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Overview

The subject of this talk is the numerical solution of the free RB equations,
M' = [M,Q], M =QJ+ JQ,

where M, () are skew-symmetric matrices and .J is a symmetric (diagonal) matrix.
M is the matrix of body momenta
Q) is the matrix of body angular velocity

Often the above equations are associated with the equations that give the configuration of the body
in the fixed frame,

Q=02  Q€eSO(N).
e The Discrete Moser—Veselov description of the rigid body

e On the solution of the matrix equation M = w'.J — Jw

Explicit methods for the 3 x 3 case

Backward error analysis of the the DMV algorithm

Higher order integrable approximations

Numerical experiments and comparisons with other methods
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The Moser—Veselov discrete version of the dynamics of a Rigid Body

Consider the fuctional S(X) determined by

S = tr(XpJX{,,)
k
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where X = { X} with X, € O(N) and J is a symmetric matrix. To obtain the stationary points
of S, we consider

Ztr XpJ X)) — Ztr (Ap(Xp X — 1)),
(where A, = A] is a Lagrange multiplier), and 4.5 = 0 becomes
Xpp1d + Xp_1J = A X,
from which, multiplying by X, on the left and taking into consideration the symmetry of Ay,
Xp1JX) + X1 JX) = A = A = Xp X)L + XX, (1)
hence, the discrete analogue of the angular momentum in space,
my, = XpJ X, | — Xp 1 JX],

is conserved.




In the body variables, setting wy, = X X1 € O(N) and M}, = X, ' mp X1 = w} J — Juwy, €
s0(N)* (angular momentum w.r.t. the body), (1)) becomes
Mk+1 = wkMkwkT

4 (2)
Mk = W, J — ka.

the discrete Euler—Arnold equation.

In the continuous limit: when ¢, =ty + ke, Kk =0,1,2,.. .,
o Xy = X(tg)
o wp =X Xp =T —eQty),
o My, ~e(JQU+QJ) =ecM(ty),

letting € — 0, one obtains the familiar Euler—Arnold equations for the motions of the /N-dimensional
rigid body,

M' =[M,Q]

M=JQ+QJ, Q€ so(N).

4/100




Starting from the continuous equations

The Lagrangian of the continuous RB equations, is the kinetic energy,
1 1
L::§u19TA4)::iu(—QZJ-QJQ)::m(QTJQ% (3)

where we take into account that QT = —(2 and that the trace is invariant under cyclic permutations.
Following (Marsden, Pekarsky & Shkoller 1999), discretise 2 = g~'g, where g € SO(N) is the
configuration of the body, using a finite difference approximation of the derivative,

1. 1
Q=g 19 ~ Eglj+1<gk+1 — Ok), Gk, gr+1 € SO(N),

which gives

1
L~ (] - 9n ki1 — TGk — 9l g1 T g1 0k)-

Due to the orthogonality of the g,'s and the cyclicity of the trace, the first and the last term cancel,
and moreover, we can write

1
L~ ﬁtr(nggz;ru)-

Up a scaling factor, this is precisely the discrete Lagrangian of M-V whereas X, is replaced by g;.

5/100




To solve the discrete Euler—Arnold equations :
e For k=0,1,2,..., find w, € SO(N) such that M, = w! J — Juwy.
e Update My, = wiMyw, .
By construction, this algorithm
e is a second order approximation to the continuous rigid body
e preserves exactly momentum and energy (integrable map)

e preserves the standard Poisson structure of T*so(N),

{19y = te(M[fu, gul), [, € C%(s0(N)),
where fM = (8f/8Mw)

Note that
e Also the IMR is second order, preserves all the integrals of the continuous rigid body.

e Another much used method is a Lie—Poisson integrator of McLachlan and Reich. For the 3 x 3
RB, it consists in splitting the Hamiltonian

mi mj m%
+ +
Jo+ J3 Ji+ J3 Ji1+ Jo

H=H +Hs+Hs=

and integrating explicitly (a la Strang) the vector fields of each split Hamiltonian. The method
is second order, explicit, preserves the Poisson structure but does not preserve H.
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Solving the Moser—Veselov equation

How to solve numerically the Moser—Veselov equation?
M=w'J-Ju, M =-M ww=IL (4)
e The Moser—Veselov equation @ has not a unique solution;
e However, if the set S of eigenvalues A of W = w'.J admits a splitting S = S, U S_, with
S, =5, S S_=-5,, S.NS_ =10, (5)

then, there exists a unique w = JW ™! that satisfies @) with speclW = S, (Moser & Veselov
1991).

We recall that the eigenvalues X are the solutions of the characteristic equation

P(\) = det(\2T — AM — J?) = 0. (6)
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Connections with matrix Ricatti equations

Consider the matrix equation
M=XJ-JX". (7)

Cardoso & Leite (2001) shown that every solution of (7)) (not necessarily orthogonal) is of the form
X =(M/2+8)J7,

for some symmetric matrix S.
Furthermore, X is a orthogonal solution of @) if and only if S is a symmetric solution of the Riccati

equation
S% 4+ S(M/2) + (M/2)'TS — (M?*/4 4 J?) = 0. (8)

Riccati equations are associated to symplectic matrices. In our case, the symplectic matrix is

& 1
Hoympl = [ M? g J2 M ]
T TJ g

9)

If MT2 + J? is positive definite, it has been shown in (Cardoso & Leite 2001) that @ has a unique
solution S which is symmetric, positive definite, and such that the eigenvalues of W = M /2 + S
have positive real parts. This matrix W is precisely the same matrix in Moser & Veselov (1991),

from which one obtains
w=WJL
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Algorithm(Cardoso & Leite 2001): Compute X, the unique solution of @ in the special orthogonal
group SO(n).

1. Find a real Schur form of Hgymp,

Tll T12 :|

C?—I—I’_[symplcé — |: O T22 (].O)

where T and T5, are block upper-triangular matrices such that the real parts of the spectrum
of T, are positive and the real parts of the spectrum of T, are negative definite.

2. Partition Q accordingly,

5~ | Qu le]
©= [ Q2 Qa |’
Then, compute
S =QuQy .
3. Compute
X = <% + S> J

Some computational details

e Compute real Schur forms by QR iterations for eigenvalues (Golub & van Loan 1989)
e Cost: O((2N)3) operations (implicit methods for ODEs: O(N3))
N being the dimension of M.

10/100




The case N =3

In this case,

e it is possible to find an explicit spectral decomposition of Hgy,,,,1 (without the QR eigenvalue
method)

e construct the real Schur decomposition (10} and hence X from the eigenstructure of Hgympi.

This yields an explicit numerical method for the reduced RB equations.




The eigenvalues of the matrix Hgymp,

M I
Hgymp = [ MT2 j_ J2 % ] (11)
are the solutions of the quadratic eigenvalue problem
P(\) = det(N*I — AM — J?) = 0.
Without loss of generality, we assume that J is diagonal, with entries .J;, J5, J3. Then,
~P() =X = X (J2 4 T 4 T} = iy — iy — i)
FN T+ TR+ T =iy} — o E = D) = B

= A0 — A\ (tr(J?) — ||lml2) + N (Cya — Hy) — det(J?).

Cri; = JiJJ+ JLJ)+ JiJi,

Cri = Crii

C; = CJ,l

Hy = (Ji+ L)(J+ J5)(Jo+ J3)H — C;llm]|,.

e Reduce to a cubic equation (compute the roots explicitely)
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Schematical procedure

e Compute eigenvalues/eigenvectors of Hypp:

A
HSympl[Yl Y2]:[Y1 YQ}{ +A_]’ ReA, >0,

(the eigenvectors need not be orthogonal and may be complex). Y, Y, € R6*3 A, € R3S,

e Orthogonalize the eigenvectors (by Grahm-Schmidt or QR),
[}/17 Yv?] — QRa

so that
HsymplQ = QRAR—l

is the complex Schur form.
e Reduce to a real Schur form by considering real /imaginary part (complex Givens rotation).

e Compute S =0QQ;' X=(M/2+S)J "
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e We don't need all the eigenvectors, just Yi. Don't need R.

e Avoid complex arithmetic alltogether.




The numerical DMV algorithm
e my — hMy = hm,.
e Compute the eigenvalues of Hgyyp = H (M) solving for P(A\) = 0 as in (|12)).
o Forty =to+kh k=0,1,2...

— Compute the (real) eigenvectors corresponding to A

« Compute 3 ‘quadratic’ eigenvectors (3 matrix factorizations, LU/QR, with pivoting).

No need to compute explicitely L or Q.
x Compute the ‘dependent’ eigenvectors.

— Orthogonalize the eigenspace

* By (modified) Grahm-Schmidt or QR. Only the () factor is needed.
— Compute S = QuQy, wr=(M/2+8)J!

* Update M1 = w) Mywy,

e Rescale my < My/h.

This algorithm produces an explicit method that is about 20 — 22 times more expensive than LP2,

the explicit method of McLachlan and Reich.
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BEA for DMV

Recall the DMV equations and the continuous RB equations
Mk+1 = wkMkw,;r, M/ = [M, Q]
My, = w] J — Jwg, M =QJ+ JQ,

where wy &~ I — hQ(ty).
We wish to write

M1 = ®p(My,) = My + h[My, Q) + h*dy + h3ds + h'dy + - - -,
and find the modified vector field

such that ®,(M}) equals the solution M (1) at time t41 = to + (k + 1)h of the modified vector

field (L3).
To find ®k(h), we write

WE = eXp(—hQO — h291 — thQ — h4Q3 — h5Q4 -+ .- '), (14)
where €9, Q1,€), ..., are skew-symmetric matrices computed so that

u};—J — ka = h(Q(tk)J + JQ(tk)) (15)
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we obtain

h(Q(tk)J + JQUtk)) = M Qo + JQ0) + B2 (N + JQ + S(Q3JT — JOZ))
+ h3(Qad + T + L[ + ), J] + (T + JU) + - - -

Comparing left and right-hand-sides, it is trivially observed that the order-h term disappears if
Qg = Q (to simplify notation, we omit the dependence of Q on t;). In order to annihilate the
h2-term, we require that

1
mj+ﬂh+§m@>JQ®:a

Recall that M = QJ 4+ JQ and hence M’ = Q'J + JS. On the other hand, M’ = [M,Q)] =
—(92J — JQ?). Hence we can write

1 1
O=ALJ+JQy—QM%=QJ+JQy—?QU+JQ)
and the identity is satisfied by if and only if
1 !/

In general, the algorithm to derive €2;, fori =1,2,..., is

1. Find the coefficient of A*™! in (15 and set it equal to zero. This will give an equation of
the type Q;J + JQ; = C;J + JC; + [D;, J]. Note that the terms C;J + JC; have an odd
occurrence of the §2;s, while the terms of the type [D;, J]| have an even occurrence of the €2;s.

2. Use the derivatives of M and (2 to express the term [D;, J| as CiJ + JC;.
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3. Deduce Q; = C, + C,.

Q=0
Q=1

Q2 _ iQ” | 1 %93

Qy = 107 — 1(50200 4+ 200'Q + 50'0?)

The functions €2;

Once the €);s are known, substituting back in M, = w,;erwk and using the well known identity
=3
exp(X)Y exp(—X) = exp,q, Y = Z Ead';((Y),
k=0

where adx(Y) = [X,Y] and, recursively, ad% (Y) = [X,ad% (Y], we find the expressions for the
functions d; in terms of the €;_1,$;_o,...,,

L1y .
d’:Z<]—|) Z akolakoz---akojM, kfl,...kjE{O,l,...,Z—l}. (17)
Jj=1 k1+ko+--+kj=i—j
dy = 5([M, ]+ [[M, 0], 9)),
dy = 3[M, Q"] + 3[[M, ], Q] + §[[M, Q], ] +
dy=...,

[[[M’ Q]>Q]7Q] - %[M>Qg]a (18>

1
6
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Taylor expansion of the solution of the modified equation
Consider q
57 = @) + 1 f2(@) + 17 fa(5) + -+

where f(M) = [M,Q] = [M,J ' M] is the original vector field of the RB equations, where 7 is
a linear operator, defined such that 7Q = QJ + JQ = M. Putting y(t) = M(t), we expand the
solution of the above equation in a Taylor series and collect corresponding powers of h,

g(t+h) = MUHJUMD+W(ﬁwD+%fﬂM0

18 (00 + (7 ROD + SFOD) + Z( DO + 7£700) )+

where f’ is considered as a linear operator, f” as a bilinear operator and so on and so forth. In our
case,

f/(z)(M) i [Z,j_lM] + [Mv \7_12]
= [2,Q)+ [M, T 2]
f'(21,22) (M) = 2[z1,T "2,

and, since f is quadratic, f” and all the other higher derivatives equal zero.

At this point it is important to stress an important difference between the expressions for the
modified vector field of (Hairer, Lubich & Wanner 2002) and ours. While the vector field discussed
in (Hairer et al. 2002) is in R™, hence the f” is a symmetric quadratic operator, this is not the case
for our vector field which is on matrices, thus

UL E 1) # P 1)
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This non-commutative case is discussed with more generality in (Munthe-Kaas & Krogstad 2002).
However, we observe that all the terms containing combinations of f”, f" and f correspond simply
to higher derivatives of f. The mixed terms are treated instead specifically.

After some algebra, we have

fo=ds— 5 f'f(M)

=0,

3= d3— (7 M) + ff f(M))
= LM, Q" — [0, Q] — 207,
Ji=dy — 1Mw 2|(ff3+f3f)

19
_o, (19)
fs=ds — - gl(f Ja+ faf' + 5 dt(fsf‘i‘ff?,))
mfgwq—gﬂmﬁzgﬂ] + (M, Q5 — Q]
+ M, Q] — LM, 0"Q] — LM, 020" 1 "7

+ o6 [ M, [, Q)] — 5[M, Q2Q + QO + Q[Q, V]Q).
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0 5 10 15 20 25 30 35 40 45 50
time

The DMV solution of the RB equations (dotted line), the exact solution (solid line) and the tra-

jectories corresponding to the modified vector fields f + h%f; (dashed line) and f + h?fs + h'fs

(dash-dotted line) in the interval [0,50] with h = &.
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Some important results about DMV
Theorem 1 The DMV is time-reversible, hence fo; = 0,1 =1,2,....

Theorem 2 (Moser—Veselov) In the 3 x 3 case, the DMV is a time-reparamtetrisation of the flow
of the original vector field of the rigid body.
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Since the mapping preserves the underlying Poisson structure and all the integrals F; = ¢; of the
system, it commutes with all commuting Hamiltonian flows generated by the Fis, M’ = {M,VF;}.
The nonsingular compact level sets T, = N;(F; = ¢;) consists of a finite union of 1-dimensional
tori and on each torus the DMV mapping is a shift along the trajectory depending on the integral
quantity H.

Hence, the DMV solves the modified equation

M = (1 —|—h27'3+h47'5+ +h2i7'2i+1 + )[M,Q],

where h is the stepsize of integration and the 7,1, for i = 1,2, ..., are constants that depend only
on the function Hy, the matrix J and the Casimirs of the system.

Theorem 3 . Set A = (Jl + JQ)(Jl + J3)<J2 + Jg) Then,

1
™ = o5 (3det()ir(J) + Cua) |mll3 + (3C, + tr(J*) H),
and
1
5T J0As <(3tr(J4) +27C,5 +15tr(J%)C; + 45 det(J)tr(J)) H;

+ (60 det(J*)Cy + 3C 4 + 27 det(J?)tr(J?) + 15 det(J)(Crs + CJ,3,2))\|m|y;*).

+ (10C 3 + 50 det (J)tr(J)Cy + 10 det(J)tr(J)tr(J?) + 2C qtr(J?) — 28 det(JQ))||m||§H2-



Higher-order integrable methods

For the original RB equations, scaling the initial condition is equivalent to scaling time.
In our case, we know that DMV is a time-rescaling of the original RB equation. Therefore we wish
to rescale the initial condition to obtain a better approximation of the unscaled original RB.

[.C. DMV New |.C. DMV

WQt) T+ JQ(ty)) Sl

We perform again the backward error analysis. We set now & = exp(—h§y — h%Q; + - - -) and solve
for the €2;s as the skew-symmetric matrices that solve

B = 7sh? 4+ (7 = ) 4 )( QT +IQ) = &7 — J6. (20)

~ ~ 1 1
f3 - d3 — gM”/ =3 —7:3[M, Q] —|— d3 - gMW

= —T[M,Q+ f3 = (—75 + 13)[M, Q],
hence, in order to have an order-four scheme, we must set fg, = 0 which corresponds to the choice
T3 = T3.
After further computations, one has

f5:0<—>7t5:7'5—27'§.
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This value of 75 gives indeed a method of order six.
The new proposed algorithms of order four and six are described below.

The DMV4 algorithm:

1. Compute 73 and set My = Myh/(1 + h*73).
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2. Compute the roots of (@ having positive real parts.

3. For k=0,1,...,n—1,
find the unique wy, as above such that M, = w,IJ — Jwy,
set Mk—i—l = wkMkw,;r
end

4. Reconstruct M, ~ M(t,) = M,(1 + h®73)/h.

The DMV6 algorithm:
1. Compute 73,75 and set 75 = 75 — 272 and My = Moh/(1 + k%3 + h'75).
2. Compute the roots of (@ having positive real parts.

3. For k=0,1,...,n—1,
find the unique wy as above such that M, = w,IJ — Juwy,
set My 1 = wkMkw,;r
end

4. Reconstruct M,, ~ M(t,) = M, (1 + h®r5 + h*75)/h.




Some numerical experiments

We consider with initial condition

0.4165
my = | 0.9072
0.0588
and matrix J given as 24/100
0.9218 0 0
J = 0 0.7382 0
0 0 0.1763

and compare the DMV explicit scheme with the Hamiltonian-splitting method LP2 of (McLachlan
1993)

m?2 m3 m32
H=—"—+—2—+ 2 =H +Hy+H
AN A AR A A
and the Implicit Midpoint Rule (IMR),
+
my ;= my, + hf(— 2“"““ ),
where
] [ R+d 0 0
f(m) =m x (J) 'm, J = 0 Ji+Js 0
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LP2 per step).
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Method |  h =L | h=3] h=12| h=22] h=25] h=4]
LP2 6.7903e-03 | 5.1043e-01 [ 1.6055e-+00 | 1.7002e+00 | 1.9489e+00 | 1.3902e-+00
IMR 1.5494e-04 | 9.9320e-03 | 1.3119e-01 | 3.9514e-01 | 2.5276e-01 | 6.1905e-01
DMV 1.5014e-02 | 5.9899e-01 NaN NaN NaN NaN
DMV4 | 1757e-07 | 7.6167e-04 | 1.0785e-01 | 1.6094e+00 | 5.0245¢-01 | 5.1624e-01
DMV6 | 1.962e-10 | 1.6440e-06 | 7.0269e-02 NaN | 7.0407e-01 [ 1.0519e-01

Error for the various methods and selected step sizes




Concluding remarks

e Explicit algorithms to solve for the N = 3 free rigid body
e The methods are up to 6th order, completely integrable, possible to increase to arbitrary order

e The cost of the method is about 10 — 22 times more expensive than the explicit LP2. The
cheaper versions seem to be less stable expecially for large step-size and long time computations

e Reconstruction equations? Find the configuration
:
Xk-l—l = kak .

The complexive order is still 2 but the error is generally halved. Backward error analysis?

e Optimal step-size?
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