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On the spectral properties
of certain matrices
generated by
involutive automorphisms

This talk is based on a work in collaboration with A. Iserles.

Antonella Zanna
University of Bergen, Norway
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Motivations
• Integration methods using exponentials in GI need fast algorithms that approximate the matrix

exponential.

• Exact computation is not an issue – but it is crucial that the exponential approximation is in
the Lie group.

• Matrix exponential exp(tZ) computed by GPDs: based on a splitting

Z = P +K

where P and K are obtained by projecting A onto the + and − eigenspaces of an involutive
automorphism in the algebra g.

• Numerical stability: If Z is ’nice’, it is important that also K and P are ’nice’, otherwise
we might generate very large matrices in the course of computation.

Relate the eigenvalues of the matrices Z with those of P and K



3/19

JJ
II
J
I

Back

Close

Generalized polar decompositions
Ingredients:

• A Lie group G

• An involutive automorphism σ

What we can do with them:

• We can factorize
z = xy GPD

where
σ(x) = x−1

and
σ(y) = y

where x, y are appropriate group elements which are determined by z and σ.

In particular, if z = exp(tZ), it is true that

exp(tZ) = exp(X(t)) exp(Y (t))

and for t sufficiently small, the functions X(t) and Y (t) are uniquely determined.
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X = Pt− 1
2
[P,K]t2 − 1

6
[K, [P,K]]t3

+
(

1
24

[P, [P, [P,K]]]− 1
24

[K, [K, [P,K]]]
)
t4

+
(

7
360

[K, [P, [P, [P,K]]]]− 1
120

[K, [K, [K, [P,K]]]]− 1
180

[[P,K], [P, [P,K]]]
)
t5

+O(t6),

Y = Kt− 1
12

[P, [P,K]]t3 +
(

1
120

[P, [P, [P, [P,K]]]]

+ 1
720

[K, [K, [P, [P,K]]]]− 1
240

[[P,K], [K, [P,K]]]
)
t5 +O(t7).

In general, all the terms in the expansion of X(t) and Y (t) are obtained by explicit recurrence
relations in terms of P and K.
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At the algebra level
Assume Z ∈ g. A Lie-algebra automorphism is a one-to-one map dσ : g× g such that

dσ([A,B]) = [ dσ(A), dσ(B)], A,B ∈ g,

moreove it is involutive if dσ2 = id.

We are interested in inner automorphisms, i.e. automorphisms of the form

dσ(Z) = HZH−1,

for some involutive matrix H (H2 = I).

For reasons of stability, we consider involutory matrices H ∈ C that are unitary, i.e. H−1 = HT .

Theorem 1 Every involution in U(n) is of the type

H = I − 2
s∑

k=1

uku
∗
k,

where {u1, . . . ,us} is an orthonormal basis of a subspace of Cn, for s = 1, 2, . . . , n.
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Proof. H is unitary hence normal, therefore the matrix I − H is normal and has a full set of
orthonormal eigenvectors u1, . . . ,un,

I −H =
n∑

k=1

αkuku
∗
k,

the αk being the respective eigenvalues. Hence, H = I −
∑n

k=1 αkuku
∗
k.

From H2 = I,

O = H2 − I = −2
n∑

k=1

αkuku
∗
k +

n∑
k,l=1

αkαjuku
∗
kuju

∗
j

=
n∑

k=1

(αk − 2)αkuku
∗
k

because of the orthonormality of the eigenvectors uk. Since the uk are also linearly independent, it
must be

αj = 2 for j = 1, . . . , s,

αl = 0 for l = s+ 1, . . . , n.

�
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Some background theory: The field of values of a matrix

Let A ∈Mn[C]. The field of values or numerical range of a matrix A is the subset of the complex
plane

F (A) = {x∗Ax : x∗x = 1}.

Some properties:

• For every A, F (A) is a convex set.

• For every A,
σ(A) ⊂ F (A).

From Ax = λx we have λ = x∗Ax ∈ F (A).

• If D diagonal,
F (D) = conv σ(D)

Trivially, conv σ(D) ⊆ F (D). If κ ∈ F (D) then κ = x∗Dx with x =
∑n

k=1 xkek and∑n
k=1 |xk|2 = 1.

Then, κ =
(∑n

k=1 x̄ke
T
k

)
D

(∑n
j=1 xjej

)
=

∑n
k=1 |xk|2dk,k ∈ conv σ(D).

• If U is a unitary matrix,
F (UAU∗) = F (A)

• If A is normal, i.e. A∗A = AA∗, then

F (A) = conv σ(A)
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• If A = B + C, then
σ(A) ⊆ F (A) ⊆ F (B) + F (C)

(subadditive property)

Moreover, if B,C are normal with eigenvalues {βi} and {γi},

σ(A) ⊆ conv σ(B) + conv σ(C) = conv {(βi + γj), i, j = 1, 2, . . . , n}
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On the spectrum of the matrix P
Recall that

P = 1
2
(Z −HZH).

Proposition 2 If κ is an eigenvalue of P with eigenvector y, then −κ is also eigenvalue of P with
eigenvector Hy.

Proof. Since by construction −P = dσ(P ) = HPH and H is an involution, it follows that
PH = −HP .
We have

P (Hy) = −HPy = −κ(Hy).

�

Proposition 3 Assume that H = I − 2UU∗, where U = [u1, . . .us]. Then the matrix P has rank
at most 2s and if Z is normal with eigenvalues λi, then

σ(P ) ⊆ 1
2
conv{(λi − λj), i, j = 1, . . . , n}

and, consequently,

ρ(P ) ≤ 1

2
diam conv σ(Z).
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Proof. We verify the last two assertions.

Let us study σ(P ).

P =
1

2
(Z −HZH)

Recall: if B and C are normal, with eigenvalues βi and γi respectively, then

σ(B + C) ⊆ conv{(βi + γj), i, j = 1, . . . , n}.

σ(P ) ⊆ 1
2
conv{(λi − λj), i, j = 1, . . . , n}

)/2

ρ (P)

λ − λ

−λ + λ

i j

i j

( ) / 2

(

Hence

ρ(P ) ≤ 1

2
max |λi − λj|

=
1

2
diam conv σ(Z)

�
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On the spectrum of the matrix K
We denote by µ1, . . . , µn the eigenvalues of K with eigenvectors v1, . . . ,vn.

By construction,

K =
1

2
(Z + dσ(Z)) =

1

2
(Z +HZH).

Lemma 4 Assume that Z is normal. Then,

σ(K) ⊂ conv σ(Z).

Proof. First note that, if B = C +D then

F (B) ⊆ F (C) + F (D), F (αB) = αF (B), α ∈ C.

We have:

σ(K) ⊆ F (K) ⊆ 1

2
F (Z +HZH)

⊆ 1

2
(F (Z) + F (HZH)) =

1

2
(conv σ(Z) + conv σ(Z))

= conv σ(Z).

(Note that K need not be normal). �
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Theorem 5 Assume that Z is normal and that H = I − 2
∑s

k=1 uku
∗
k, where u1, . . . ,us is a set

of orthonormal complex vectors. Then,

‖Z −K‖F ≤
√

2s

2
diam conv σ(Z)

where diam Ω is the diameter of the set Ω.

Proof. From Z = K + P we deduce that

‖Z −K‖2
F = ‖P‖2

F =
2s∑

i=1

|κi|2 = 2
s∑

k=1

|κi|2,

where κ1, . . . , κs, κs+1 = −κ1, . . . , κ2s = −κs are the eigenvalues of P .

‖Z −K‖2
F ≤ 2sρ(P )2, ρ(P ) = max |κi|.

From the characterization of P ,

ρ(P ) ≤ 1

2
diam convσ(Z),

hence
‖Z −K‖2

F ≤ s

2
(diam convσ(Z))2,

from which the result follows by taking the square root of both sides. �

Remark: The spectra of P and K depend on the distribution of the eigenvalues of Z on the complex
plane.



13/19

JJ
II
J
I

Back

Close

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Figure 1: Eigenvalues of K (triangles) and of Z (asterisks) in M100[C] for s = 1.
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Figure 2: Eigenvalues of K (triangles) and of Z (asterisks) in M100[C] for s = 50.
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Figure 3: Convex hulls of σ(Z) and σ(K) for various normal Z, n = 200, s = 100.
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The eigenvalues of K as zeros of a rational
function
Assume that Z is normal and denote by λk the eigenvalues of Z and by µk the eigenvalues of K.

Theorem 6 Either µ ∈ σ(Z) or it is a zero of the rational function

ψ(x) =
n∑

k=1

|ζk|2

λk − x
,

where
∑n

k=1 ζkxk =
∑s

l=1(u
∗
lAv)ul, where Kv = µv and the xk are eigenvectors of Z.



17/19

JJ
II
J
I

Back

Close

Interlacing properties of the eigenvalues of
K
Assume that Z is Hermitian with distinct eigenvalues and let s = 1, thus u1 = u.

Assume that u is not orthogonal to any eigenvalue of Z.

ψ(x) =
n∑

k=1

|ζk|2

λk − x
,

Then function ψ is of type (n− 1)/n therefore it has precisely n− 1 real zeros.

Observe that these zeros occur in intervals of the type (λk, λk+1) because of the change of sign,
and since K has n eigenvalues, a trivial counting argument tells us that there is one such interval
in which there are two µk.

In other words, ∃p ∈ {1, 2, . . . , n} such that

µk ∈ (λk, λk+1), k = 1, 2, . . . , p,

µk ∈ (λk−1, λk), k = p+ 1, p+ 2, . . . , n.

This property is also known as interlacing property of the eigenvalues of Hermitian matrices or
Weyl’s theorem [1].
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Figure 4: The difference λ− µ for a random Hermitian matrix Z of dimension n = 100
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The non-normal case

The results need not be true in the case when Z is not normal. In fact, it is possible to find
non-normal Z and U such that σ(K) 6∈ conv σ(Z).
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