The Discrete Moser-Veselov algorithm for the free rigid body, revisited

This talk is based on work done in collaboration with Robert McLachlan, Massey University, New Zealand.
Report in Informatics nr. 255 (2003)

Antonella Zanna
University of Bergen, Norway
email: anto@ii.uib.no
http://www.ii.uib.no/~anto

Overview

The subject of this talk is the numerical solution of the free RB equations,

$$
M^{\prime}=[M, \Omega], \quad M=\Omega J+J \Omega
$$

where M, Ω are skew-symmetric matrices and J is a symmetric (diagonal) matrix.
M is the matrix of body momenta
Ω is the matrix of body angular velocity

Often the above equations are associated with the equations that give the configuration of the body in the fixed frame,

$$
Q^{\prime}=Q \Omega, \quad Q \in \mathrm{SO}(N)
$$

- The Discrete Moser-Veselov description of the rigid body
- On the solution of the matrix equation $M=\omega^{\top} J-J \omega$
- Explicit methods for the 3×3 case
- Backward error analysis of the the DMV algorithm
- Higher order integrable approximations
- Numerical experiments and comparisons with other methods

The Moser-Veselov discrete version of the dynamics of a Rigid Body

Consider the fuctional $S(X)$ determined by

$$
S=\sum_{k} \operatorname{tr}\left(X_{k} J X_{k+1}^{\top}\right)
$$

where $X=\left\{X_{k}\right\}$ with $X_{k} \in \mathrm{O}(N)$ and J is a symmetric matrix. To obtain the stationary points of S, we consider

$$
\sum_{k} \operatorname{tr}\left(X_{k} J X_{k+1}^{\top}\right)-\frac{1}{2} \sum_{k} \operatorname{tr}\left(\Lambda_{k}\left(X_{k} X_{k}^{\top}-I\right)\right),
$$

(where $\Lambda_{k}=\Lambda_{k}^{\top}$ is a Lagrange multiplier), and $\delta S=0$ becomes

$$
X_{k+1} J+X_{k-1} J=\Lambda_{k} X_{k}
$$

from which, multiplying by X_{k}^{\top} on the left and taking into consideration the symmetry of Λ_{k},

$$
\begin{equation*}
X_{k+1} J X_{k}^{\top}+X_{k-1} J X_{k}^{\top}=\Lambda_{k}=\Lambda_{k}^{\top}=X_{k} J X_{k+1}^{\top}+X_{k} J X_{k-1}^{\top}, \tag{1}
\end{equation*}
$$

hence, the discrete analogue of the angular momentum in space,

$$
m_{k}=X_{k} J X_{k-1}^{\top}-X_{k-1} J X_{k}^{\top},
$$

is conserved.

In the body variables, setting $\omega_{k}=X_{k}^{\top} X_{k-1} \in \mathrm{O}(N)$ and $M_{k}=X_{k-1}^{-1} m_{k} X_{k-1}=\omega_{k}^{\top} J-J \omega_{k} \in$ $\mathfrak{s o}(N)^{*}$ (angular momentum w.r.t. the body), (1) becomes

$$
\begin{align*}
M_{k+1} & =\omega_{k} M_{k} \omega_{k}^{\top} \tag{2}\\
M_{k} & =\omega_{k}^{\top} J-J \omega_{k} .
\end{align*}
$$

the discrete Euler-Arnold equation.
In the continuous limit: when $t_{k}=t_{0}+k \varepsilon, k=0,1,2, \ldots$,

- $X_{k}=X\left(t_{k}\right)$
- $\omega_{k}=X_{k}^{\top} X_{k-1} \approx I-\varepsilon \Omega\left(t_{k}\right)$,
- $M_{k} \approx \varepsilon(J \Omega+\Omega J)=\varepsilon M\left(t_{k}\right)$,
letting $\varepsilon \rightarrow 0$, one obtains the familiar Euler-Arnold equations for the motions of the N-dimensional rigid body,

$$
\begin{aligned}
M^{\prime} & =[M, \Omega] \\
M & =J \Omega+\Omega J, \quad \Omega \in \mathfrak{s o}(N) .
\end{aligned}
$$

Starting from the continuous equations

The Lagrangian of the continuous RB equations, is the kinetic energy,

$$
\begin{equation*}
L=\frac{1}{2} \operatorname{tr}\left(\Omega^{\top} M\right)=\frac{1}{2} \operatorname{tr}\left(-\Omega^{2} J-\Omega J \Omega\right)=\operatorname{tr}\left(\Omega^{\top} J \Omega\right) \tag{3}
\end{equation*}
$$

where we take into account that $\Omega^{\top}=-\Omega$ and that the trace is invariant under cyclic permutations. Following (Marsden, Pekarsky \& Shkoller 1999), discretise $\Omega=g^{-1} \dot{g}$, where $g \in \operatorname{SO}(N)$ is the configuration of the body, using a finite difference approximation of the derivative,

$$
\Omega=g^{-1} \dot{g} \approx \frac{1}{h} g_{k+1}^{\top}\left(g_{k+1}-g_{k}\right), \quad g_{k}, g_{k+1} \in \mathrm{SO}(N)
$$

which gives

$$
L \approx \frac{1}{h^{2}} \operatorname{tr}\left(J-g_{k}^{\top} g_{k+1} J-J g_{k+1}^{\top} g_{k}-g_{k}^{\top} g_{k+1} J g_{k+1}^{\top} g_{k}\right)
$$

Due to the orthogonality of the g_{k} 's and the cyclicity of the trace, the first and the last term cancel, and moreover, we can write

$$
L \approx \frac{1}{h^{2}} \operatorname{tr}\left(g_{k} J g_{k+1}^{\top}\right)
$$

Up a scaling factor, this is precisely the discrete Lagrangian of $\mathrm{M}-\mathrm{V}$ whereas X_{k} is replaced by g_{k}.

To solve the discrete Euler-Arnold equations (2):

- For $k=0,1,2, \ldots$, find $\omega_{k} \in \mathrm{SO}(N)$ such that $M_{k}=\omega_{k}^{\top} J-J \omega_{k}$.
- Update $M_{k+1}=\omega_{k} M_{k} \omega_{k}^{\top}$.

By construction, this algorithm

- is a second order approximation to the continuous rigid body
- preserves exactly momentum and energy (integrable map)
- preserves the standard Poisson structure of $T^{*} \mathfrak{s o}(N)$,

$$
\{f, g\}=\operatorname{tr}\left(M\left[f_{M}, g_{M}\right]\right), \quad f, g \in C^{\infty}(\mathfrak{s o}(N))
$$

where $f_{M}=\left(\partial f / \partial M_{i, j}\right)$.

Note that

- Also the IMR is second order, preserves all the integrals of the continuous rigid body.
- Another much used method is a Lie-Poisson integrator of McLachlan and Reich. For the 3×3 RB, it consists in splitting the Hamiltonian

$$
H=\mathcal{H}_{1}+\mathcal{H}_{2}+\mathcal{H}_{3}=\frac{m_{1}^{2}}{J_{2}+J_{3}}+\frac{m_{2}^{2}}{J_{1}+J_{3}}+\frac{m_{3}^{2}}{J_{1}+J_{2}}
$$

and integrating explicitly (a la Strang) the vector fields of each split Hamiltonian. The method is second order, explicit, preserves the Poisson structure but does not preserve H.

Error in the Hamiltonian function H in the interval $[0,100]$ and for $h=\frac{1}{2}$.

The components of the vector \mathbf{m}_{k} for $h=\frac{1}{2} \ldots$

$$
\mathbf{m}=\left[\begin{array}{l}
m_{1} \\
m_{2} \\
m_{3}
\end{array}\right] \quad \equiv \quad \hat{\mathbf{m}}=M=\left[\begin{array}{ccc}
0 & -m_{3} & m_{2} \\
m_{3} & 0 & -m_{1} \\
-m_{2} & m_{1} & 0
\end{array}\right]
$$

Solving the Moser-Veselov equation

How to solve numerically the Moser-Veselov equation?

$$
\begin{equation*}
M=\omega^{\top} J-J \omega, \quad M^{\top}=-M, \quad \omega^{\top} \omega=I \tag{4}
\end{equation*}
$$

- The Moser-Veselov equation (4) has not a unique solution;
- However, if the set S of eigenvalues λ of $W=\omega^{\top} J$ admits a splitting $S=S_{+} \cup S_{-}$, with

$$
\begin{equation*}
\bar{S}_{+}=S_{+}, \quad \bar{S}_{-}=S_{-}, \quad S_{-}=-S_{+}, \quad S_{+} \cap S_{-}=\emptyset \tag{5}
\end{equation*}
$$

then, there exists a unique $\omega=J W^{-1}$ that satisfies (4), with spec $W=S_{+}$(Moser \& Veselov 1991).

We recall that the eigenvalues λ are the solutions of the characteristic equation

$$
\begin{equation*}
P(\lambda)=\operatorname{det}\left(\lambda^{2} I-\lambda M-J^{2}\right)=0 \tag{6}
\end{equation*}
$$

4
-
4
-
Back
Close

Connections with matrix Ricatti equations

Consider the matrix equation

$$
\begin{equation*}
M=X J-J X^{\top} \tag{7}
\end{equation*}
$$

Cardoso \& Leite (2001) shown that every solution of (7) (not necessarily orthogonal) is of the form

$$
X=(M / 2+S) J^{-1}
$$

for some symmetric matrix S.
Furthermore, X is a orthogonal solution of (7) if and only if S is a symmetric solution of the Riccati equation

$$
\begin{equation*}
S^{2}+S(M / 2)+(M / 2)^{\top} S-\left(M^{2} / 4+J^{2}\right)=0 . \tag{8}
\end{equation*}
$$

Riccati equations are associated to symplectic matrices. In our case, the symplectic matrix is

$$
H_{\text {sympl }}=\left[\begin{array}{cc}
\frac{M}{2} & I \tag{9}\\
\frac{M^{2}}{4}+J^{2} & \frac{M}{2}
\end{array}\right] .
$$

If $\frac{M^{2}}{4}+J^{2}$ is positive definite, it has been shown in (Cardoso \& Leite 2001) that (8) has a unique solution S which is symmetric, positive definite, and such that the eigenvalues of $W=M / 2+S$ have positive real parts. This matrix W is precisely the same matrix in Moser \& Veselov (1991), from which one obtains

$$
\omega=W J^{-1} .
$$

Algorithm(Cardoso \& Leite 2001): Compute X, the unique solution of (7) in the special orthogonal group $\mathrm{SO}(n)$.

1. Find a real Schur form of $H_{\text {sympl }}$,

$$
\tilde{Q}^{\top} H_{\text {sympl }} \tilde{Q}=\left[\begin{array}{cc}
T_{11} & T_{12} \tag{10}\\
O & T_{22}
\end{array}\right]
$$

where T_{11} and T_{22} are block upper-triangular matrices such that the real parts of the spectrum of T_{11} are positive and the real parts of the spectrum of T_{22} are negative definite.
2. Partition \tilde{Q} accordingly,

$$
\tilde{Q}=\left[\begin{array}{ll}
Q_{11} & Q_{12} \\
Q_{21} & Q_{22}
\end{array}\right]
$$

Then, compute

$$
S=Q_{21} Q_{11}^{-1}
$$

3. Compute

$$
X=\left(\frac{M}{2}+S\right) J^{-1}
$$

Some computational details

- Compute real Schur forms by QR iterations for eigenvalues (Golub \& van Loan 1989)
- Cost: $\mathcal{O}\left((2 N)^{3}\right)$ operations (implicit methods for ODEs: $\mathcal{O}\left(N^{3}\right)$)
N being the dimension of M.

The case $N=3$

In this case,

- it is possible to find an explicit spectral decomposition of $H_{\text {sympl }}$ (without the QR eigenvalue method)
- construct the real Schur decomposition 10 and hence X from the eigenstructure of $H_{\text {sympl }}$.

This yields an explicit numerical method for the reduced $R B$ equations.

The eigenvalues of the matrix $H_{\text {sympl }}$,

$$
H_{\text {sympl }}=\left[\begin{array}{cc}
\frac{M}{2} & I \tag{11}\\
\frac{M^{2}}{4}+J^{2} & \frac{M}{2}
\end{array}\right]
$$

are the solutions of the quadratic eigenvalue problem

$$
P(\lambda)=\operatorname{det}\left(\lambda^{2} I-\lambda M-J^{2}\right)=0
$$

Without loss of generality, we assume that J is diagonal, with entries J_{1}, J_{2}, J_{3}. Then,

$$
\begin{align*}
&-P(\lambda)= \lambda^{6}-\lambda^{4}\left(J_{1}^{2}+J_{2}^{2}+J_{3}^{2}-m_{12}^{2}-m_{13}^{2}-m_{23}^{2}\right) \\
&+\lambda^{2}\left(J_{1}^{2} J_{2}^{2}+J_{1}^{2} J_{3}^{2}+J_{2}^{2} J_{3}^{2}-m_{12}^{2} J_{3}^{2}-m_{13}^{2} J_{2}^{2}-m_{23}^{2} J_{1}^{2}\right)-J_{1}^{2} J_{2}^{2} J_{3}^{2} \tag{12}\\
&=\lambda^{6}-\lambda^{4}\left(\operatorname{tr}\left(J^{2}\right)-\|\mathbf{m}\|_{2}\right)+\lambda^{2}\left(C_{J, 2}-H_{2}\right)-\operatorname{det}\left(J^{2}\right) \\
& C_{J, i, j}=J_{1}^{i} J_{2}^{j}+J_{1}^{i} J_{3}^{j}+J_{2}^{i} J_{3}^{j} \\
& C_{J, i}=C_{J, i, i} \\
& C_{J}=C_{J, 1} \\
& H_{2}=\left(J_{1}+J_{2}\right)\left(J_{1}+J_{3}\right)\left(J_{2}+J_{3}\right) H-C_{J}\|\mathbf{m}\|_{2}
\end{align*}
$$

- Reduce to a cubic equation (compute the roots explicitely)

Schematical procedure

- Compute eigenvalues/eigenvectors of $H_{\text {sympl }}$:

$$
H_{\text {sympl }}\left[\begin{array}{ll}
Y_{1} & Y_{2}
\end{array}\right]=\left[\begin{array}{ll}
Y_{1} & Y_{2}
\end{array}\right]\left[\begin{array}{ll}
\Lambda_{+} & \\
& \Lambda_{-}
\end{array}\right], \quad \operatorname{Re} \Lambda_{+} \geq 0
$$

(the eigenvectors need not be orthogonal and may be complex). $Y_{1}, Y_{2} \in \mathbb{R}^{6 \times 3}, \Lambda_{ \pm} \in \mathbb{R}^{3 \times 3}$.

- Orthogonalize the eigenvectors (by Grahm-Schmidt or QR),

$$
\left[Y_{1}, Y_{2}\right]=Q R,
$$

so that

$$
H_{\text {sympl }} Q=Q R \Lambda R^{-1}
$$

is the complex Schur form.

- Reduce to a real Schur form by considering real/imaginary part (complex Givens rotation).
- Compute $S=Q_{21} Q_{11}^{-1}, \quad X=(M / 2+S) J^{-1}$.
- We don't need all the eigenvectors, just Y_{1}. Don't need R.
- Avoid complex arithmetic alltogether.

The numerical DMV algorithm

- $\mathbf{m}_{0} \mapsto h M_{0}=h \hat{\mathbf{m}}_{0}$.
- Compute the eigenvalues of $H_{\text {sympl }}=H\left(M_{k}\right)$ solving for $P(\lambda)=0$ as in (12).
- For $t_{k}=t_{0}+k h, k=0,1,2 \ldots$
- Compute the (real) eigenvectors corresponding to Λ_{+}
* Compute 3 'quadratic' eigenvectors (3 matrix factorizations, LU/QR, with pivoting). No need to compute explicitely L or Q.
* Compute the 'dependent' eigenvectors.
- Orthogonalize the eigenspace
* By (modified) Grahm-Schmidt or QR. Only the Q factor is needed.
- Compute $\quad S=Q_{21} Q_{11}^{-1}, \quad \omega_{k}=(M / 2+S) J^{-1}$
* Update $M_{k+1}=\omega_{k}^{\top} M_{k} \omega_{k}$
- Rescale $\mathbf{m}_{N} \leftarrow M_{N} / h$.

This algorithm produces an explicit method that is about $20-22$ times more expensive than LP2, the explicit method of McLachlan and Reich.

BEA for DMV

Recall the DMV equations and the continuous RB equations

$$
\begin{array}{ll}
M_{k+1}=\omega_{k} M_{k} \omega_{k}^{\top}, & M^{\prime}=[M, \Omega] \\
M_{k}=\omega_{k}^{\top} J-J \omega_{k}, & M=\Omega J+J \Omega,
\end{array}
$$

where $\omega_{k} \approx I-h \Omega\left(t_{k}\right)$.
We wish to write

$$
M_{k+1}=\Phi_{h}\left(M_{k}\right)=M_{k}+h\left[M_{k}, \Omega_{k}\right]+h^{2} d_{2}+h^{3} d_{3}+h^{4} d_{4}+\cdots,
$$

and find the modified vector field

$$
\begin{equation*}
\tilde{M}^{\prime}=[\tilde{M}, \tilde{\Omega}]+h f_{2}(\tilde{M}, \tilde{\Omega})+h^{2} f_{3}(\tilde{M}, \tilde{\Omega})+h^{3} f_{4}(\tilde{M}, \tilde{\Omega})+\cdots \tag{13}
\end{equation*}
$$

such that $\Phi_{h}\left(M_{k}\right)$ equals the solution $\tilde{M}\left(t_{k+1}\right)$ at time $t_{k+1}=t_{0}+(k+1) h$ of the modified vector field (13).
To find $\Phi_{k}(h)$, we write

$$
\begin{equation*}
\omega_{k}=\exp \left(-h \Omega_{0}-h^{2} \Omega_{1}-h^{3} \Omega_{2}-h^{4} \Omega_{3}-h^{5} \Omega_{4}+\cdots\right), \tag{14}
\end{equation*}
$$

where $\Omega_{0}, \Omega_{1}, \Omega_{2}, \ldots$, are skew-symmetric matrices computed so that

$$
\begin{equation*}
\omega_{k}^{\top} J-J \omega_{k}=h\left(\Omega\left(t_{k}\right) J+J \Omega\left(t_{k}\right)\right) . \tag{15}
\end{equation*}
$$

we obtain

$$
\begin{aligned}
h\left(\Omega\left(t_{k}\right) J+J \Omega\left(t_{k}\right)\right)=h\left(\Omega_{0} J\right. & \left.+J \Omega_{0}\right)+h^{2}\left(\Omega_{1} J+J \Omega_{1}+\frac{1}{2}\left(\Omega_{0}^{2} J-J \Omega_{0}^{2}\right)\right) \\
& +h^{3}\left(\Omega_{2} J+J \Omega_{2}+\frac{1}{2}\left[\left(\Omega_{0} \Omega_{1}+\Omega_{1} \Omega_{0}\right), J\right]+\frac{1}{6}\left(\Omega_{0}^{3} J+J \Omega_{0}^{3}\right)\right)+\cdots
\end{aligned}
$$

Comparing left and right-hand-sides, it is trivially observed that the order-h term disappears if $\Omega_{0}=\Omega$ (to simplify notation, we omit the dependence of Ω on t_{k}). In order to annihilate the h^{2}-term, we require that

$$
\Omega_{1} J+J \Omega_{1}+\frac{1}{2}\left(\Omega_{0}^{2} J-J \Omega_{0}^{2}\right)=0
$$

Recall that $M=\Omega J+J \Omega$ and hence $M^{\prime}=\Omega^{\prime} J+J \Omega^{\prime}$. On the other hand, $M^{\prime}=[M, \Omega]=$ $-\left(\Omega^{2} J-J \Omega^{2}\right)$. Hence we can write

$$
O=\Omega_{1} J+J \Omega_{1}-\frac{1}{2} M^{\prime}=\Omega_{1} J+J \Omega_{1}-\frac{1}{2}\left(\Omega^{\prime} J+J \Omega^{\prime}\right)
$$

and the identity is satisfied by if and only if

$$
\begin{equation*}
\Omega_{1}=\frac{1}{2} \Omega^{\prime} \tag{16}
\end{equation*}
$$

In general, the algorithm to derive Ω_{i}, for $i=1,2, \ldots$, is

1. Find the coefficient of h^{i+1} in 15 and set it equal to zero. This will give an equation of the type $\Omega_{i} J+J \Omega_{i}=C_{i} J+J C_{i}+\left[D_{i}, J\right]$. Note that the terms $C_{i} J+J C_{i}$ have an odd occurrence of the $\Omega_{j} \mathrm{~s}$, while the terms of the type $\left[D_{i}, J\right]$ have an even occurrence of the $\Omega_{j} \mathrm{~s}$.
2. Use the derivatives of M and Ω to express the term $\left[D_{i}, J\right]$ as $\tilde{C}_{i} J+J \tilde{C}_{i}$.
3. Deduce $\Omega_{i}=C_{i}+\tilde{C}_{i}$.

$$
\begin{aligned}
& \hline \Omega_{0}=\Omega \\
& \Omega_{1}=\frac{1}{2} \Omega^{\prime} \\
& \Omega_{2}=\frac{1}{4} \Omega^{\prime \prime}-\frac{1}{6} \Omega^{3} \\
& \Omega_{3}=\frac{1}{8} \Omega^{\prime \prime \prime}-\frac{1}{24}\left(5 \Omega^{2} \Omega^{\prime}+2 \Omega \Omega^{\prime} \Omega+5 \Omega^{\prime} \Omega^{2}\right) \\
& \hline
\end{aligned}
$$

The functions Ω_{i}
Once the Ω_{i} s are known, substituting back in $M_{k+1}=\omega_{k}^{\top} M_{k} \omega_{k}$ and using the well known identity

$$
\exp (X) Y \exp (-X)=\exp _{\mathrm{ad}_{X}} Y=\sum_{k=0}^{\infty} \frac{1}{k!} \operatorname{ad}_{X}^{k}(Y)
$$

where $\operatorname{ad}_{X}(Y)=[X, Y]$ and, recursively, $\operatorname{ad}_{X}^{k}(Y)=\left[X, \operatorname{ad}_{X}^{k-1}(Y)\right]$, we find the expressions for the functions d_{i} in terms of the $\Omega_{i-1}, \Omega_{i-2}, \ldots, \Omega_{0}$,

$$
\begin{gather*}
d_{i}=\sum_{j=1}^{i} \frac{(-1)^{j}}{j!} \sum_{k_{1}+k_{2}+\cdots+k_{j}=i-j} \operatorname{ad}_{\Omega_{k_{1}}} \operatorname{ad}_{\Omega_{k_{2}}} \cdots \operatorname{ad}_{\Omega_{k_{j}}} M, \quad k_{1}, \ldots k_{j} \in\{0,1, \ldots, i-1\} . \tag{17}\\
\quad d_{2}=\frac{1}{2}\left(\left[M, \Omega^{\prime}\right]+[[M, \Omega], \Omega]\right), \\
d_{3}=\frac{1}{4}\left[M, \Omega^{\prime \prime}\right]+\frac{1}{4}\left[\left[M, \Omega^{\prime}\right], \Omega\right]+\frac{1}{4}\left[[M, \Omega], \Omega^{\prime}\right]+\frac{1}{6}[[[M, \Omega], \Omega], \Omega]-\frac{1}{6}\left[M, \Omega^{3}\right], \tag{18}\\
d_{4}=\ldots,
\end{gather*}
$$

Taylor expansion of the solution of the modified equation

Consider

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \tilde{y}=f(\tilde{y})+h f_{2}(\tilde{y})+h^{2} f_{3}(\tilde{y})+\cdots
$$

where $f(M)=[M, \Omega]=\left[M, \mathcal{J}^{-1} M\right]$ is the original vector field of the RB equations, where \mathcal{J} is a linear operator, defined such that $\mathcal{J} \Omega=\Omega J+J \Omega=M$. Putting $\tilde{y}(t)=M(t)$, we expand the solution of the above equation in a Taylor series and collect corresponding powers of h,

$$
\begin{aligned}
\tilde{y}(t+h)=M(t) & +h f(M)+h^{2}\left(f_{2}(M)+\frac{1}{2!} f^{\prime} f(M)\right) \\
& +h^{3}\left(f_{3}(M)+\frac{1}{2!}\left(f^{\prime} f_{2}(M)+f_{2}^{\prime} f(M)\right)+\frac{1}{3!}\left(f^{\prime \prime}(f, f)(M)+f^{\prime} f^{\prime} f(M)\right)\right)+\cdots
\end{aligned}
$$

where f^{\prime} is considered as a linear operator, $f^{\prime \prime}$ as a bilinear operator and so on and so forth. In our case,

$$
\begin{aligned}
f^{\prime}(z)(M) & =\left[z, \mathcal{J}^{-1} M\right]+\left[M, \mathcal{J}^{-1} z\right] \\
& =[z, \Omega]+\left[M, \mathcal{J}^{-1} z\right] \\
f^{\prime \prime}\left(z_{1}, z_{2}\right)(M) & =2\left[z_{1}, \mathcal{J}^{-1} z_{2}\right],
\end{aligned}
$$

and, since f is quadratic, $f^{\prime \prime \prime}$ and all the other higher derivatives equal zero.
At this point it is important to stress an important difference between the expressions for the modified vector field of (Hairer, Lubich \& Wanner 2002) and ours. While the vector field discussed in (Hairer et al. 2002) is in \mathbb{R}^{n}, hence the $f^{\prime \prime}$ is a symmetric quadratic operator, this is not the case for our vector field which is on matrices, thus

$$
f^{\prime \prime}\left(f^{\prime} f, f\right) \neq f^{\prime \prime}\left(f, f^{\prime} f\right)
$$

This non-commutative case is discussed with more generality in (Munthe-Kaas \& Krogstad 2002). However, we observe that all the terms containing combinations of $f^{\prime \prime}, f^{\prime}$ and f correspond simply to higher derivatives of f. The mixed terms are treated instead specifically. After some algebra, we have

$$
\begin{align*}
f_{2}= & d_{2}-\frac{1}{2!} f^{\prime} f(M) \\
= & O \\
f_{3}= & d_{3}-\frac{1}{3!}\left(f^{\prime \prime}(f, f)(M)+f^{\prime} f^{\prime} f(M)\right) \\
= & \frac{1}{12}\left[M, \Omega^{\prime \prime}-\left[\Omega, \Omega^{\prime}\right]-2 \Omega^{3}\right], \\
f_{4}= & d_{4}-\frac{1}{4!} M^{(i v)}-\frac{1}{2!}\left(f^{\prime} f_{3}+f_{3}^{\prime} f\right) \tag{19}\\
= & O \\
f_{5}= & d_{5}-\frac{1}{5!} M^{(v)}-\frac{1}{2!}\left(f^{\prime} f_{4}+f_{4} f^{\prime}+\frac{1}{2!} \frac{\mathrm{d}}{\mathrm{~d} t}\left(f_{3}^{\prime} f+f^{\prime} f_{3}\right)\right) \\
= & \frac{1}{80}\left[M, \Omega^{(i v)}\right]-\frac{1}{80}\left[M,\left[\Omega, \Omega^{\prime \prime \prime}\right]\right]+\frac{3}{40}\left[M, \Omega^{5}-\Omega^{\prime} \Omega \Omega^{\prime}\right] \\
& +\frac{1}{80}\left[M,\left[\Omega^{\prime}, \Omega^{\prime \prime}\right]\right]-\frac{1}{40}\left[M, \Omega \Omega^{\prime \prime} \Omega\right]-\frac{1}{20}\left[M, \Omega^{2} \Omega^{\prime \prime}+\Omega^{\prime \prime} \Omega^{2}\right] \\
& \quad+\frac{1}{20}\left[M,\left[\Omega^{3}, \Omega^{\prime}\right]\right]-\frac{1}{40}\left[M, \Omega^{2} \Omega+\Omega \Omega^{\prime 2}+\Omega\left[\Omega, \Omega^{\prime}\right] \Omega\right]
\end{align*}
$$

The DMV solution of the RB equations (dotted line), the exact solution (solid line) and the trajectories corresponding to the modified vector fields $f+h^{2} f_{3}$ (dashed line) and $f+h^{2} f_{3}+h^{4} f_{5}$ (dash-dotted line) in the interval $[0,50]$ with $h=\frac{8}{10}$.

Some important results about DMV

Theorem 1 The DMV is time-reversible, hence $f_{2 i}=0, i=1,2, \ldots$.
Theorem 2 (Moser-Veselov) In the 3×3 case, the DMV is a time-reparamtetrisation of the flow of the original vector field of the rigid body.

Since the mapping preserves the underlying Poisson structure and all the integrals $F_{i}=c_{i}$ of the system, it commutes with all commuting Hamiltonian flows generated by the $F_{i} \mathrm{~s}, M^{\prime}=\left\{M, \nabla F_{i}\right\}$. The nonsingular compact level sets $T_{c}=\cap_{i}\left(F_{i}=c_{i}\right)$ consists of a finite union of 1-dimensional tori and on each torus the DMV mapping is a shift along the trajectory depending on the integral quantity H_{2}.
Hence, the DMV solves the modified equation

$$
M^{\prime}=\left(1+h^{2} \tau_{3}+h^{4} \tau_{5}+\cdots+h^{2 i} \tau_{2 i+1}+\cdots\right)[M, \Omega]
$$

where h is the stepsize of integration and the $\tau_{2 i+1}$, for $i=1,2, \ldots$, are constants that depend only on the function H_{2}, the matrix J and the Casimirs of the system.

Theorem 3. Set $\Delta=\left(J_{1}+J_{2}\right)\left(J_{1}+J_{3}\right)\left(J_{2}+J_{3}\right)$. Then,

$$
\tau_{3}=\frac{1}{6 \Delta^{2}}\left(\left(3 \operatorname{det}(J) \operatorname{tr}(J)+C_{J, 2}\right)\|\mathbf{m}\|_{2}^{2}+\left(3 C_{J}+\operatorname{tr}\left(J^{2}\right)\right) H_{2}\right)
$$

and

$$
\begin{aligned}
& \tau_{5}=\frac{1}{40 \Delta^{4}}\left(\left(3 \operatorname{tr}\left(J^{4}\right)+27 C_{J, 2}+15 \operatorname{tr}\left(J^{2}\right) C_{J}+45 \operatorname{det}(J) \operatorname{tr}(J)\right) H_{2}^{2}\right. \\
&+\left(10 C_{J, 3}+50 \operatorname{det}(J) \operatorname{tr}(J) C_{J}+10 \operatorname{det}(J) \operatorname{tr}(J) \operatorname{tr}\left(J^{2}\right)+2 C_{J, 2} \operatorname{tr}\left(J^{2}\right)-28 \operatorname{det}\left(J^{2}\right)\right)\|\mathbf{m}\|_{2}^{2} H_{2} \\
&\left.+\left(60 \operatorname{det}\left(J^{2}\right) C_{J}+3 C_{J, 4}+27 \operatorname{det}\left(J^{2}\right) \operatorname{tr}\left(J^{2}\right)+15 \operatorname{det}(J)\left(C_{J, 2,3}+C_{J, 3,2}\right)\right)\|\mathbf{m}\|_{2}^{4}\right) .
\end{aligned}
$$

Higher-order integrable methods

For the original RB equations, scaling the initial condition is equivalent to scaling time.
In our case, we know that DMV is a time-rescaling of the original RB equation. Therefore we wish to rescale the initial condition to obtain a better approximation of the unscaled original RB.

$$
\begin{array}{cc}
\text { I.C. DMV } & \text { New I.C. DMV } \\
h\left(\Omega\left(t_{k}\right) J+J \Omega\left(t_{k}\right)\right) & \frac{h\left(\Omega\left(t_{k}\right) J+J \Omega\left(t_{k}\right)\right)}{1+\tilde{\tau}_{3} h^{2}+\tilde{\tau}_{5} h^{4}+\ldots}
\end{array}
$$

We perform again the backward error analysis. We set now $\tilde{\omega}=\exp \left(-h \tilde{\Omega}_{0}-h^{2} \tilde{\Omega}_{1}+\cdots\right)$ and solve for the $\tilde{\Omega}_{i} \mathrm{~s}$ as the skew-symmetric matrices that solve

$$
\begin{gather*}
h\left(1-\tilde{\tau}_{3} h^{2}+\left(\tilde{\tau}_{3}^{2}-\tilde{\tau}_{5}\right) h^{4}+\cdots\right)(\Omega J+J \Omega)=\tilde{\omega}^{\top} J-J \tilde{\omega} \tag{20}\\
\tilde{f}_{3}=\tilde{d}_{3}-\frac{1}{3!} M^{\prime \prime \prime}=-\tilde{\tau}_{3}[M, \Omega]+d_{3}-\frac{1}{3!} M^{\prime \prime \prime} \\
=-\tilde{\tau}_{3}[M, \Omega]+f_{3}=\left(-\tilde{\tau}_{3}+\tau_{3}\right)[M, \Omega]
\end{gather*}
$$

hence, in order to have an order-four scheme, we must set $\tilde{f}_{3}=0$ which corresponds to the choice

$$
\tilde{\tau}_{3}=\tau_{3}
$$

After further computations, one has

$$
\tilde{f}_{5}=0 \leftrightarrow \tilde{\tau}_{5}=\tau_{5}-2 \tau_{3}^{2}
$$

This value of $\tilde{\tau}_{5}$ gives indeed a method of order six.
The new proposed algorithms of order four and six are described below.

The DMV4 algorithm:

1. Compute τ_{3} and set $M_{0}=M_{0} h /\left(1+h^{2} \tau_{3}\right)$.
2. Compute the roots of (6) having positive real parts.
3. For $k=0,1, \ldots, n-1$,
find the unique w_{k} as above such that $M_{k}=\omega_{k}^{\top} J-J \omega_{k}$ set $M_{k+1}=\omega_{k} M_{k} \omega_{k}^{\top}$
end
4. Reconstruct $M_{n} \approx M\left(t_{n}\right)=M_{n}\left(1+h^{2} \tau_{3}\right) / h$.

The DMV6 algorithm:

1. Compute τ_{3}, τ_{5} and set $\tilde{\tau}_{5}=\tau_{5}-2 \tau_{3}^{2}$ and $M_{0}=M_{0} h /\left(1+h^{2} \tau_{3}+h^{4} \tilde{\tau}_{5}\right)$.
2. Compute the roots of (6) having positive real parts.
3. For $k=0,1, \ldots, n-1$,
find the unique w_{k} as above such that $M_{k}=\omega_{k}^{\top} J-J \omega_{k}$ set $M_{k+1}=\omega_{k} M_{k} \omega_{k}^{\top}$
end
4. Reconstruct $M_{n} \approx M\left(t_{n}\right)=M_{n}\left(1+h^{2} \tau_{3}+h^{4} \tilde{\tau}_{5}\right) / h$.

Some numerical experiments

We consider with initial condition

$$
\mathbf{m}_{0}=\left[\begin{array}{l}
0.4165 \\
0.9072 \\
0.0588
\end{array}\right]
$$

and matrix J given as

$$
J=\left[\begin{array}{ccc}
0.9218 & 0 & 0 \\
0 & 0.7382 & 0 \\
0 & 0 & 0.1763
\end{array}\right]
$$

and compare the DMV explicit scheme with the Hamiltonian-splitting method LP2 of (McLachlan 1993)

$$
H=\frac{m_{1}^{2}}{J_{2}+J_{3}}+\frac{m_{2}^{2}}{J_{1}+J_{3}}+\frac{m_{3}^{2}}{J_{1}+J_{2}}=\mathcal{H}_{1}+\mathcal{H}_{2}+\mathcal{H}_{3}
$$

and the Implicit Midpoint Rule (IMR),

$$
\mathbf{m}_{k+1}=\mathbf{m}_{k}+h \mathbf{f}\left(\frac{\mathbf{m}_{k}+\mathbf{m}_{k+1}}{2}\right)
$$

where

$$
\mathbf{f}(\mathbf{m})=\mathbf{m} \times(\tilde{J})^{-1} \mathbf{m}, \quad \tilde{J}=\left[\begin{array}{ccc}
J_{2}+J_{3} & 0 & 0 \\
0 & J_{1}+J_{3} & 0 \\
0 & 0 & J_{1}+J_{2}
\end{array}\right] .
$$

Error versus step size computed at $T=100$ for the methods LP2, IMR, DMV, DMV4, DMV6.

Floating point operations versus accuracy $(T=100)$ for the methods LP2, IMR, DMV, DMV4, DMV6. The roots of $P(\lambda)$ are recomputed at each step, use QR with pivoting, (DMV ≈ 22 LP2 per step).

Floating point operations versus accuracy $(T=100)$ for the methods LP2, IMR, DMV, DMV4, DMV6 and RATTLE6. The roots of $P(\lambda)$ are computed once, use LU instead of QR (DMV ≈ 19

LP2 per step).

Method	$h=\frac{1}{16}$	$h=\frac{1}{2}$	$h=1.2$	$h=2.2$	$h=2.5$	$h=4$
LP2	$6.7903 \mathrm{e}-03$	$5.1043 \mathrm{e}-01$	$1.6055 \mathrm{e}+00$	$1.7002 \mathrm{e}+00$	$1.9489 \mathrm{e}+00$	$1.3902 \mathrm{e}+00$
IMR	$1.5494 \mathrm{e}-04$	$9.9329 \mathrm{e}-03$	$1.3119 \mathrm{e}-01$	$3.9514 \mathrm{e}-01$	$2.5276 \mathrm{e}-01$	$6.1905 \mathrm{e}-01$
DMV	$1.5014 \mathrm{e}-02$	$5.9899 \mathrm{e}-01$	NaN	NaN	NaN	NaN
DMV4	$1.757 \mathrm{e}-07$	$7.6167 \mathrm{e}-04$	$1.0785 \mathrm{e}-01$	$1.6094 \mathrm{e}+00$	$5.0245 \mathrm{e}-01$	$5.1624 \mathrm{e}-01$
DMV6	$1.962 \mathrm{e}-10$	$1.6440 \mathrm{e}-06$	$7.0269 \mathrm{e}-02$	NaN	$7.0407 \mathrm{e}-01$	$1.0519 \mathrm{e}-01$

Error for the various methods and selected step sizes

Concluding remarks

- Explicit algorithms to solve for the $N=3$ free rigid body
- The methods are up to 6 th order, completely integrable, possible to increase to arbitrary order
- The cost of the method is about $10-22$ times more expensive than the explicit LP2. The cheaper versions seem to be less stable expecially for large step-size and long time computations
- Reconstruction equations? Find the configuration

$$
X_{k+1}=X_{k} \omega_{k}^{\top}
$$

The complexive order is still 2 but the error is generally halved. Backward error analysis?

- Optimal step-size?

References

Cardoso, J. R. \& Leite, F. S. (2001), The Moser-Veselov equation, To appear in Lin. Alg. Appl.
Golub, G. H. \& van Loan, C. F. (1989), Matrix Computations, 2nd edn, John Hopkins, Baltimore.
Hairer, E., Lubich, C. \& Wanner, G. (2002), Geometric Numerical Integration, number 31 in 'Springer Series in Computational Mathematics', Springer, Berlin.

Marsden, J. E., Pekarsky, S. \& Shkoller, S. (1999), 'Discrete Euler-Poincaré and Lie-Poisson equations', Nonlinearity 12, 1647-1662.

McLachlan, R. I. (1993), 'Explicit Lie-Poisson integration and the Euler equations', Physical Review Letters 71, 3043-3046.

Moser, J. \& Veselov, A. P. (1991), 'Discrete Version of Some Classical Integrable Systems and Factorization of Matrix Polynomials', Commun. Math. Phys. 139, 217-243.

Munthe-Kaas, H. Z. \& Krogstad, S. (2002), On enumeration problems in Lie-Butcher theory, Report in informatics, Institutt for informatikk, University of Bergen, Norway. To appear in Future Generation Computer Systems, Special issue.

