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Overview

e The Moser—Veselov discrete rigid body
e On the solution of the matrix equation M =w'J — Jw
e Explicit methods for the 3 x 3 case

e Numerical experiments and comparisons with other methods




The Moser—Veselov discrete version of the dynamics of a Rigid Body

Consider the fuctional S(X) determined by

S = tr(XpJX{,,)
k
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where X = { X} with X, € O(N) and J is a symmetric matrix. To obtain the stationary points
of S, we consider

Ztr XpJ X)) — Ztr (Ap(Xp X — 1)),
(where A, = A] is a Lagrange multiplier), and 4.5 = 0 becomes
Xpp1d + Xp_1J = A X,
from which, multiplying by X, on the left and taking into consideration the symmetry of Ay,
Xp1JX) + X1 JX) = A = A = Xp X)L + XX, (1)
hence, the discrete analogue of the angular momentum in space,
my, = XpJ X, | — Xp 1 JX],

is conserved.




In the body variables, setting wy, = X X1 € O(N) and M}, = X, ' mp X1 = w} J — Juwy, €
s0(N)* (angular momentum w.r.t. the body), (1)) becomes
Mk+1 = wkMkwkT

4 (2)
Mk = W, J — ka.

the discrete Euler—Arnold equation.

In the continuous limit: when ¢, =ty + ke, Kk =0,1,2,.. .,
o Xy = X(tg)
o wp =X Xp =T —eQty),
o My, ~e(JQU+QJ) =ecM(ty),

letting € — 0, one obtains the familiar Euler—Arnold equations for the motions of the /N-dimensional
rigid body,
M' =[M,Q]

M =JQ+QJ, Q€ so(N).

To solve the discrete Euler—Arnold equations :
e For k=0,1,2,..., find wy, € so(N) such that M = w, J — Juwy.

e Update M1 = wiMw, .
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By construction, this algorithm
e is a second order approximation to the continuous rigid body
e preserves exactly momentum and energy (integrable map)

e preserves the standard Poisson structure of T*so(N),

{f:97 = w(M[far gul), frg € CF(s0(N)),
where fM = (8f/0Mw)

Note that

e Marsden, Pekarsky & Skoller (1999) also arrive to an analogous discrete map via a discrete
Lie—Poisson (DEP) algorithm.

e Also the IMR is second order, preserves the Poisson structure and all the integrals of the
continuous rigid body.
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Solving the Moser—Veselov equation

The core of this talk is how to solve numerically the Moser—Veselov equation
M=w'J-Ju, M =-M ww=IL (3)
e The Moser—Veselov equation has not a unique solution;
o However, if the set S of eigenvalues v of W = w'.J admits a splitting S = S, US_, with
S, =5, S S_=-5,, S.NS_ =10, (4)

then, there exists a unique w = JW ™! that satisfies , with speclW = S, (Moser & Veselov
1991).

We recall that the eigenvalues v are the solutions of the characteristic equation

P(v) = det(v*I —vM — J?) = 0. (5)
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Connections with matrix Riccati equations

Consider the matrix equation
M=XJ-JX". (6)

Cardoso & Leite (2001) shown that every solution of (€] (not necessarily orthogonal) is of the form
X =(M/2+8)J7,

for some symmetric matrix S.
Furthermore, X is a orthogonal solution of (@ if and only if S is a symmetric solution of the Riccati

equation
S% 4+ S(M/2) + (M/2)'TS — (M?*/4 4 J?) = 0. (7)

Riccati equations are associated to symplectic matrices. In our case, the symplectic matrix is

m= Lot y] i
Mg M

2

If MT2 + J? is positive definite, it has been shown in (Cardoso & Leite 2001) that @) has a unique
solution S which is symmetric, positive definite, and such that the eigenvalues of W = M /2 + S
have positive real parts. This matrix W is precisely the same matrix in Moser & Veselov (1991),

from which one obtains
w=WJl
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Algorithm(Cardoso & Leite 2001): Compute X, the unique solution of @ in the special orthogonal
group SO(n).

1. Find a real Schur form of H,
(9)

where T, and T5, are block upper-triangular matrices such that the real parts of the spectrum
of T, are positive and the real parts of the spectrum of T, are negative definite.

~TorA | T T2
QHQ_[O T22:|7

2. Partition Q accordingly,

5 | Qu Qe
Q_{Qm Q22}'

Then, compute

S = QuQr.

X:<%+S>JP

3. Compute

Some computational details

e Compute real Schur forms by QR iterations for eigenvalues (Golub & van Loan 1989)
e Cost: O((2N)?) operations (implicit methods for ODEs: O(N?))
N being the dimension of M.
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The case N =3

In this case,

e it is possible to find an explicit spectral decomposition of H (without the QR eigenvalue
method)

e construct the real Schur decomposition (9) and hence X from the eigenstructure of H.

This yields an explicit numerical method for the reduced RB equations.




The eigenvalues of the matrix H,

M 1
A=t p ]
wir Y

are the solutions of the quadratic eigenvalue problem
P\ = det(/\QI — M — J2) =0.
Without loss of generality, we assume that J is diagonal, with entries .J;, J5, J3. Then,

—PA) = A = XU (P + J5 + J§ = miy, —miz —m3y)

+ N (TS + JRJS 4 J3TE = minJs — migJy —migJY) — JPJGJS

e Reduce to a cubic equation (compute the roots explicitely)

(11)
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Schematical procedure

e Compute eigenvalues/eigenvectors of H:

H(Y Y2 ]=[Y m{“ A_}, ReA, >0,

(the eigenvectors need not be orthogonal and may be complex). Y, Y, € RO*3 A, € R3*3,

e Orthogonalize the eigenvectors (by Grahm-Schmidt or QR),
[Y1,Ys] = QR,

so that
HQ = QRAR™

is the complex Schur form.

e Reduce to a real Schur form by considering real /imaginary part (complex Givens rotation).

o Compute S =QuQ;, X=(M/2+S)J"
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e We don't need all the eigenvectors, just Y;. Don't need R.

e Avoid complex arithmetic alltogether.




Practical computation of the spectral decomposition Assume that Hy = Ay,
where y = [ y;_uad } and H is as in 1} Then,
d

J? =AM = N1)Youaa = 0, 12/100
q

while

M

5 Yauad +ya = Al

Complex eigenvalues: If A = u + iv and

y=u+iv
then, separating real and imaginary part,
J?*+ M + (V2 — p?)I —vM +2uvl Uquad | | O
vM —2uvl J? + uM + (V2 — I Vauad | | O |’

for the eigenvectors of the quadratic eigenvalue problem.
Similarly, for the ‘dependent’ components,

?uquad +u = HUquad — YVquad
M
7unad +vqg = VvV Uquad + MV quad -




The numerical algorithm
Forty =ty +kh, k=0,1,2...
e Compute the eigenvalues of H = H (M)
— P()) asin . Only m?,.J? needs be recomputed
e Compute the (real) eigenvectors corresponding to A

— Compute 3 ‘quadratic’ eigenvectors (3 matrix factorizations, LU/QR, with pivoting). No
need to compute explicitely L or Q).

— Compute the ‘dependent’ eigenvectors.
e Orthogonalize the eigenspace
— By (modified) Grahm—-Schmidt or QR. Only the @ factor is needed.
e Compute S =0QunQy' wp=(M/2+8)J!
— In the 3 x 3 case, explicit computation of the inverse is computationally cheaper.

° Update Mk+1 = w,;erwk
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Some numerical experiments

We consider with initial condition

0.4165
my = | 0.9072
0.0588
and matrix J given as
0.9218 0 0
J = 0 0.7382 0
0 0 0.1763

and compare the Moser—Veselov explicit scheme with the Hamiltonian-splitting method of (McLach-

lan 1993)

2 2 2
my My m3

H= + + =H,+ Hy+ H.
Joo+J3z  Jig+Jzz Jig+ Jop ! 2 ’
and the Implicit Midpoint Rule (IMR),
m; +m
mg = my + hf(%%
where
~ " Jop + J33 0 0
f(m) =m X (J)_lm, J = 0 J1,1 + J373 0

0 0 J1,1 + J272
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Error of the methods at £ = 1 for various stepsizes
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Error of the methods at t = 10 for various stepsizes

10 T
10" .
10° | .
o
-
ﬁ
5 10° | .
S
5
10* -
e McL splitting
e IMR
10'5 L ——— MVIu .
E— Mvar
I h2
10-6 2 Il 0
10 10 10

stepsize




Error in the Hamiltonian function H in the interval [0, 100] and for h = %
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Floating point operations versus stepsize in the interval [0, 100].
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The components of the vector my, for h =
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..and forh =13 ...
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...andforh=1...
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Concluding remarks

e A new explicit method for the N = 3 rigid body

e The method is 2nd order, completely integrable

e Comparable in cost with the IMR but =~ 10 more expensive than the McL-splitting
e For larger step-size (when it is cheaper than IMR) it appears to have larger errors
e Open problems:

— Is it possible to make this even cheaper?

— More extensive testing, with different initial conditions and inertia tensors is needed
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