An explicit, completely integrable, second-order method for the 3×3 rigid body

This talk is based on a work done in CAS, Oslo, in collaboration with Robert McLachlan.

Antonella Zanna
University of Bergen, Norway
email: anto@ii.uib.no
http://www.ii.uib.no/~anto

Overview

- The Moser-Veselov discrete rigid body
- On the solution of the matrix equation $M=\omega^{\top} J-J \omega$
- Explicit methods for the 3×3 case
- Numerical experiments and comparisons with other methods

44
-
4
-
Back
Close

The Moser-Veselov discrete version of the dynamics of a Rigid Body

Consider the fuctional $S(X)$ determined by

$$
S=\sum_{k} \operatorname{tr}\left(X_{k} J X_{k+1}^{\top}\right)
$$

where $X=\left\{X_{k}\right\}$ with $X_{k} \in \mathrm{O}(N)$ and J is a symmetric matrix. To obtain the stationary points of S, we consider

$$
\sum_{k} \operatorname{tr}\left(X_{k} J X_{k+1}^{\top}\right)-\frac{1}{2} \sum_{k} \operatorname{tr}\left(\Lambda_{k}\left(X_{k} X_{k}^{\top}-I\right)\right),
$$

(where $\Lambda_{k}=\Lambda_{k}^{\top}$ is a Lagrange multiplier), and $\delta S=0$ becomes

$$
X_{k+1} J+X_{k-1} J=\Lambda_{k} X_{k}
$$

from which, multiplying by X_{k}^{\top} on the left and taking into consideration the symmetry of Λ_{k},

$$
\begin{equation*}
X_{k+1} J X_{k}^{\top}+X_{k-1} J X_{k}^{\top}=\Lambda_{k}=\Lambda_{k}^{\top}=X_{k} J X_{k+1}^{\top}+X_{k} J X_{k-1}^{\top}, \tag{1}
\end{equation*}
$$

hence, the discrete analogue of the angular momentum in space,

$$
m_{k}=X_{k} J X_{k-1}^{\top}-X_{k-1} J X_{k}^{\top},
$$

is conserved.

In the body variables, setting $\omega_{k}=X_{k}^{\top} X_{k-1} \in \mathrm{O}(N)$ and $M_{k}=X_{k-1}^{-1} m_{k} X_{k-1}=\omega_{k}^{\top} J-J \omega_{k} \in$ $\mathfrak{s o}(N)^{*}$ (angular momentum w.r.t. the body), (1) becomes

$$
\begin{align*}
M_{k+1} & =\omega_{k} M_{k} \omega_{k}^{\top} \tag{2}\\
M_{k} & =\omega_{k}^{\top} J-J \omega_{k} .
\end{align*}
$$

the discrete Euler-Arnold equation.
In the continuous limit: when $t_{k}=t_{0}+k \varepsilon, k=0,1,2, \ldots$,

- $X_{k}=X\left(t_{k}\right)$
- $\omega_{k}=X_{k}^{\top} X_{k-1} \approx I-\varepsilon \Omega\left(t_{k}\right)$,
- $M_{k} \approx \varepsilon(J \Omega+\Omega J)=\varepsilon M\left(t_{k}\right)$,
letting $\varepsilon \rightarrow 0$, one obtains the familiar Euler-Arnold equations for the motions of the N-dimensional rigid body,

$$
\begin{aligned}
M^{\prime} & =[M, \Omega] \\
M & =J \Omega+\Omega J, \quad \Omega \in \mathfrak{s o}(N) .
\end{aligned}
$$

To solve the discrete Euler-Arnold equations (2):

- For $k=0,1,2, \ldots$, find $\omega_{k} \in \mathfrak{s o}(N)$ such that $M_{k}=\omega_{k}^{\top} J-J \omega_{k}$.
- Update $M_{k+1}=\omega_{k} M_{k} \omega_{k}^{\top}$.

By construction, this algorithm

- is a second order approximation to the continuous rigid body
- preserves exactly momentum and energy (integrable map)
- preserves the standard Poisson structure of $T^{*} \mathfrak{s o}(N)$,

$$
\{f, g\}=\operatorname{tr}\left(M\left[f_{M}, g_{M}\right]\right), \quad f, g \in C^{\infty}(\mathfrak{s o}(N))
$$

where $f_{M}=\left(\partial f / \partial M_{i, j}\right)$.

Note that

- Marsden, Pekarsky \& Skoller (1999) also arrive to an analogous discrete map via a discrete Lie-Poisson (DEP) algorithm.
- Also the IMR is second order, preserves the Poisson structure and all the integrals of the continuous rigid body.

Solving the Moser-Veselov equation

The core of this talk is how to solve numerically the Moser-Veselov equation

- The Moser-Veselov equation (3) has not a unique solution;
- However, if the set S of eigenvalues ν of $W=\omega^{\top} J$ admits a splitting $S=S_{+} \cup S_{-}$, with

$$
\begin{equation*}
\bar{S}_{+}=S_{+}, \quad \bar{S}_{-}=S_{-}, \quad S_{-}=-S_{+}, \quad S_{+} \cap S_{-}=\emptyset, \tag{4}
\end{equation*}
$$

then, there exists a unique $\omega=J W^{-1}$ that satisfies (3), with spec $W=S_{+}$(Moser \& Veselov 1991).

We recall that the eigenvalues ν are the solutions of the characteristic equation

$$
\begin{equation*}
P(\nu)=\operatorname{det}\left(\nu^{2} I-\nu M-J^{2}\right)=0 . \tag{5}
\end{equation*}
$$

\$4
$\boldsymbol{1}$
$\mathbf{4}$
Back
Close

Connections with matrix Riccati equations

Consider the matrix equation

$$
\begin{equation*}
M=X J-J X^{\top} \tag{6}
\end{equation*}
$$

Cardoso \& Leite (2001) shown that every solution of (6) (not necessarily orthogonal) is of the form

$$
X=(M / 2+S) J^{-1}
$$

for some symmetric matrix S.
Furthermore, X is a orthogonal solution of (6) if and only if S is a symmetric solution of the Riccati equation

$$
\begin{equation*}
S^{2}+S(M / 2)+(M / 2)^{\top} S-\left(M^{2} / 4+J^{2}\right)=0 . \tag{7}
\end{equation*}
$$

Riccati equations are associated to symplectic matrices. In our case, the symplectic matrix is

$$
H=\left[\begin{array}{cc}
\frac{M}{2} & I \tag{8}\\
{\frac{M^{2}}{4}}^{2}+J^{2} & \frac{M}{2}
\end{array}\right]
$$

If $\frac{M^{2}}{4}+J^{2}$ is positive definite, it has been shown in (Cardoso \& Leite 2001) that (7) has a unique solution S which is symmetric, positive definite, and such that the eigenvalues of $W=M / 2+S$ have positive real parts. This matrix W is precisely the same matrix in Moser \& Veselov (1991), from which one obtains

$$
\omega=W J^{-1} .
$$

Algorithm(Cardoso \& Leite 2001): Compute X, the unique solution of (6) in the special orthogonal group $\mathrm{SO}(n)$.

1. Find a real Schur form of H,

$$
\tilde{Q}^{\top} H \tilde{Q}=\left[\begin{array}{cc}
T_{11} & T_{12} \tag{9}\\
O & T_{22}
\end{array}\right],
$$

where T_{11} and T_{22} are block upper-triangular matrices such that the real parts of the spectrum of T_{11} are positive and the real parts of the spectrum of T_{22} are negative definite.
2. Partition \tilde{Q} accordingly,

$$
\tilde{Q}=\left[\begin{array}{ll}
Q_{11} & Q_{12} \\
Q_{21} & Q_{22}
\end{array}\right] .
$$

Then, compute

$$
S=Q_{21} Q_{11}^{-1} .
$$

3. Compute

$$
X=\left(\frac{M}{2}+S\right) J^{-1}
$$

Some computational details

- Compute real Schur forms by QR iterations for eigenvalues (Golub \& van Loan 1989)
- Cost: $\mathcal{O}\left((2 N)^{3}\right)$ operations (implicit methods for ODEs: $\left.\mathcal{O}\left(N^{3}\right)\right)$
N being the dimension of M.

The case $N=3$

In this case,

- it is possible to find an explicit spectral decomposition of H (without the QR eigenvalue method)
- construct the real Schur decomposition (9) and hence X from the eigenstructure of H.

This yields an explicit numerical method for the reduced $R B$ equations.

The eigenvalues of the matrix H,

$$
H=\left[\begin{array}{cc}
\frac{M}{2} & I \tag{10}\\
\frac{M^{2}}{4}+J^{2} & \frac{M}{2}
\end{array}\right]
$$

are the solutions of the quadratic eigenvalue problem

$$
P(\lambda)=\operatorname{det}\left(\lambda^{2} I-\lambda M-J^{2}\right)=0
$$

Without loss of generality, we assume that J is diagonal, with entries J_{1}, J_{2}, J_{3}. Then,

$$
\begin{align*}
-P(\lambda)=\lambda^{6} & -\lambda^{4}\left(J_{1}^{2}+J_{2}^{2}+J_{3}^{2}-m_{12}^{2}-m_{13}^{2}-m_{23}^{2}\right) \tag{11}\\
& +\lambda^{2}\left(J_{1}^{2} J_{2}^{2}+J_{1}^{2} J_{3}^{2}+J_{2}^{2} J_{3}^{2}-m_{12}^{2} J_{3}^{2}-m_{13}^{2} J_{2}^{2}-m_{23}^{2} J_{1}^{2}\right)-J_{1}^{2} J_{2}^{2} J_{3}^{2}
\end{align*}
$$

- Reduce to a cubic equation (compute the roots explicitely)

Schematical procedure

- Compute eigenvalues/eigenvectors of H :

$$
H\left[\begin{array}{ll}
Y_{1} & Y_{2}
\end{array}\right]=\left[\begin{array}{ll}
Y_{1} & Y_{2}
\end{array}\right]\left[\begin{array}{ll}
\Lambda_{+} & \\
& \Lambda_{-}
\end{array}\right], \quad \operatorname{Re} \Lambda_{+} \geq 0
$$

(the eigenvectors need not be orthogonal and may be complex). $Y_{1}, Y_{2} \in \mathbb{R}^{6 \times 3}, \Lambda_{ \pm} \in \mathbb{R}^{3 \times 3}$.

- Orthogonalize the eigenvectors (by Grahm-Schmidt or QR),

$$
\left[Y_{1}, Y_{2}\right]=Q R,
$$

so that

$$
H Q=Q R \Lambda R^{-1}
$$

is the complex Schur form.

- Reduce to a real Schur form by considering real/imaginary part (complex Givens rotation).
- Compute $S=Q_{21} Q_{11}^{-1}, \quad X=(M / 2+S) J^{-1}$.
- We don't need all the eigenvectors, just Y_{1}. Don't need R.
- Avoid complex arithmetic alltogether.

Practical computation of the spectral decomposition Assume that $H \mathbf{y}=\lambda \mathbf{y}$, where $\mathbf{y}=\left[\begin{array}{c}\mathbf{y}_{\text {quad }} \\ \mathbf{y}_{\mathbf{d}}\end{array}\right]$ and H is as in 10 . Then,

$$
\left(J^{2}-\lambda M-\lambda^{2} I\right) \mathbf{y}_{\text {quad }}=\mathbf{0},
$$

while

$$
\frac{M}{2} \mathbf{y}_{\text {quad }}+\mathbf{y}_{\mathrm{d}}=\lambda I .
$$

Complex eigenvalues: If $\lambda=\mu+\mathrm{i} \nu$ and

$$
\mathbf{y}=\mathbf{u}+\mathrm{i} \mathbf{v}
$$

then, separating real and imaginary part,

$$
\left[\begin{array}{cc}
J^{2}+\mu M+\left(\nu^{2}-\mu^{2}\right) I & -\nu M+2 \mu \nu I \\
\nu M-2 \mu \nu I & J^{2}+\mu M+\left(\nu^{2}-\mu^{2}\right) I
\end{array}\right]\left[\begin{array}{l}
\mathbf{u}_{\mathrm{quad}} \\
\mathbf{v}_{\mathrm{quad}}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{0} \\
\mathbf{0}
\end{array}\right]
$$

for the eigenvectors of the quadratic eigenvalue problem.
Similarly, for the 'dependent' components,

$$
\begin{aligned}
\frac{M}{2} \mathbf{u}_{\text {quad }}+\mathbf{u}_{\mathrm{d}} & =\mu \mathbf{u}_{\text {quad }}-\nu \mathbf{v}_{\text {quad }} \\
\frac{M}{2} \mathbf{v}_{\text {quad }}+\mathbf{v}_{\mathrm{d}} & =\nu \mathbf{u}_{\text {quad }}+\mu \mathbf{v}_{\text {quad }}
\end{aligned}
$$

The numerical algorithm

For $t_{k}=t_{0}+k h, k=0,1,2 \ldots$

- Compute the eigenvalues of $H=H\left(M_{k}\right)$
$-P(\lambda)$ as in 11. Only $m_{i j}^{2} J_{k}^{2}$ needs be recomputed
- Compute the (real) eigenvectors corresponding to Λ_{+}
- Compute 3 'quadratic' eigenvectors (3 matrix factorizations, LU/QR, with pivoting). No need to compute explicitely L or Q.
- Compute the 'dependent' eigenvectors.
- Orthogonalize the eigenspace
- By (modified) Grahm-Schmidt or QR. Only the Q factor is needed.
- Compute $S=Q_{21} Q_{11}^{-1}, \quad \omega_{k}=(M / 2+S) J^{-1}$
- In the 3×3 case, explicit computation of the inverse is computationally cheaper.
- Update $M_{k+1}=\omega_{k}^{\top} M_{k} \omega_{k}$

Some numerical experiments

We consider with initial condition

$$
\mathbf{m}_{0}=\left[\begin{array}{l}
0.4165 \\
0.9072 \\
0.0588
\end{array}\right]
$$

and matrix J given as

$$
J=\left[\begin{array}{ccc}
0.9218 & 0 & 0 \\
0 & 0.7382 & 0 \\
0 & 0 & 0.1763
\end{array}\right]
$$

and compare the Moser-Veselov explicit scheme with the Hamiltonian-splitting method of (McLachlan 1993)

$$
H=\frac{m_{1}^{2}}{J_{2,2}+J_{3,3}}+\frac{m_{2}^{2}}{J_{1,1}+J_{3,3}}+\frac{m_{3}^{2}}{J_{1,1}+J_{2,2}}=H_{1}+H_{2}+H_{3}
$$

and the Implicit Midpoint Rule (IMR),

$$
\mathbf{m}_{k+1}=\mathbf{m}_{k}+h \mathbf{f}\left(\frac{\mathbf{m}_{k}+\mathbf{m}_{k+1}}{2}\right),
$$

where

$$
\mathbf{f}(\mathbf{m})=\mathbf{m} \times(\tilde{J})^{-1} \mathbf{m}, \quad \tilde{J}=\left[\begin{array}{ccc}
J_{2,2}+J_{3,3} & 0 & 0 \\
0 & J_{1,1}+J_{3,3} & 0 \\
0 & 0 & J_{1,1}+J_{2,2}
\end{array}\right] .
$$

Error of the methods at $t=1$ for various stepsizes

Error of the methods at $t=10$ for various stepsizes

Error in the Hamiltonian function H in the interval [0, 100] and for $h=\frac{1}{2}$.

Floating point operations versus stepsize in the interval $[0,100]$.

The components of the vector \mathbf{m}_{k} for $h=\frac{1}{10} \ldots$

\ldots and for $h=\frac{1}{2} \ldots$

\ldots and for $h=1 \ldots$

Concluding remarks

- A new explicit method for the $N=3$ rigid body
- The method is 2 nd order, completely integrable
- Comparable in cost with the IMR but ≈ 10 more expensive than the McL-splitting
- For larger step-size (when it is cheaper than IMR) it appears to have larger errors
- Open problems:
- Is it possible to make this even cheaper?
- More extensive testing, with different initial conditions and inertia tensors is needed

References

Cardoso, J. R. \& Leite, F. S. (2001), The Moser-Veselov equation, To appear in Lin. Alg. Appl.
Golub, G. H. \& van Loan, C. F. (1989), Matrix Computations, 2nd edn, John Hopkins, Baltimore.
Marsden, J. E., Pekarsky, S. \& Skoller, S. (1999), ‘Discrete Euler-Poicaré and Lie-Poisson equations', Nonlinearity 12, 1647-1662.

McLachlan, R. I. (1993), 'Explicit Lie-Poisson integration and the Euler equations', Physical Review Letters 71, 3043-3046.

Moser, J. \& Veselov, A. P. (1991), 'Discrete Version of Some Classical Integrable Systems and Factorization of Matrix Polynomials', Commun. Math. Phys. 139, 217-243.

