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Overview
The subject of this talk is the numerical solution of the free RB equations,

M ′ = [M, Ω], M = ΩJ + JΩ,

where M, Ω are skew-symmetric matrices and J is a symmetric (diagonal) matrix.

M is the matrix of body momenta
Ω is the matrix of body angular velocity

Often the above equations are associated with the equations that give the configuration of the body
in the fixed frame,

Q′ = QΩ, Q ∈ SO(N).

• The Discrete Moser–Veselov description of the rigid body

• On the solution of the matrix equation M = ω>J − Jω

• Explicit methods for the 3× 3 case

• Backward error analysis of the the DMV algorithm

• Higher order integrable approximations

• Numerical experiments and comparisons with other methods
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The Moser–Veselov discrete version of the dynamics of a Rigid Body

Consider the fuctional S(X) determined by

S =
∑

k

tr(XkJX>
k+1)

where X = {Xk} with Xk ∈ O(N) and J is a symmetric matrix. To obtain the stationary points
of S, we consider ∑

k

tr(XkJX>
k+1)−

1

2

∑
k

tr(Λk(XkX
>
k − I)),

(where Λk = Λ>
k is a Lagrange multiplier), and δS = 0 becomes

Xk+1J + Xk−1J = ΛkXk,

from which, multiplying by X>
k on the left and taking into consideration the symmetry of Λk,

Xk+1JX>
k + Xk−1JX>

k = Λk = Λ>
k = XkJX>

k+1 + XkJX>
k−1, (1)

hence, the discrete analogue of the angular momentum in space,

mk = XkJX>
k−1 −Xk−1JX>

k ,

is conserved.
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In the body variables, setting ωk = X>
k Xk−1 ∈ O(N) and Mk = X−1

k−1mkXk−1 = ω>k J − Jωk ∈
so(N)∗ (angular momentum w.r.t. the body), (1) becomes

Mk+1 = ωkMkω
>
k

Mk = ω>k J − Jωk.
(2)

the discrete Euler–Arnold equation.

In the continuous limit: when tk = t0 + kε, k = 0, 1, 2, . . .,

• Xk = X(tk)

• ωk = X>
k Xk−1 ≈ I − εΩ(tk),

• Mk ≈ ε(JΩ + ΩJ) = εM(tk),

letting ε→ 0, one obtains the familiar Euler–Arnold equations for the motions of the N -dimensional
rigid body,

M ′ = [M, Ω]

M = JΩ + ΩJ, Ω ∈ so(N).
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Starting from the continuous equations

The Lagrangian of the continuous RB equations, is the kinetic energy,

L =
1

2
tr(Ω>M) =

1

2
tr(−Ω2J − ΩJΩ) = tr(Ω>JΩ), (3)

where we take into account that Ω> = −Ω and that the trace is invariant under cyclic permutations.
Following (Marsden, Pekarsky & Shkoller 1999), discretise Ω = g−1ġ, where g ∈ SO(N) is the
configuration of the body, using a finite difference approximation of the derivative,

Ω = g−1ġ ≈ 1

h
g>k+1(gk+1 − gk), gk, gk+1 ∈ SO(N),

which gives

L ≈ 1

h2
tr(J − g>k gk+1J − Jg>k+1gk − g>k gk+1Jg>k+1gk).

Due to the orthogonality of the gk’s and the cyclicity of the trace, the first and the last term cancel,
and moreover, we can write

L ≈ 1

h2
tr(gkJg>k+1).

Up a scaling factor, this is precisely the discrete Lagrangian of M-V whereas Xk is replaced by gk.
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To solve the discrete Euler–Arnold equations (2):

• For k = 0, 1, 2, . . ., find ωk ∈ SO(N) such that Mk = ω>k J − Jωk.

• Update Mk+1 = ωkMkω
>
k .

By construction, this algorithm

• is a second order approximation to the continuous rigid body

• preserves exactly momentum and energy (integrable map)

• preserves the standard Poisson structure of T ∗so(N),

{f, g} = tr(M [fM , gM ]), f, g ∈ C∞(so(N)),

where fM = (∂f/∂Mi,j).

Note that

• Also the IMR is second order, preserves all the integrals of the continuous rigid body.

• Another much used method is a Lie–Poisson integrator of McLachlan and Reich. For the 3×3
RB, it consists in splitting the Hamiltonian

H = H1 +H2 +H3 =
m2

1

J2 + J3

+
m2

2

J1 + J3

+
m2

3

J1 + J2

and integrating explicitly (a la Strang) the vector fields of each split Hamiltonian. The method
is second order, explicit, preserves the Poisson structure but does not preserve H.
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Solving the Moser–Veselov equation
How to solve numerically the Moser–Veselov equation?

M = ω>J − Jω, M> = −M, ω>ω = I. (4)

• The Moser–Veselov equation (4) has not a unique solution;

• However, if the set S of eigenvalues λ of W = ω>J admits a splitting S = S+ ∪ S−, with

S̄+ = S+, S̄− = S−, S− = −S+, S+ ∩ S− = ∅, (5)

then, there exists a unique ω = JW−1 that satisfies (4), with specW = S+ (Moser & Veselov
1991).

We recall that the eigenvalues λ are the solutions of the characteristic equation

P (λ) = det(λ2I − λM − J2) = 0. (6)
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Connections with matrix Ricatti equations

Consider the matrix equation
M = XJ − JX>. (7)

Cardoso & Leite (2001) shown that every solution of (7) (not necessarily orthogonal) is of the form

X = (M/2 + S)J−1,

for some symmetric matrix S.

Furthermore, X is a orthogonal solution of (7) if and only if S is a symmetric solution of the Riccati
equation

S2 + S(M/2) + (M/2)>S − (M2/4 + J2) = 0. (8)

Riccati equations are associated to symplectic matrices. In our case, the symplectic matrix is

Hsympl =

[
M
2

I
M2

4
+ J2 M

2

]
. (9)

If M2

4
+ J2 is positive definite, it has been shown in (Cardoso & Leite 2001) that (8) has a unique

solution S which is symmetric, positive definite, and such that the eigenvalues of W = M/2 + S
have positive real parts. This matrix W is precisely the same matrix in Moser & Veselov (1991),
from which one obtains

ω = WJ−1.
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Algorithm(Cardoso & Leite 2001): Compute X, the unique solution of (7) in the special orthogonal
group SO(n).

1. Find a real Schur form of Hsympl,

Q̃>HsymplQ̃ =

[
T11 T12

O T22

]
, (10)

where T11 and T22 are block upper-triangular matrices such that the real parts of the spectrum
of T11 are positive and the real parts of the spectrum of T22 are negative definite.

2. Partition Q̃ accordingly,

Q̃ =

[
Q11 Q12

Q21 Q22

]
.

Then, compute
S = Q21Q

−1
11 .

3. Compute

X =

(
M

2
+ S

)
J−1.

Some computational details

• Compute real Schur forms by QR iterations for eigenvalues (Golub & van Loan 1989)

• Cost: O((2N)3) operations (implicit methods for ODEs: O(N3))

N being the dimension of M .
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The case N = 3

In this case,

• it is possible to find an explicit spectral decomposition of Hsympl (without the QR eigenvalue
method)

• construct the real Schur decomposition (10) and hence X from the eigenstructure of Hsympl.

This yields an explicit numerical method for the reduced RB equations.
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The eigenvalues of the matrix Hsympl,

Hsympl =

[
M
2

I
M2

4
+ J2 M

2

]
(11)

are the solutions of the quadratic eigenvalue problem

P (λ) = det(λ2I − λM − J2) = 0.

Without loss of generality, we assume that J is diagonal, with entries J1, J2, J3. Then,

−P (λ) = λ6 − λ4 (J2
1 + J2

2 + J2
3 −m2

12 −m2
13 −m2

23)

+ λ2 (J2
1J2

2 + J2
1J2

3 + J2
2J2

3 −m2
12J

2
3 −m2

13J
2
2 −m2

23J
2
1 )− J2

1J2
2J2

3

= λ6 − λ4(tr(J2)− ‖m‖2) + λ2(CJ,2 −H2)− det(J2).

(12)

CJ,i,j = J i
1J

j
2 + J i

1J
j
3 + J i

2J
j
3 ,

CJ,i = CJ,i,i

CJ = CJ,1

H2 = (J1 + J2)(J1 + J3)(J2 + J3)H − CJ‖m‖2.

• Reduce to a cubic equation (compute the roots explicitely)
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Schematical procedure

• Compute eigenvalues/eigenvectors of Hsympl:

Hsympl

[
Y1 Y2

]
=

[
Y1 Y2

] [
Λ+

Λ−

]
, Re Λ+ ≥ 0,

(the eigenvectors need not be orthogonal and may be complex). Y1, Y2 ∈ R6×3, Λ± ∈ R3×3.

• Orthogonalize the eigenvectors (by Grahm-Schmidt or QR),

[Y1, Y2] = QR,

so that
HsymplQ = QRΛR−1

is the complex Schur form.

• Reduce to a real Schur form by considering real/imaginary part (complex Givens rotation).

• Compute S = Q21Q
−1
11 , X = (M/2 + S)J−1.

• We don’t need all the eigenvectors, just Y1. Don’t need R.

• Avoid complex arithmetic alltogether.
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The numerical DMV algorithm

• m0 7→ hM0 = hm̂0.

• Compute the eigenvalues of Hsympl = H(Mk) solving for P (λ) = 0 as in (12).

• For tk = t0 + kh, k = 0, 1, 2 . . .

– Compute the (real) eigenvectors corresponding to Λ+

∗ Compute 3 ‘quadratic’ eigenvectors (3 matrix factorizations, LU/QR, with pivoting).
No need to compute explicitely L or Q.

∗ Compute the ‘dependent’ eigenvectors.

– Orthogonalize the eigenspace

∗ By (modified) Grahm–Schmidt or QR. Only the Q factor is needed.

– Compute S = Q21Q
−1
11 , ωk = (M/2 + S)J−1

∗ Update Mk+1 = ω>k Mkωk

• Rescale mN ←MN/h.

This algorithm produces an explicit method that is about 20− 22 times more expensive than LP2,
the explicit method of McLachlan and Reich.
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BEA for DMV
Recall the DMV equations and the continuous RB equations

Mk+1 = ωkMkω
>
k , M ′ = [M, Ω]

Mk = ω>k J − Jωk, M = ΩJ + JΩ,

where ωk ≈ I − hΩ(tk).

We wish to write

Mk+1 = Φh(Mk) = Mk + h[Mk, Ωk] + h2d2 + h3d3 + h4d4 + · · · ,

and find the modified vector field

M̃ ′ = [M̃, Ω̃] + hf2(M̃, Ω̃) + h2f3(M̃, Ω̃) + h3f4(M̃, Ω̃) + · · · (13)

such that Φh(Mk) equals the solution M̃(tk+1) at time tk+1 = t0 + (k + 1)h of the modified vector
field (13).

To find Φk(h), we write

ωk = exp(−hΩ0 − h2Ω1 − h3Ω2 − h4Ω3 − h5Ω4 + · · ·), (14)

where Ω0, Ω1, Ω2, . . . , are skew-symmetric matrices computed so that

ω>k J − Jωk = h(Ω(tk)J + JΩ(tk)). (15)
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we obtain

h(Ω(tk)J + JΩ(tk)) = h(Ω0J + JΩ0) + h2(Ω1J + JΩ1 + 1
2
(Ω2

0J − JΩ2
0))

+ h3(Ω2J + JΩ2 + 1
2
[(Ω0Ω1 + Ω1Ω0), J ] + 1

6
(Ω3

0J + JΩ3
0)) + · · · .

Comparing left and right-hand-sides, it is trivially observed that the order-h term disappears if
Ω0 = Ω (to simplify notation, we omit the dependence of Ω on tk). In order to annihilate the
h2-term, we require that

Ω1J + JΩ1 +
1

2
(Ω2

0J − JΩ2
0) = 0.

Recall that M = ΩJ + JΩ and hence M ′ = Ω′J + JΩ′. On the other hand, M ′ = [M, Ω] =
−(Ω2J − JΩ2). Hence we can write

O = Ω1J + JΩ1 −
1

2
M ′ = Ω1J + JΩ1 −

1

2
(Ω′J + JΩ′)

and the identity is satisfied by if and only if

Ω1 =
1

2
Ω′. (16)

In general, the algorithm to derive Ωi, for i = 1, 2, . . ., is

1. Find the coefficient of hi+1 in (15) and set it equal to zero. This will give an equation of
the type ΩiJ + JΩi = CiJ + JCi + [Di, J ]. Note that the terms CiJ + JCi have an odd
occurrence of the Ωjs, while the terms of the type [Di, J ] have an even occurrence of the Ωjs.

2. Use the derivatives of M and Ω to express the term [Di, J ] as C̃iJ + JC̃i.



17/100

JJ
II
J
I

Back

Close

3. Deduce Ωi = Ci + C̃i.

Ω0 = Ω
Ω1 = 1

2
Ω′

Ω2 = 1
4
Ω′′ − 1

6
Ω3

Ω3 = 1
8
Ω′′′ − 1

24
(5Ω2Ω′ + 2ΩΩ′Ω + 5Ω′Ω2)

The functions Ωi

Once the Ωis are known, substituting back in Mk+1 = ω>k Mkωk and using the well known identity

exp(X)Y exp(−X) = expadX
Y =

∞∑
k=0

1

k!
adk

X(Y ),

where adX(Y ) = [X, Y ] and, recursively, adk
X(Y ) = [X, adk−1

X (Y )], we find the expressions for the
functions di in terms of the Ωi−1, Ωi−2, . . . , Ω0,

di =
i∑

j=1

(−1)j

j!

∑
k1+k2+···+kj=i−j

adΩk1
adΩk2

· · · adΩkj
M, k1, . . . kj ∈ {0, 1, . . . , i− 1}. (17)

d2 = 1
2
([M, Ω′] + [[M, Ω], Ω]),

d3 = 1
4
[M, Ω′′] + 1

4
[[M, Ω′], Ω] + 1

4
[[M, Ω], Ω′] + 1

6
[[[M, Ω], Ω], Ω]− 1

6
[M, Ω3],

d4 = . . . ,

(18)
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Taylor expansion of the solution of the modified equation
Consider

d

dt
ỹ = f(ỹ) + hf2(ỹ) + h2f3(ỹ) + · · · ,

where f(M) = [M, Ω] = [M,J −1M ] is the original vector field of the RB equations, where J is
a linear operator, defined such that JΩ = ΩJ + JΩ = M . Putting ỹ(t) = M(t), we expand the
solution of the above equation in a Taylor series and collect corresponding powers of h,

ỹ(t + h) = M(t) + hf(M) + h2

(
f2(M) +

1

2!
f ′f(M)

)
+ h3

(
f3(M) +

1

2!
(f ′f2(M) + f ′2f(M)) +

1

3!
(f ′′(f, f)(M) + f ′f ′f(M))

)
+ · · · ,

where f ′ is considered as a linear operator, f ′′ as a bilinear operator and so on and so forth. In our
case,

f ′(z)(M) = [z,J −1M ] + [M,J −1z]

= [z, Ω] + [M,J −1z]

f ′′(z1, z2)(M) = 2[z1,J −1z2],

and, since f is quadratic, f ′′′ and all the other higher derivatives equal zero.
At this point it is important to stress an important difference between the expressions for the
modified vector field of (Hairer, Lubich & Wanner 2002) and ours. While the vector field discussed
in (Hairer et al. 2002) is in Rn, hence the f ′′ is a symmetric quadratic operator, this is not the case
for our vector field which is on matrices, thus

f ′′(f ′f, f) 6= f ′′(f, f ′f).
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This non-commutative case is discussed with more generality in (Munthe-Kaas & Krogstad 2002).

However, we observe that all the terms containing combinations of f ′′, f ′ and f correspond simply
to higher derivatives of f . The mixed terms are treated instead specifically.

After some algebra, we have

f2 = d2 − 1
2!
f ′f(M)

= O,

f3 = d3 − 1
3!
(f ′′(f, f)(M) + f ′f ′f(M))

= 1
12

[M, Ω′′ − [Ω, Ω′]− 2Ω3],

f4 = d4 − 1
4!
M (iv) − 1

2!
(f ′f3 + f ′3f)

= O,

f5 = d5 − 1
5!
M (v) − 1

2!
(f ′f4 + f4f

′ + 1
2!

d
dt

(f ′3f + f ′f3))

= 1
80

[M, Ω(iv)]− 1
80

[M, [Ω, Ω′′′]] + 3
40

[M, Ω5 − Ω′ΩΩ′]

+ 1
80

[M, [Ω′, Ω′′]]− 1
40

[M, ΩΩ′′Ω]− 1
20

[M, Ω2Ω′′ + Ω′′Ω2]

+ 1
20

[M, [Ω3, Ω′]]− 1
40

[M, Ω′2Ω + ΩΩ′2 + Ω[Ω, Ω′]Ω].

(19)
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.
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Some important results about DMV
Theorem 1 The DMV is time-reversible, hence f2i = 0, i = 1, 2, . . ..

Theorem 2 (Moser–Veselov) In the 3× 3 case, the DMV is a time-reparamtetrisation of the flow
of the original vector field of the rigid body.

Since the mapping preserves the underlying Poisson structure and all the integrals Fi = ci of the
system, it commutes with all commuting Hamiltonian flows generated by the Fis, M ′ = {M,∇Fi}.
The nonsingular compact level sets Tc = ∩i(Fi = ci) consists of a finite union of 1-dimensional
tori and on each torus the DMV mapping is a shift along the trajectory depending on the integral
quantity H2.
Hence, the DMV solves the modified equation

M ′ = (1 + h2τ3 + h4τ5 + · · ·+ h2iτ2i+1 + · · ·)[M, Ω],

where h is the stepsize of integration and the τ2i+1, for i = 1, 2, . . ., are constants that depend only
on the function H2, the matrix J and the Casimirs of the system.

Theorem 3 . Set ∆ = (J1 + J2)(J1 + J3)(J2 + J3). Then,

τ3 =
1

6∆2
((3 det(J)tr(J) + CJ,2)‖m‖22 + (3CJ + tr(J2))H2),

and

τ5 =
1

40∆4

(
(3tr(J4) + 27CJ,2 + 15tr(J2)CJ + 45 det(J)tr(J))H2

2

+ (10CJ,3 + 50 det(J)tr(J)CJ + 10 det(J)tr(J)tr(J2) + 2CJ,2tr(J
2)− 28 det(J2))‖m‖22H2

+ (60 det(J2)CJ + 3CJ,4 + 27 det(J2)tr(J2) + 15 det(J)(CJ,2,3 + CJ,3,2))‖m‖42
)
.
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Higher-order integrable methods
For the original RB equations, scaling the initial condition is equivalent to scaling time.
In our case, we know that DMV is a time-rescaling of the original RB equation. Therefore we wish
to rescale the initial condition to obtain a better approximation of the unscaled original RB.

I.C. DMV New I.C. DMV

h(Ω(tk)J + JΩ(tk))
h(Ω(tk)J+JΩ(tk))
1+τ̃3h2+τ̃5h4+···

We perform again the backward error analysis. We set now ω̃ = exp(−hΩ̃0−h2Ω̃1 + · · ·) and solve
for the Ω̃is as the skew-symmetric matrices that solve

h(1− τ̃3h
2 + (τ̃ 2

3 − τ̃5)h
4 + · · ·)(ΩJ + JΩ) = ω̃>J − Jω̃. (20)

f̃3 = d̃3 −
1

3!
M ′′′ = −τ̃3[M, Ω] + d3 −

1

3!
M ′′′

= −τ̃3[M, Ω] + f3 = (−τ̃3 + τ3)[M, Ω],

hence, in order to have an order-four scheme, we must set f̃3 = 0 which corresponds to the choice

τ̃3 = τ3.

After further computations, one has

f̃5 = 0↔ τ̃5 = τ5 − 2τ 2
3 .
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This value of τ̃5 gives indeed a method of order six.

The new proposed algorithms of order four and six are described below.

The DMV4 algorithm:

1. Compute τ3 and set M0 = M0h/(1 + h2τ3).

2. Compute the roots of (6) having positive real parts.

3. For k = 0, 1, . . . , n− 1,
find the unique wk as above such that Mk = ω>k J − Jωk

set Mk+1 = ωkMkω
>
k

end

4. Reconstruct Mn ≈M(tn) = Mn(1 + h2τ3)/h.

The DMV6 algorithm:

1. Compute τ3, τ5 and set τ̃5 = τ5 − 2τ 2
3 and M0 = M0h/(1 + h2τ3 + h4τ̃5).

2. Compute the roots of (6) having positive real parts.

3. For k = 0, 1, . . . , n− 1,
find the unique wk as above such that Mk = ω>k J − Jωk

set Mk+1 = ωkMkω
>
k

end

4. Reconstruct Mn ≈M(tn) = Mn(1 + h2τ3 + h4τ̃5)/h.
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Some numerical experiments

We consider with initial condition

m0 =

 0.4165
0.9072
0.0588


and matrix J given as

J =

 0.9218 0 0
0 0.7382 0
0 0 0.1763


and compare the DMV explicit scheme with the Hamiltonian-splitting method LP2 of (McLachlan
1993)

H =
m2

1

J2 + J3

+
m2

2

J1 + J3

+
m2

3

J1 + J2

= H1 +H2 +H3

and the Implicit Midpoint Rule (IMR),

mk+1 = mk + hf(
mk + mk+1

2
),

where

f(m) = m× (J̃)−1m, J̃ =

 J2 + J3 0 0
0 J1 + J3 0
0 0 J1 + J2

 .
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Error versus step size computed at T = 100 for the methods LP2, IMR, DMV, DMV4, DMV6.
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Floating point operations versus accuracy (T = 100) for the methods LP2, IMR, DMV, DMV4,
DMV6. The roots of P (λ) are recomputed at each step, use QR with pivoting, (DMV ≈ 22 LP2
per step).
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Floating point operations versus accuracy (T = 100) for the methods LP2, IMR, DMV, DMV4,
DMV6 and RATTLE6. The roots of P (λ) are computed once, use LU instead of QR (DMV ≈ 19
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LP2 per step).

Method h = 1
16

h = 1
2

h = 1.2 h = 2.2 h = 2.5 h = 4

LP2 6.7903e-03 5.1043e-01 1.6055e+00 1.7002e+00 1.9489e+00 1.3902e+00
IMR 1.5494e-04 9.9329e-03 1.3119e-01 3.9514e-01 2.5276e-01 6.1905e-01
DMV 1.5014e-02 5.9899e-01 NaN NaN NaN NaN
DMV4 1.757e-07 7.6167e-04 1.0785e-01 1.6094e+00 5.0245e-01 5.1624e-01
DMV6 1.962e-10 1.6440e-06 7.0269e-02 NaN 7.0407e-01 1.0519e-01

Error for the various methods and selected step sizes
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Concluding remarks
• Explicit algorithms to solve for the N = 3 free rigid body

• The methods are up to 6th order, completely integrable, possible to increase to arbitrary order

• The cost of the method is about 10 − 22 times more expensive than the explicit LP2. The
cheaper versions seem to be less stable expecially for large step-size and long time computations

• Reconstruction equations? Find the configuration

Xk+1 = Xkω
>
k .

The complexive order is still 2 but the error is generally halved. Backward error analysis?

• Optimal step-size?
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