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An explicit, completely integrable,
second-order method for the
3x3 rigid body

This talk is based on a work done in CAS, Oslo, in collaboration with Robert McLachlan.

Antonella Zanna
University of Bergen, Norway

email: anto@ii.uib.no
http://www.ii.uib.no/˜anto
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Overview
• The Moser–Veselov discrete rigid body

• On the solution of the matrix equation M = ω>J − Jω

• Explicit methods for the 3× 3 case

• Numerical experiments and comparisons with other methods
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The Moser–Veselov discrete version of the dynamics of a Rigid Body

Consider the fuctional S(X) determined by

S =
∑

k

tr(XkJX>
k+1)

where X = {Xk} with Xk ∈ O(N) and J is a symmetric matrix. To obtain the stationary points
of S, we consider ∑

k

tr(XkJX>
k+1)−

1

2

∑
k

tr(Λk(XkX
>
k − I)),

(where Λk = Λ>k is a Lagrange multiplier), and δS = 0 becomes

Xk+1J + Xk−1J = ΛkXk,

from which, multiplying by X>
k on the left and taking into consideration the symmetry of Λk,

Xk+1JX>
k + Xk−1JX>

k = Λk = Λ>k = XkJX>
k+1 + XkJX>

k−1, (1)

hence, the discrete analogue of the angular momentum in space,

mk = XkJX>
k−1 −Xk−1JX>

k ,

is conserved.
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In the body variables, setting ωk = X>
k Xk−1 ∈ O(N) and Mk = X−1

k−1mkXk−1 = ω>k J − Jωk ∈
so(N)∗ (angular momentum w.r.t. the body), (1) becomes

Mk+1 = ωkMkω
>
k

Mk = ω>k J − Jωk.
(2)

the discrete Euler–Arnold equation.

In the continuous limit: when tk = t0 + kε, k = 0, 1, 2, . . .,

• Xk = X(tk)

• ωk = X>
k Xk−1 ≈ I − εΩ(tk),

• Mk ≈ ε(JΩ + ΩJ) = εM(tk),

letting ε → 0, one obtains the familiar Euler–Arnold equations for the motions of the N -dimensional
rigid body,

M ′ = [M, Ω]

M = JΩ + ΩJ, Ω ∈ so(N).

To solve the discrete Euler–Arnold equations (2):

• For k = 0, 1, 2, . . ., find ωk ∈ so(N) such that Mk = ω>k J − Jωk.

• Update Mk+1 = ωkMkω
>
k .
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By construction, this algorithm

• is a second order approximation to the continuous rigid body

• preserves exactly momentum and energy (integrable map)

• preserves the standard Poisson structure of T ∗so(N),

{f, g} = tr(M [fM , gM ]), f, g ∈ C∞(so(N)),

where fM = (∂f/∂Mi,j).

Note that

• Marsden, Pekarsky & Skoller (1999) also arrive to an analogous discrete map via a discrete
Lie–Poisson (DEP) algorithm.

• Also the IMR is second order, preserves the Poisson structure and all the integrals of the
continuous rigid body.
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Solving the Moser–Veselov equation
The core of this talk is how to solve numerically the Moser–Veselov equation

M = ω>J − Jω, M> = −M, ω>ω = I. (3)

• The Moser–Veselov equation (3) has not a unique solution;

• However, if the set S of eigenvalues ν of W = ω>J admits a splitting S = S+ ∪ S−, with

S̄+ = S+, S̄− = S−, S− = −S+, S+ ∩ S− = ∅, (4)

then, there exists a unique ω = JW−1 that satisfies (3), with specW = S+ (Moser & Veselov
1991).

We recall that the eigenvalues ν are the solutions of the characteristic equation

P (ν) = det(ν2I − νM − J2) = 0. (5)
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Connections with matrix Riccati equations

Consider the matrix equation
M = XJ − JX>. (6)

Cardoso & Leite (2001) shown that every solution of (6) (not necessarily orthogonal) is of the form

X = (M/2 + S)J−1,

for some symmetric matrix S.

Furthermore, X is a orthogonal solution of (6) if and only if S is a symmetric solution of the Riccati
equation

S2 + S(M/2) + (M/2)>S − (M2/4 + J2) = 0. (7)

Riccati equations are associated to symplectic matrices. In our case, the symplectic matrix is

H =

[
M
2

I
M2

4
+ J2 M

2

]
. (8)

If M2

4
+ J2 is positive definite, it has been shown in (Cardoso & Leite 2001) that (7) has a unique

solution S which is symmetric, positive definite, and such that the eigenvalues of W = M/2 + S
have positive real parts. This matrix W is precisely the same matrix in Moser & Veselov (1991),
from which one obtains

ω = WJ−1.
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Algorithm(Cardoso & Leite 2001): Compute X, the unique solution of (6) in the special orthogonal
group SO(n).

1. Find a real Schur form of H,

Q̃>HQ̃ =

[
T11 T12

O T22

]
, (9)

where T11 and T22 are block upper-triangular matrices such that the real parts of the spectrum
of T11 are positive and the real parts of the spectrum of T22 are negative definite.

2. Partition Q̃ accordingly,

Q̃ =

[
Q11 Q12

Q21 Q22

]
.

Then, compute
S = Q21Q

−1
11 .

3. Compute

X =

(
M

2
+ S

)
J−1.

Some computational details

• Compute real Schur forms by QR iterations for eigenvalues (Golub & van Loan 1989)

• Cost: O((2N)3) operations (implicit methods for ODEs: O(N3))

N being the dimension of M .
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The case N = 3

In this case,

• it is possible to find an explicit spectral decomposition of H (without the QR eigenvalue
method)

• construct the real Schur decomposition (9) and hence X from the eigenstructure of H.

This yields an explicit numerical method for the reduced RB equations.
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The eigenvalues of the matrix H,

H =

[
M
2

I
M2

4
+ J2 M

2

]
(10)

are the solutions of the quadratic eigenvalue problem

P (λ) = det(λ2I − λM − J2) = 0.

Without loss of generality, we assume that J is diagonal, with entries J1, J2, J3. Then,

−P (λ) = λ6 − λ4 (J2
1 + J2

2 + J2
3 −m2

12 −m2
13 −m2

23)

+ λ2 (J2
1J2

2 + J2
1J2

3 + J2
2J2

3 −m2
12J

2
3 −m2

13J
2
2 −m2

23J
2
1 )− J2

1J2
2J2

3 .
(11)

• Reduce to a cubic equation (compute the roots explicitely)
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Schematical procedure

• Compute eigenvalues/eigenvectors of H:

H
[

Y1 Y2

]
=

[
Y1 Y2

] [
Λ+

Λ−

]
, Re Λ+ ≥ 0,

(the eigenvectors need not be orthogonal and may be complex). Y1, Y2 ∈ R6×3, Λ± ∈ R3×3.

• Orthogonalize the eigenvectors (by Grahm-Schmidt or QR),

[Y1, Y2] = QR,

so that
HQ = QRΛR−1

is the complex Schur form.

• Reduce to a real Schur form by considering real/imaginary part (complex Givens rotation).

• Compute S = Q21Q
−1
11 , X = (M/2 + S)J−1.

• We don’t need all the eigenvectors, just Y1. Don’t need R.

• Avoid complex arithmetic alltogether.
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Practical computation of the spectral decomposition Assume that Hy = λy,

where y =

[
yquad

yd

]
and H is as in (10). Then,

(J2 − λM − λ2I)yquad = 0,

while
M

2
yquad + yd = λI.

Complex eigenvalues: If λ = µ + iν and

y = u + iv

then, separating real and imaginary part,[
J2 + µM + (ν2 − µ2)I −νM + 2µνI

νM − 2µνI J2 + µM + (ν2 − µ2)I

] [
uquad

vquad

]
=

[
0
0

]
,

for the eigenvectors of the quadratic eigenvalue problem.

Similarly, for the ‘dependent’ components,

M

2
uquad + ud = µuquad − νvquad

M

2
vquad + vd = νuquad + µvquad.
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The numerical algorithm

For tk = t0 + kh, k = 0, 1, 2 . . .

• Compute the eigenvalues of H = H(Mk)

– P (λ) as in (11). Only m2
ijJ

2
k needs be recomputed

• Compute the (real) eigenvectors corresponding to Λ+

– Compute 3 ‘quadratic’ eigenvectors (3 matrix factorizations, LU/QR, with pivoting). No
need to compute explicitely L or Q.

– Compute the ‘dependent’ eigenvectors.

• Orthogonalize the eigenspace

– By (modified) Grahm–Schmidt or QR. Only the Q factor is needed.

• Compute S = Q21Q
−1
11 , ωk = (M/2 + S)J−1

– In the 3× 3 case, explicit computation of the inverse is computationally cheaper.

• Update Mk+1 = ω>k Mkωk
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Some numerical experiments

We consider with initial condition

m0 =

 0.4165
0.9072
0.0588


and matrix J given as

J =

 0.9218 0 0
0 0.7382 0
0 0 0.1763


and compare the Moser–Veselov explicit scheme with the Hamiltonian-splitting method of (McLach-
lan 1993)

H =
m2

1

J2,2 + J3,3

+
m2

2

J1,1 + J3,3

+
m2

3

J1,1 + J2,2

= H1 + H2 + H3

and the Implicit Midpoint Rule (IMR),

mk+1 = mk + hf(
mk + mk+1

2
),

where

f(m) = m× (J̃)−1m, J̃ =

 J2,2 + J3,3 0 0
0 J1,1 + J3,3 0
0 0 J1,1 + J2,2

 .
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Error of the methods at t = 1 for various stepsizes
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Error of the methods at t = 10 for various stepsizes
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Error in the Hamiltonian function H in the interval [0, 100] and for h = 1
2
.
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Floating point operations versus stepsize in the interval [0, 100].
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The components of the vector mk for h = 1
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. . . and for h = 1
2

. . .
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. . . and for h = 1 . . .
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Concluding remarks
• A new explicit method for the N = 3 rigid body

• The method is 2nd order, completely integrable

• Comparable in cost with the IMR but ≈ 10 more expensive than the McL-splitting

• For larger step-size (when it is cheaper than IMR) it appears to have larger errors

• Open problems:

– Is it possible to make this even cheaper?

– More extensive testing, with different initial conditions and inertia tensors is needed
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