observe that these zeros occur in intervals of the type $\left(\lambda_{k}, \lambda_{k+1}\right)$ because of the change of sign, and since K has n eigenvalues, a trivial counting argument tells us that there is one such interval in which there are two μ_{k}.
In other words, $\exists p \in\{1,2, \ldots, n\}$ such that

$$
\begin{array}{ll}
\mu_{k} \in\left(\lambda_{k}, \lambda_{k+1}\right), & k=1,2, \ldots, p \\
\mu_{k} \in\left(\lambda_{k-1}, \lambda_{k}\right), & k=p+1, p+2, \ldots, n
\end{array}
$$

This property is also known as interlacing property of the eigenvalues of Hermitian matrices or Weyl's theorem [1].

Figure 4: The difference $\lambda-\mu$ for a random Hermitian matrix Z of dimension $n=100$

4
-
4
-
Back
Close

The non-normal case

The results need not be true in the case when Z is not normal. In fact, it is possible to find non-normal Z and U such that $\sigma(K) \notin$ conv $\sigma(Z)$.

References

[1] Horn and Johnson, Matrix Analysis, CUP, 1985
[2] Horn and Johnson, Topics in Matrix Analysis, CUP 1991
[3] Iserles and Zanna, In preparation, 2003
[4] Munthe-Kaas, Quispel and Zanna, Generalized polar decompositions
on Lie groups, J. FoCM, 2001.

