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Overview
Motivations

• Integration methods using exponentials in GI need fast algorithms that approximate the matrix
exponential

• Exact computation is not an issue – but it is crucial that the exponential approximation is in
the Lie group.

Computation of the matrix exponential by GPDs

• A first approach (Z-MK)

• Fast methods (I-Z)
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Generalized polar decompositions
Ingredients:

• A Lie group G

• An involutive automorphism σ

What we can do with them:

• We can factorize
z = xy GPD

where
σ(x) = x−1

and
σ(y) = y

where x, y are appropriate group elements which are determined by z and σ.

In particular, if z = exp(tZ), it is true that

exp(tZ) = exp(X(t)) exp(Y (t))

and for t sufficiently small, the functions X(t) and Y (t) are uniquely determined.
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Properties of the decomposition: at the group level

z = exp(tZ) = exp(X(t)) exp(Y (t)) = xy GPD of z

with σ(x) = x−1, σ(y) = y.

Consider the sets

Gσ = {z ∈ G : σ(z) = z} fixed points of σ

Gσ = {z ∈ G : σ(z) = z−1} anti-fixed points of σ

• Gσ has the structure of a group:

z1, z2 ∈ Gσ ⇒ z1z2 ∈ Gσ, z−1
1 ∈ Gσ

• Gσ has the structure of a symmetric space,

z1, z2 ∈ Gσ ⇒ z1 ? z2 = z1z
−1
2 z1 ∈ Gσ.
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At the algebra level. . .

Assume z = exp(tZ), where Z ∈ g, the Lie-algebra of G. The group automorphism σ induces a
Lie-algebra map

dσ(Z) =
d

dt

∣∣∣
t=0

σ(exp(tZ)), Z ∈ g

which is also an involutive automorphism since

dσ([A, B]) = [ dσ(A), dσ(B)], A, B ∈ g, dσ2 = id,

We denote

k = {Z ∈ g : dσ(Z) = Z} subalgebra of g

p = {Z ∈ g : dσ(Z) = −Z} Lie triple system.

The subspaces p and k obey important inclusion properties:

[k, k] ⊆ k,

[k, p] ⊆ p,

[p, p] ⊆ k,

(+1)× (+1) = (+1)

(+1)× (−1) = (−1)

(−1)× (−1) = (+1).
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It is true that
g = p⊕ k,

in other words, every Z ∈ g can be uniquely written as

Z = P + K, dσ(P ) = −P, dσ(K) = K,

where

P =
1

2
(Z − dσ(Z)), K =

1

2
(Z + dσ(Z)).

In summary:

Group level Algebra level

Gσ := {z ∈ G : σ(z) = z}, subgrp k = {Z ∈ g : dσ(Z) = Z}, subalg.

Gσ := {z ∈ G : σ(z) = z−1}, symm. sp. p = {Z ∈ g : dσ(Z) = −Z}, LTS

G = Gσ ·Gσ g = p⊕ k

z = xy Z = P + K

x = exp(X(t)) ∈ Gσ X(t) =
∑∞

i=1 Xit
i ∈ p, Xi ∈ p

y = exp(Y (t)) ∈ Gσ Y (t) =
∑∞

i=1 Yit
i ∈ k, Yi ∈ k
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The decomposition
Z = P + K

completely determines the functions X(t) and Y (t):

X = Pt− 1
2
[P, K]t2 − 1

6
[K, [P, K]]t3

+
(

1
24

[P, [P, [P, K]]]− 1
24

[K, [K, [P, K]]]
)
t4

+
(

7
360

[K, [P, [P, [P, K]]]]− 1
120

[K, [K, [K, [P, K]]]]− 1
180

[[P, K], [P, [P, K]]]
)
t5

+O(t6),

Y = Kt− 1
12

[P, [P, K]]t3 +
(

1
120

[P, [P, [P, [P, K]]]]

+ 1
720

[K, [K, [P, [P, K]]]]− 1
240

[[P, K], [K, [P, K]]]
)
t5 +O(t7).

In general, all the terms in the expansion of X(t) and Y (t) are obtained by explicit recurrence
relations in terms of P and K.
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Approximation of the matrix exponential
Recall that by GPD:

exp(tZ) = exp(X(t)) exp(Y (t)),

where

X = Pt− 1
2
[P, K]t2 − 1

6
[K, [P, K]]t3

+
(

1
24

[P, [P, [P, K]]]− 1
24

[K, [K, [P, K]]]
)
t4

+
(

7
360

[K, [P, [P, [P, K]]]]− 1
120

[K, [K, [K, [P, K]]]]− 1
180

[[P, K], [P, [P, K]]]
)
t5

+O(t6),

Y = Kt− 1
12

[P, [P, K]]t3 +
(

1
120

[P, [P, [P, [P, K]]]]

+ 1
720

[K, [K, [P, [P, K]]]]− 1
240

[[P, K], [K, [P, K]]]
)
t5 +O(t7).

and

Z = P + K, P =
1

2
(Z − dσ(Z)), K =

1

2
(Z + dσ(Z)).
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A splitting method that approximates exp(tZ):

• Choose an appropriate σ.

• Split Z = P + K.

• Truncate the expansion

X(t) = Pt +
1

2
t2[P, K] + · · · , Y (t) = Kt− 1

12
t3[P, [P, K]] + · · ·

to desired order.

• Compute the exponential of X(t) ∈ p

• Set Z1 = Y (t)

• Repeat

In general, we iterate the procedure on the reduced space until we get a space of low dimension.
At the end,

exp(tZ) ≈ exp(X [1]) exp(X [2]) · · · exp(X [m]) exp(Y [m]).
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What are good choices of σ?

• The splitted factors should be easy to compute.

• Commutators should have a low complexity.

• Exponential/commutators of splitted parts should be easy to compute (either approximately
or preferably exactly).

A good choice is splitting in matrices of low rank, for instance, borderded matrices: take

S =


1 0 · · · 0

0 1
. . .

...
...

. . . . . . 0
0 · · · 0 −1

 , dσ(Z) = SZS,

then

P =


0 · · · 0 z1,n
... 0 · · · ...

0
...

. . . zn−1,1

zn,1 · · · zn,n−1 0

 , K =


z1,1 · · · z1,n−1 0
... · · · ...

zn−1,1
... zn−1,n−1 0

0 · · · 0 zn,n

 .

Such automorphisms work for GL(n), SL(n), SO(n).

Note that the commutators appearing in the expansion can be computed in O(n2) computations
(n3 if the procedure is iterated for matrices of decreasing dimension)
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An Euler–Rodrigues like formula for bordered matrices

The exponential of bordered matrices can be computed exactly by means of a formula similar to
the Euler–Rodrigues formula for computing the exponential of a 3× 3 skew-symmetric matrices.

Assume that A ∈ p is of the form

A =

[
O a

bT 0

]
, a,b ∈ Rn. (4.1)

Then,

exp(A) =


I + sinh θ

θ
A + 1

2

(
sinh(θ/2)

θ/2

)2

A2, if aTb > 0, θ =
√

aTb,

I + A + 1
2
A2, if aTb = 0,

I + sin θ
θ

A + 1
2

(
sin(θ/2)

θ/2

)2

A2, if aTb < 0, θ =
√
−aTb

where

A2 =

[
abT 0

0T θ2

]
.
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Note that exp(A) is never computed explicitely but always applied to a vector/matrix v.[
wk

w

]
= exp(A)v = exp(A)

[
vk

v

]
=

[
vk + ζ1a

ζ2

]
,

where

ζ1 = [η1v + η2(b
>vk)],

ζ2 = (1 + θ)v + (b>vk).

Cost of the computation (including both addition and multiplication) of the ‘Euler–Rodrigues’
exponential. The (k, k) column corresponds to the case when a,b are full, the (k, p) corresponds
to the case when a is full while only the last p components of b are nonzero and finally the (p, p)
column corresponds to both a and b having only the last p components nonzero.

Cost of exp(A) (k, k) (k, p) (p, p)

a>b 2k 2p 2p
b>vk 2k 2p 2p
ζ1a k k p
wk k k p
total, stage k 6k 2k + 4p 6p

total, summing 1 ≤ k ≤ n (vector) 3n2 n2 + 4pn 6pn

matrix (n vectors) 2n3 n3 + 2pn2 4pn2
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On the computation of commutators

Our first observation is that the involutions S are usually chosen so that P = Πp(Z) has low rank,
hence only just a few nonzero eigenvalues.

• Use the theory of minimal polynomial, the least degree monic polynomial such that

p(adA) = 0.

Lemma 4.1 Consider the bordered matrix A in (4.1) with ab> 6= O. The minimal polynomial of
adA is

p(λ) = λ(λ− 2θ)(λ + 2θ)(λ− θ)(λ + θ) (4.2)

= λ5 − 5b>aλ3 + 4(b>a)2λ,

where θ =
√

b>a. If ab> = O, and a and b are not both zero, then the minimal polynomial is

p(λ) = λ3. (4.3)

Proof. If A has distinct eigenvalues λ1, λ2, . . . , λm with algebraic multiplicities r1, r2, . . . , rm re-
spectively, the minimal polynomial of A has the form

q(λ) =
m∏

i=1

(λ− λi)
gi ,
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where gi is the order of the largest Jordan block of A corresponding to the eigenvalue λi.

Let us assume first that b>a 6= 0. Assume that v =

[
v1

v2

]
is eigenvector of A corresponding to

the eigenvalue λ. Imposing Av = λv, we have

av2 = λv1

b>v1 = λv2

and deduce immediately that the eigenvalues of A are λ = ±θ = ±
√

b>a and λ = 0 with
algebraic multiplicities one, one, and n− 2 respectively. It is easily verified that these are also their
geometric multiplicities: for λ = ±θ, eigenvectors are of the form [a,±1]>; for the zero eigenvalues,
eigenvectors are of the form [v1, 0]>, 0 6= v1 ∈ Rn−1, satisfying b>v1 = 0, furthermore, it is possible
to find n− 2 of those that are linearly independent.
Since the eigenvalues and eigenvectors of adA are the form λi − λj and y>i xj respectively, the λis
being eigenvalues of A with left and right eigenvector yi and xi respectively, we deduce that adA

has eigenvalues
λ = ±2θ, λ = ±θ

with algebraic/geometric multiplicities one each, and

λ = 0

with algebraic and geometric multiplicity n2 − 4. This implies that all Jordan blocks have size one,
from which it follows directly that the minimal polynomial of adA is of the form (4.2).
Next, if θ = 0 but ab> 6= O, namely a,b 6= 0, the eigenvalues of A, that we write as [v1, v2]

>,
must obey the conditions

av2 = 0

b>v1 = 0.
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Since a 6= 0, it must necessarily be v2 = 0. Therefore eigenvalues must be of the form [v1, 0].
Recall that v1 has n− 1 entries (n− 1 free parameters) while the second equation b>v1 = 0 gives
only a linear constraint: This mean that we can find only n − 2 linearly independent eigenvalues
and two further linearly independent generalized eigenvalues. In terms of Jordan blocks, this means
that A has a Jordan block of the form

J(0) =

 0 1 0
0 0 1
0 0 0

 ,

hence λ3 is the minimal polynomial of A and, as a consequence, A3 = O. Passing to the adjoint
operator adA, recall that, for an arbitrary matrix C,

adk
AC =

k∑
i=0

(
k

i

)
(−1)k−iAiCAk−i, k = 1, 2, . . . . (4.4)

Clearly, ad5
AC = O since in all terms there appears a power Ai with i ≥ 3. For lower order powers,

there are always terms of the type AiCAk−i where i, k−i ≤ 2. This means that it is always possible
to find a matrix C for which at least one of terms does not vanish. Hence the minimal polynomial
of adA is

p(λ) = λ5.

Finally, in the case when either a = 0 or b = 0, by direct computation,

A2 = O,

hence the minimal polynomial of A is λ2. Insofar as adA is concerned, the first power to vanish in
(4.4) is ad3

A, and no lower power vanishes for arbitrary matrices C. Hence the minimal polynomial
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is
p(λ) = λ3.

This completes the proof of the lemma. �

Theorem 4.2 Assume that the matrix A is of the form (4.1). Then, for every k = 1, 2, . . .,
commutators by A can be computed as

adk
A = [C1 + (−1)kC2]2

kθk + [C3 + (−1)kC4]θ
k, k = 1, 2, . . . (4.5)

when θ =
√

b>a 6= 0, and

C1 − C2 =
1

6

(
−adA

θ
+

ad3
A

θ3

)
C3 − C4 =

1

3

(
4adA

θ
− ad3

P

θ3

)
C1 + C2 =

1

12

(
−ad2

A

θ2
+

ad4
A

θ4

)
C3 + C4 =

1

3

(
4ad2

A

θ2
− ad4

A

θ4

)
.

(4.6)

If θ = 0 but ab> 6= O, then
adk

A = O, k = 5, 6, 7, . . . .

If θ = 0 and either a or b is a zero vector, then

adk
A = O, k = 3, 4, 5, . . . .

Proof. It follows from the minimal polynomial (4.2). �
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Complexity of the algorithms for full matrices:

Order sl(n), so(p, q) so(n)

2 vector matrix vector matrix

splitting 11
3
n3 11

3
n3 2

3
n3 2

3
n3

assembly exp 3n2 2n3 3n2 2n3

total 11
3
n3 31

3
n3 2

3
n3 22

3
n3

Order sl(n), so(p, q) so(n)

3(4) vector matrix vector matrix

splitting 5(7)n3 5(7)n3 21
2
(4)n3 21

2
(4)n3

assembly exp 3n2 2n3 3n2 2n3

total 5(7)n3 7(9)n3 21
2
(4)n3 41

2
(6)n3

These algorithms have a complexity that is comparable with other classical algorithms, like for
instance diagonal Padé approximants.

Feasible algorithms are up to order 4, because for higher order the complexity becomes larger
(although still O(n3)).
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Faster algorithms
Combine GI and classical Linear Algebra techniques

The main difference with the approach presented before is that the matrix Z is preprocessed and
reduced to a ‘sparse’ form stable under commutation, which is

• tridiagonal (for symmetric and skew-symmetric matrices),

• upper Hessenberg (for matrices in sl(n)),

• butterfly form (for symplectic matrices).

Again, we split rows and columns and start computing commutators.

In the following example, we consider a skew-symmetric tridiagonal matrix.

• ’red’ for the p-part, ’blue’ for the k-part

• updated elements are denoted with dots instead of crosses
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Order 1:

0 2 4 6 8 10 12 14 16 18 20

0

2

4

6

8

10

12

14

16

18

20

nz = 36



20/32

JJ
II
J
I

Back

Close

Order 2:

0 2 4 6 8 10 12 14 16 18 20

0

2

4

6

8

10

12

14

16

18

20

nz = 36
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Order 3:

0 2 4 6 8 10 12 14 16 18 20

0

2

4

6

8

10

12

14

16

18

20

nz = 2
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Order 4:

0 2 4 6 8 10 12 14 16 18 20

0

2

4

6

8

10

12

14

16

18

20

nz = 2
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Order 5:

0 2 4 6 8 10 12 14 16 18 20

0

2

4

6

8

10

12

14

16

18

20

nz = 4
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Main observations:

• Each extra order fills in two symmetric elements in the p-part.

• The fill-in in the k-part starts only at order 5.

• As long as the matrices P, K are tridiagonal, the commutators cost O(1).

The ‘ugly’ and the ‘bad’ fill-in
• The fill-in in the p-part is ‘ugly’ but not harmful: once once the p-term is computed up to

desired order, one needs only compute the exponential.

• The fill-in in the k-part is much more dangerous: if not taken care of, it propagates and we
lose the whole benefits of our tridiagonalization/reduction to Hessenberg

0 2 4 6 8 10 12 14 16 18 20

0

2

4

6

8

10

12

14

16

18

20

0 2 4 6 8 10 12 14 16 18 20

0

2

4

6

8

10

12

14

16

18

20

0 2 4 6 8 10 12 14 16 18 20

0

2

4

6

8

10

12

14

16

18

20

Therefore the fill-in elements in the k part must be annihilated by, for instance, Givens rotations
(O(1) computations)
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Order ZMK IZ

2 vector matrix vector matrix

Tridiag. – – n3 n3

order cond. 2
3
n3 2

3
n3 O(n) O(n)

assembly exp 3n2 2n3 6pn 4pn2

total 2
3
n3 22

3
n3 n3 +O(pn) n3 + 4pn2

Order ZMK IZ

3 vector matrix vector matrix

Tridiag. – – n3 n3

order cond. 21
2
n3 21

2
n3 O(n) O(n)

assembly exp 3n2 2n3 6pn 4pn2

total 21
2
n3 41

2
n3 n3 +O(pn) n3 + 4pn2

Order ZMK IZ

4 vector matrix vector matrix

Tridiag. – – n3 n3

order cond. 4n3 4n3 O(n) O(n)

assembly exp 3n2 2n3 6pn 4pn2

total 4n3 6n3 n3 +O(pn) n3 + 4pn2

Comparison of cost of the approximation
of the exponential without (ZMK) and
with reduction to tridiagonal form (IZ) for
splittings of order 2, 3, 4. Only dominant
terms are reported.
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Matrices in GL(n), SL(n)

Order 5 terms for matrices in Hessenberg form:

0 5 10

0

2

4

6

8

10

X
2

0 5 10

0

2

4

6

8

10

X
3

0 5 10

0

2

4

6

8

10

X
4

0 5 10

0

2

4

6

8

10

X
5

0 1 2 3 4 5 6 7 8 9 10 11

0

1

2

3

4

5

6

7

8

9

10

11
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Symplectic matrices

Order 5 terms for matrices in butterfly form:

0 2 4 6 8 10 12 14 16 18 20

0

2

4

6

8

10

12

14

16

18

20

nz = 56
0 2 4 6 8 10 12 14 16 18 20

0

2

4

6

8

10

12

14

16

18

20

nz = 4
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Reduction to tridiagonal/Hessenberg/
butterfly form
• For tridiagonalization/Hessenberg use Householder reflections:

H = I − βvvT , β =
2

‖v‖2

Then,
HZH = Z − βvvT Z − βZvvT + β2 vvT ZvvT︸ ︷︷ ︸

0 if Z is skew

Cost:

– n3 for symmetric/skew-symmetric matrices

– 10
3
n3 for arbitrary matrices
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• Reduction to butterfly form is done by means of symplectic transformations:

– symplectic Givens/Householder (orthosymplectic)

– symplectic Gauss transformations

as proposed by Faßbender, Benner, Watkins (at the group level, for QR-like iterations).

The basic idea of the algorithm is: at each step j,

– bring the jth column of M into the desired form

– bring the (n + j)th row of M into the desired form.
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• symplectic Givens transformations:,

G =


Ik−1

c s
In−k

Ik−1

−s c
In−k

 ,

• symplectic Householder transformations:

H =


Ik−1

Q
Ik−1

Q

 , Q = In−k+1 − βvv>, β =
2

‖v‖2
,

• symplectic Gauss transformations:

L =



Ik−2

c d
c d

In−k

Ik−2

c−1

c−1

In−k


.
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Comparison of cost of the approximation of the exponential without (ZMK) and with reduction to
Hessenberg form (IZ) for splittings of order 2, 3, 4. Only dominant terms are reported.

Order ZMK IZ

2 vector matrix vector matrix

Hessenberg – – 31
3
n3 31

3
n3

order cond. 11
3
n3 11

3
n3 1

3
n3 1

3
n3

assembly exp 3n2 2n3 n2 n3

total 11
3
n3 21

3
n3 32

3
n3 42

3
n3

Order ZMK IZ

3 vector matrix vector matrix

Hessenberg – – 31
3
n3 31

3
n3

order cond. 5n3 5n3 2
3
n3 2

3
n3

assembly exp 3n2 2n3 n2 n3

total 5n3 7n3 4n3 5n3

Order ZMK IZ

4 vector matrix vector matrix

Hessenberg – – 31
3
n3 31

3
n3

order cond. 7n3 7n3 n3 n3

assembly exp 3n2 2n3 n2 n3

total 7n3 9n3 41
3
n3 51

3
n3
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Some concluding remarks

What we got so far . . .

• Methods that stay on the correct Lie group

• They are cheap

• We can tackle most groups

• High order is easily achievable

• Easy scaling and squaring

Open issues

• A divide and conquer approach – is it suitable for large problems on parallel machines?

• Stiff problems? everything O.K. on SO(n), but what about other problems?

• Different choices of automorphisms that lead to other splittings

• Very large problems (for which O(n3) is not feasible): compare with Krylov
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