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Abstract

Symmetric spaces are well known in differential geometry from the study of spaces
of constant curvature. The tangent space of a symmetric space forms a Lie triple
system. Recently these objects have received attention in the numerical analysis com-
munity. A remarkable number of different algorithms can be understood and analyzed
using the concepts of symmetric spaces and this theory unifies a range of different top-
ics in numerical analysis, such as polar type matrix decompositions, splitting methods
for computation of the matrix exponential, composition of self adjoint numerical in-
tegrators and time symmetric dynamical systems.

In this paper we will give an introduction to the mathematical theory behind these
constructions, and review recent results. Furthermore, we are presenting new results
related to time reversal symmetries, self adjoint numerical schemes and Yoshida type
composition techniques.

1 Introduction

In numerical analysis there are numerous examples of objects forming a group, i.e. we have
a composition law and an inverse. Examples are the group of orthogonal matrices or the
group of Runge-Kutta methods. Semi groups, where we have a composition but no inverse
are also well known, e.g. the set of all matrices and explicit Runge-Kutta methods are two
examples.

There are important examples of objects that are neither a group nor a semi group,
where the class of objects is closed under a ’sandwich type’ product, (a, b) 7→ aba. For
example the collection of all symmetric positive definite matrices and all self adjoint Runge-
Kutta methods. Symmetric composition of numerical integrators are e.g. studied in [7].
If inverses are well defined, we may replace the sandwich product with the algebraically
nicer symmetric product (a, b) 7→ ab−1a. Spaces closed under such products are called
symmetric spaces and are the objects of study in this paper.
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Recall the theory of Lie groups, where fundamental tools are the Lie algebra (tangent
space at the identity) and the exponential map from the Lie algebra to the Lie group.
The Lie algebra is closed under commutators. In the theory of symmetric spaces there is
a similar notion of tangent space. The resulting object is called a Lie triple system (LTS),
and is closed under double commutators, [X, [Y, Z]].

Associated with symmetric spaces and Lie triple systems there are important decom-
position theorems. Lie algebras can be decomposed into a direct sum of a LTS and a
subalgebra. The well known splitting of a matrix as a sum of a symmetric and a skew
symmetric matrix is an example of such a decomposition, the skew symmetric matrices
are closed under commutators, while the symmetric matrices are closed under double com-
mutators. Similarly, there are decompositions of Lie groups into a product of a symmetric
space and a Lie subgroup. The matrix polar decomposition, where a matrix is written
as the product of a symmetric positive definite matrix and an orthogonal matrix is one
example. We will see that there are many other important examples, such as the de-
composition of a flow into the composition of two flows, one symmetric with respect to a
diffeomorphism of the domain, and the other having the diffeomorphism as a time reversal
symmetry.

The properties of these decompositions and numerical algorithms based on them are
studied in a series of recent papers. In [12] the polar type decompositions are studied
in detail, with special emphasis on optimal approximation results. The paper [22] is
concerned with important recurrence relations for polar type decompositions, similar to
the Baker-Campbell-Hausdorff formula for Lie groups.

In the recent years the interest in geometrical integration methods for differential equa-
tions has surged. These are numerical methods which exactly preserve various continuous
structures of the dynamical systems. Examples of geometrical integrators are methods
preserving first integrals [?], volume preserving integrators [?] integrators preserving Lya-
punov functions [?] and integrators for systems evolving on Lie groups and symmetric
spaces [4, 10]. The present theory has applications in reducing the cost of Lie group meth-
ods [23, 11, 5], and it also introduces the new question of how to integrate dynamical
systems evolving on symmetric spaces.

The polar type decompositions are closely related to the more special root space de-
composition employed in numerical integrators for differential equations on Lie groups
in [15]. In [13] it is shown that the generalized polar decompositions can be successfully
employed in cases where the theory of [15] cannot be used.

2 General theory of symmetric spaces and Lie triple systems

In this section we present some background theory for symmetric spaces and Lie triple
systems. We expect the reader to be familiar with some basic concepts of differential
geometry, like manifolds, vector fields, etc. For a more detailed treatment of symmetric
spaces we refer the reader to [2] and [6] which also constitute the main reference of the
material presented in this section.

We shall also follow (unless otherwise mentioned) the notational convention of [2]: in
particular, M is a set (manifold), the letter G is reserved for groups and Lie groups, gothic
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letters denote Lie algebras and Lie triple systems, latin lowercase letters denote Lie-group
elements and latin uppercase letters denote Lie-algebra elements. The identity element of
a group will be usually denoted by e and the identity mapping by id.

2.1 Symmetric spaces

Definition 2.1 [[6]] A symmetric space is a manifold M with a differentiable symmetric
product · obeying the following conditions:

(i) x · x = x,

(ii) x · (x · y) = y,

(iii) x · (y · z) = (x · y) · (x · z),

and moreover

(iv) every x has a neighbourhood U such that x · y = y implies y = x for all y in U .

The latter condition is relevant in the case of manifolds M with open set topology (as in
the case of Lie groups) and can be disregarded for sets M with discrete topology: a discrete
set M endowed with a multiplication obeying (i)–(iii) will be also called a symmetric space.

A pointed symmetric space is a pair (M,o) consisting of a symmetric space M and a
point o called base point. Note that when M is a Lie group, it is usual to set o = e.

The left multiplication with an element x ∈M is denoted by Sx,

Sxy = x · y, ∀y ∈M,

and is called symmetry around x. Note that Sxx = x because of (i), hence x is fixed point
of Sx and it is isolated because of (iv). Furthermore, (ii) and (iii) imply Sx is an involutive
automorphism of M .

Symmetric spaces can be constructed in several different ways, the following are the
most important:

1. Manifolds with an intrinsically defined symmetric product. As an example, consider
the n-sphere as the set of unit vectors in Rn+1. The product

x · y = Sxy = (2xxT − I)y

turns this into a symmetric space.

2. Subsets of a continuous (or discrete) group G that are closed under the composition
x · y = xy−1x, where xy is the usual multiplication in G. Groups themselves,
continuous, as in the case of Lie groups, or discrete, are thus particular instances of
symmetric spaces. As another example, consider the set of all symmetric positive
definite matrices as a subset of all nonsingular matrices, which forms a symmetric
space with the product

a · b = ab−1a.
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3. Symmetric elements of automorphisms on a group. An automorphism on a group
G is a map σ : G → G satisfying σ(ab) = σ(a)σ(b). The symmetric elements are
defined as

A =
{
g ∈ G | σ(g) = g−1

}
.

It is easily verified that A obeys (i)–(iv) when endowed with the multiplication
x · y = xy−1x, hence it is a symmetric space. As an example, symmetric matrices
are symmetric elements under the matrix automorphism σ(a) = a−T .

4. Homogeneous manifolds. Given a Lie group G and a subgroup H, a homogeneous
manifold M = G/H is the set of all left cosets of H in G. Not every homogeneous
manifold possess a product turning it into a symmetric space, however, in what
follows we will see that any connected symmetric space arise in a natural manner as
a homogeneous manifold.

Let G be a connected Lie group and let σ be an analytic involutive automorphism,
i.e. s σ 6= id and σ2 = id. Let Gσ denote fixσ = { g ∈ G | σ(g) = g }, Gσ

e its connected
component including the base point, in this case the identity element e and finally let K
be a closed subgroup such that Gσ

e ⊂ K ⊂ Gσ. Set Gσ = {x ∈ G : σ(x) = x−1}.

Theorem 2.1 ([6]) The homogeneous space M = G/K is a symmetric space with the
product xK · yK = xσ(x)−1σ(y)K and Gσ is a symmetric space with the product x · y =
xy−1x. Moreover, Gσ is isomorphic to the homogeneous space G/Gσ.

The importance of the above result resides in the fact that every connected symmetric
space is of the type G/K and also of the type Gσ [6], and in particular they are also
homogeneous spaces. As coset representatives for G/Gσ one may choose elements of Gσ,
thus any x ∈ G can be decomposed in a product

x = sq where s ∈ Gσ and q ∈ Gσ. (2.1)

The matrix polar decomposition is a particular example, discussed in 3.1.
The automorphism σ on G induces an automorphism on the Lie algebra g and a also a

canonical decomposition of g. Let g and k denote the Lie algebras of G and K respectively
and denote by dσ the differential of σ at e,

dσ(X) =
d
dt

∣∣∣
t=0

σ(exp(tX)), ∀X ∈ g. (2.2)

Note that dσ is an involutive automorphism of g and has eigenvalues ±1. Moreover, X ∈ k

implies dσ(X) = X. Set p = {X ∈ g : dσ(X) = −X}. Then

g = k⊕ p (2.3)

[2]. It is easily verified that

[k, k] ⊂ k,

[k, p] ⊂ p,

[p, p] ⊂ k,

(2.4)
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that is, k is a subalgebra of g while p is an ideal in k. The decomposition (2.4) is called
Cartan decomposition whenever the Cartan–Killing form B(X,Y ) = tr(adXadY ) is nonde-
generate, hence it can be used to introduce a positive bilinear form Bdσ = −B(X, dσ(Y )).

Given X ∈ g, its canonical decomposition k⊕ p is

X =
1
2

(
X + dσ(X)

)
+

1
2

(
X − dσ(X)

)
, (2.5)

where X + dσ(X) ∈ k and X − dσ(X) ∈ p.

2.2 Lie triple systems

In Lie group theory Lie algebras are important since they describe infinitesimally the
structure of the tangent space at the identity. Similarly, Lie triple systems gives the
structure of the tangent space of a symmetric space.

Definition 2.2 A vector space with a trilinear composition [X,Y, Z] is called a Lie triple
system (Lts) if the following identities are satisfied:

(i) [X,X,X] = 0,

(ii) [X,Y, Z] + [Y, Z,X] + [Z,X, Y ] = 0,

(iii) [X,Y, [U, V,W ]] = [[X,Y, U ], V,W ] + [U, [X,Y, V ],W ] + [U, V, [X,Y,W ]].

A typical way to construct a Lts is by means of an involutive automorphism of a Lie
algebra g. With the same notation as above, the set p is a Lts with the composition

[X,Y, Z] = [[X,Y ], Z].

Vice versa, for every Lts there exists a Lie algebra G and an involutive automorphism σ
such that the given Lts corresponds to p. The algebra G is called standard embedding of
the Lts.

In general, any subset of g that is closed under the operator

TX = ad2
X

is a Lie triple system. Being close under TX guarantees being closed under the triple
commutator: we have

[X, [Y, Z]] =
1
3
([X+Y, [X+Y, Z]]−[X−Y, [X−Y, Z]])+

1
6
([Y+Z, [Y+Z,X]]−[Y−Z, [Y−Z,X]]),

hence,

[X, [Y, Z]] =
1
3
(TX+Y − TX−Y )Z +

1
6
(TY +Z − TY −Z)X,

from which we deduce that [X, [Y, Z]] is a linear combination of operators of the form
TVW [9].
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3 Application of symmetric spaces in numerical analysis

The importance of symmetric spaces in numerical analysis has been overlooked in the
past. We shall present common constructions in numerical analysis that strongly rely on
symmetric spaces type constructions.

3.1 Polar type matrix decompositions

Let GL(N) be the group of N ×N invertible real matrices. Consider the map

σ(x) = x−T, x ∈ GL(N). (3.1)

It is clear that σ is an involutive automorphism of GL(N). Then, according to Theorem 2.1,
the set of symmetric elements Gσ = {x ∈ GL(N) : σ(x) = x−1} is a symmetric space.
We observe that Gσ is the set of invertible symmetric matrices. The symmetric space Gσ

is disconnected and particular mention deserves its connected component containing the
identity matrix I, since it reduces to the set of symmetric positive definite matrices. The
subgroup Gσ consists of all orthogonal matrices. The decomposition (2.1) is the polar
decomposition, any nonsingular matrix can be written as a product of a symmetric matrix
and an orthogonal matrix. If we restrict the symmetric matrix to the symmetric positive
definite matrices, then the decomposition is unique.

It is well known that the polar decomposition x = sq can be characterized in terms
of best approximation properties. The orthogonal part q is the best orthogonal approxi-
mation of x in any orthogonally invariant norm (e.g. 2-norm and Frobnius norm). In [12]
such decompositions are generalized to arbitrary involutive automorphisms, and best ap-
proximation properties are established for the general case.

To derive the corresponding decomposition of the Lie algebra, we compute dσ making
use of (2.2). Given X ∈ gl(N),

dσ(X) = d
dt |t=0σ( exp(tX)) = d

dt |t=0(I + tX +O
(
t2

)
)−T

= d
dt |t=0(I + tXT +O

(
t2

)
)−1 = d

dt |t=0(I − tXT +O
(
t2

)
)

= −XT,

hence we deduce that

k = {X ∈ gl(N) : dσ(X) = X} = so(N),

the classical algebra of skew-symmetric matrices, while

p = {X ∈ gl(N) : dσ(X) = −X}

is the classical set of symmetric matrices. Such set is not a subalgebra of gl(N) but is
closed under TX , hence is a Lie triple system.

The decomposition (2.5) is nothing else than the canonical decomposition of a matrix
into its skew-symmetric and symmetric part,

X = P +K =
1
2
(X + dσ(X)) +

1
2
(X − dσ(X)) =

1
2
(X −XT) +

1
2
(X +XT).
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The group decomposition x = sq can also be studied via the algebra decomposition.
In [22] an explicit recurrence is given, if exp(X) = x, exp(S) = s and exp(Q) = q then
S and Q can be expressed in terms of commutators of P and K. The first terms in the
expansions of X and Y are

X = P − 1
2 [P,K]− 1

6 [K, [P,K]]

+ 1
24 [P, [P, [P,K]]]− 1

24 [K, [K, [P,K]]]

+ [K, [P, [P, [P,K]]]]− 1
120 [K, [K, [K, [P,K]]]]− 1

180 [[P,K], [P, [P,K]]] + · · · ,

Y = K − 1
12 [P, [P,K]] + 1

120 [P, [P, [P, [P,K]]]]

+ 1
720 [K, [K, [P, [P,K]]]]− 1

240 [[P,K], [K, [P,K]]] + · · · .

(3.2)

The general framework of polar-type decompositions has important applications using
other automorphisms. As an example, consider G = O(n+ 1), the Lie group of orthogonal
(n + 1) × (n + 1) matrices, with the corresponding Lie algebra g = so(n + 1) of skew
symmetric matrices. Let σ be an involutive automorphism on G given as

σ(x) = sxs

where s is the Householder reflection matrix s = I − 2e1eT1 = diag(−1, 1, . . . 1). The
corresponding algebra automorphism is given as

dσ(X) = sXs.

It is straightforward to verify that the subgroup Gσ of Theorem 2.1 consists of all orthog-
onal (n+ 1)×(n+ 1) matrices of the form

q =
(

1 0T

0 qn

)
Where qn ∈ O(n). Thus the corresponding symmetric space is G/Gσ = O(n+ 1) /O(n).
Matrices belong to the same coset if the first column coincide, thus the symmetric space
can be identified with the n-sphere Sn.

The corresponding splitting of a skew symmetric matrix V ∈ g = so(n+ 1) is

V =
(

0 −vT

v Vn

)
=

(
0 −vT

v 0

)
+

(
0 0
0 Vn

)
= P +K ∈ p

⊕
k.

Thus any orthogonal matrix can be expressed as the product of the exponential of a matrix
in p and one in k. The space p can be identified with the tangent space to the sphere in
the point (1, 0, . . . , 0)T .

A number of papers deals with applications of these splittings in numerical analysis.
In [23], such splittings are used in the computation of matrix exponentials, in [5, 13] similar
ideas are used to construct numerical integrators for differential equations on Stiefel and
Grassman manifolds, while [11] deals specifically with integrators on spheres.
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3.2 Symmetries and reversing symmetries of differential equations

Let Diff(M) the group of diffeomorphism of a manifold M onto itself. We say that a map
ϕ ∈ Diff(M) has a symmetry R : M →M if

RϕR−1 = ϕ

(the multiplication indicating the usual composition of maps, i.e. ϕ1ϕ2 = ϕ1 ◦ ϕ2), while
if

RϕR−1 = ϕ−1,

we say that R is a reversing symmetry of ϕ [7]. Symmetries and reversing symmetries
are very important in the context of dynamical systems and their numerical integration.
For instance, nongeneric bifurcations can become generic in the presence of symmetries
and vice versa. Thus, when using the integration time-step as a bifurcation parameter,
it is vitally important to remain within the smallest possible class of systems. As for
reversing symmetries, they give rise to the existence of invariant tori and invariant cylinders
[8, 17, 18, 19].

It is a classical result that the set of symmetries possess the structure of a group – they
behave like automorphisms and fixed sets of automorphisms. The group structure, how-
ever, does not extend to reversing symmetries and fixed points of anti-automorphisms, and
in the last few years the set of reversing symmetries has attention of numerous numerical
analysts. [7] observed that the set of fixed points of an anti-automorphism A− possesses
the structure of a pseudogroup, since it is closed under the symmetric triple product

ϕ1 · ϕ2 = ϕ1ϕ2ϕ1 ∈ fixA−, ∀ϕ1, ϕ2 ∈ fixA−,

that McLachlan et al. call “sandwich product”. We have already seen in section 2.1 that
the set of fixed points of an anti-automorphism is a symmetric space.

If M is a finite dimensional smooth compact manifold, it is well known that the infinite
dimensional group of Diff(M) of all smooth diffeomorphisms M → M is a Lie group,
with Lie algebra Vect(M) of all smooth vector fields on M , with the usual bracket and
exponential map. It should be noted, however, that the exponential map is not a one-to-
one map, not even close enough to the identity element, since there exist diffeomorphisms
arbitrary close to the identity which are not on any one-parameter subgroup and others
which are on many [16, 14]. However, the regions where the exponential map is not
surjective became smaller and smaller the closer we approach the identity, and, for our
purpose, we can disregard these regions and assume that our results are formally true.

There are two different settings that we can consider in this context. The first is
to analyze the set of differentiable maps that possess a certain symmetry (or a discrete
number of symmetries). The second is to consider the structure of the set of symmetries
of a fixed diffeomorphism. The first has a continuous-type structure while the second is
more often a discrete type symmetric space.

Proposition 3.1 The set of diffeomorphisms ϕ that possess R as an (involutive) reversing
symmetry is a symmetric space of the type Gσ.

8



Proof. Denote
σ(ϕ) = RϕR−1.

It is clear that σ acts as an automorphism,

σ(ϕ1ϕ2) = σ(ϕ1)σ(ϕ2),

moreover, if R is an involution then so is also σ. Note that the set of diffeomorphisms ϕ
that possess R as a reversing symmetry is the space of symmetric elements Gσ defined by
the automorphism σ (cf. section 2). Hence the result follows from Theorem 2.1. 2

Proposition 3.2 The set of reversing symmetries acting on an diffeomorphism ϕ is a
symmetric space with the composition R · S = RS−1R.

Proof. If R is a symmetry of ϕ then so is also R−1, since R−1ϕ−1R = ϕ and the assertion
follows by taking the inverse on both sides of the equality. In particular, ifR is a symmetry
of ϕ it is also true that R−1 is a reversing symmetry of ϕ−1. Next, we observe that if R
and S are two reversing symmetries of ϕ then so is also RS−1R, since

RS−1Rϕ(RS−1R)−1 = RS−1ϕ−1SR−1 = RϕR−1 = ϕ−1.

It follows that the composition R · S = RS−1R is an internal operation on the set of
reversing symmetries of a diffeomorphism ϕ.

With the above multiplication, the conditions i)–iii) of Definition 2.1 are easily verified.
This prove the assert in the case when φ has a discrete set of reversing symmetries.

2

In what follows, we assume that R is differentiable.
Acting on ϕ = exp(tX),

dσX =
d
dt

∣∣∣
t=0

σ exp(tX) = R∗XR−1,

where R∗ is the pullback of R. The pullback is natural with respect to the Jacobi bracket,

[R∗XR,R∗YR] = R∗[X,Y ]R,

for all vector fields X,Y . Hence the map dσ is an involutory algebra automorphism. Let
kσ and p be the eigenspaces of dσ in g = diff(M). Then

g = k⊕ p,

where
k = {X : R∗X = XR}

is the Lie algebra of vector fields that have R as a symmetry and

p = {X : R∗X = −XR}
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is the Lie triple system, vector fields corresponding to maps that have R as a reversing
symmetry. Thus, as is the case for matrices, every vector field X can be split into two
parts,

X =
1
2

(
X + dσ(X)

)
+

1
2

(
X − dσ(X)

)
=

1
2

(
X +R∗XR−1

)
+

1
2

(
X −R∗XR−1

)
,

having R as a symmetry and reversing symmetry respectively.
In the context of ordinary differential equation, let us consider

dy
dt

= F (y), y ∈ RN . (3.3)

Given an arbitrary involutive function R, the vector field F can always be canonically split
into two components, having R as a symmetry and reversing symmetry respectively. How-
ever, if one of these components equals zero, then the system (3.3) has R as a symmetry
or a reversing symmetry.

3.3 Selfadjoint numerical schemes

Let us consider the ODE (3.3), whose exact flow will be denoted as ϕ = exp(tF ). Backward
error analysis for ODEs implies that a (consistent) numerical method for the integration
of (3.3) can be interpreted as the sampling at t = h of the flow ϕh(t) of a vector field Fh

which is close to F ,

ϕh(t) = exp(tFh), Fh = F + hpEp + hp+1Ep+1 + · · · ,

where p is the order of the method (note that setting t = h, the local truncation error is
of order hp+1). We say that Fh is the shadow vector field of F .

Consider next the map σ on the set of flows depending on the parameter h defined as

σ(ϕh(t)) = ϕ−h(−t), (3.4)

where ϕ−h(t) = exp(tF−h), with F−h = F + (−h)pEp + (−h)p+1Ep+1 + · · ·.
The map σ is involutive, since σ2 = id, and it is easily verified by means of the BCH

formula that σ(ϕ1,hϕ2,h) = σ(ϕ1,h)σ(ϕ2,h), hence σ is an automorphism. Consider next

Gσ = {ϕh : σ(ϕh) = ϕ−1
h }.

Then ϕh ∈ Gσ if and only if ϕ−h(−t) = ϕ−1
h (t), namely the method ϕh is selfadjoint.

Thus, by virtue of Theorem 2.1, the set of selfadjoint numerical schemes is a symmetric
space.

Next, we perform the decomposition (2.3). We deduce from (3.4) that

dσ(Fh) =
d
dt

∣∣∣
t=0

σ(exp(tFh)) = −(F + (−h)pEp + (−h)p+1Ep+1) + · · · = −F−h,

hence,
k = {Fh : dσ(Fh) = Fh} = {Fh : −F−h = Fh},
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is the subalgebra of vector fields that are odd in h, and

p = {Fh : dσ(Fh) = −Fh} = {Fh : F−h = Fh},

is the Lts of vector fields that possess only even powers of h. Thus, if Fh is the shadow
vector field of a numerical integrator ϕh, its canonical decomposition in k⊕ p is

Fh =
1
2
(Fh + dσ(Fh)) +

1
2
(Fh − dσ(Fh))

=
1
2
(F +

∞∑
k=p

(1− (−1)k)hkEk) +
1
2
(F +

∞∑
k=p

(1 + (−1)k)hkEk),

the first term containing only odd powers of h and the second only even powers. Then,
if the numerical method ϕh(h) is selfadjoint, it contains only odd powers of h locally (in
perfect agreement with classical results on selfadjoint methods [1].

3.4 Polar decomposition and its generalization to vector fields: Connec-
tions with the generalized Scovel projection and the Thue–Morse
sequence for symmetries

In a recent paper, [12] have shown that it is possible to generalize the polar decomposition
of matrices to Lie groups endowed with an involutive automorphism. They have shown
that every Lie group element z sufficiently close to the identity can be decomposed as
z = xy where x ∈ Gσ, the space of symmetric elements of σ, and y ∈ Gσ, the subgroup
of G of elements fixed under σ. Furthermore, setting z = exp(tZ) and y = exp(Y (t)),
one has that Y (t) is an odd function of t and it is a best approximant to z in Gσ in Gσ

right-invariant norms constructed by means of the Cartan–Killing form, provided that G
is semisimple and that the decomposition g = p⊕ k is a Cartan decomposition.

Assume that ϕ, the exact flow of the differential equation (3.3), has R as a reversing
symmetry (i.e. F ∈ pσ, where σ(ϕ) = RϕR−1), while its approximation ϕh has not. We
perform the polar decompostion

ϕh = ψhχh, (3.5)

where χh is the factor we wish to get rid of, since it is the one that has R as a symmetry.
We have ψ2

h = ϕhσ(ϕh)−1. Hence the method obtained composing ϕh with σ(ϕh)−1

has the reversing symmetry R every other step. To obtain ψh we need to extract the
square root of the flow ϕhσ(ϕh)−1. Now, if φ(t) is a flow, then its square root is simply
φ(t/2). However, if φh(t) is the flow of a consistent numerical method (p ≥ 1), namely the
numerical integrator corresponds to φh(h), it is not possible to evaluate the square root
φh(h/2) by simple means as is not the same as numerical method with half the stepsize,
φh/2(h/2). The latter, however, offers an approximation to the square root: note that

φh
2

(
h

2

)
φh

2

(
h

2

)
= exp

(
hF + h(

h

2
)pEp

)
+ · · · ,

an expansion which, compared with φh(h), reveals that he error in approximating the
square root with the numerical method with half the stepsize is of the order of(

2p − 1
2p

)
hp+1Ep,
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a term that is subsumed in the local truncation error.
Choosing ψ̃h = ϕh/2σ(ϕh/2)−1 = ϕh/2σ(ϕ−1

h/2) as an approximation to ψh (we stress

that each flow is now evaluated at t = h/2), we observe that ψ̃h that has the reversing
symmetry R at each step by design, since

σ(ψ̃h) = σ(ϕh/2σ(ϕ−1
h/2)) = σ(ϕh/2)ϕ

−1
h/2 = ψ̃−1

h .

Note that ψ̃h = ϕh/2σ(ϕ−1
h/2), where ϕ−1

h/2(t) = ϕ∗−h/2(−t) is the inverse (or adjoint)

method of ϕh/2. If σ is given by (3.4), then σ(ϕ−1
h/2) = ϕ∗h/2(h/2) and this algorithm is

precisely the generalized Scovel projection [7] to generate selfadjoint numerical schemes
from an arbitrary integrator.

Proposition 3.3 The Scovel projection is equivalent to choosing the Gσ-factor in the
polar decomposition of a flow ϕh under the involutive automorphism σ(ϕ) = RϕR−1,
whereby square roots of flows are approximated with numerical methods with half the step-
size.

Another algorithm that can be related to the generalized polar decomposition of flows is
the application of the Thue–Morse sequence to improve the preservation of symmetries by
means of a numerical integrator [3]. Given an involutive automorphism A and a numerical
method ϕh in a group G of numerical integrators, [3] construct the sequence of methods

ϕ[0] := ϕh, ϕ[k+1] := ϕ[k]Aϕ[k], k = 0, 1, 2, . . . .

Since ϕ[k] = A0ϕ[k], it is easily understood that the k-th method corresponds to composing
A0ϕ[k] and A1ϕ[k] according to the k-th Thue–Morse sequence1, 01101001 . . ., as displayed
below in Table 1. Note that ϕ[k] performs 2k steps with stepsize h with combinations of

k ϕ[k] sequence
0 ϕ ‘0’
1 ϕAϕ ‘01’
2 ϕAϕAϕϕ ‘0110’
3 ϕAϕAϕϕAϕϕϕAϕ ‘01101001’

Table 1: Thue–Morse iterations for the method ϕ

ϕh and Aϕh.
[3] showed that each iteration improves of one order the preservation of the symmetry

S, where S is the involutive automorphism such that Aφ = SφS−1: in other words, if the
method ϕh retains S to order p, then ϕ[k] retains the symmetry S or order p+ k.

Let us return to the polar decomposition (3.5), and recall that χh is the term we wish
to approximate (since it is the one preserving the symmetry S, here σ ≡ A). Recall that
we have approximated the factor ψh ≈ ϕh/2σ(ϕh/2)−1. Since χh = ψ−1

h ϕh, one has a first
1Expanding ϕ

[k]
h in an iterative manner, one readily recognizes that the exponents of the automorphism

A, taken in sequential order, constitute precisely the k-th Thue–Morse sequence
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approximation χh ≈ σ(ϕh/2)ϕ
−1
h/2ϕh ≈ σ(ϕh/2)ϕh/2 := χ

[1]
h , where in the last passage we

have approximated ϕ−1
h/2ϕh with ϕh/2. If instead of halving the stepsize we perform two

steps with stepsize h, it is readily seen that χ[1]
2h is a the first iteration of the Thue–Morse

sequence and corresponds to the binary conjugation of the sequence defining ϕ[1]. Similarly,
we iterate the procedure performing the polar decomposition of χ[1]

2h. We approximate the
subgroup factor as above to obtain a new approximation χ[2]

4h = σ(ϕh)ϕhϕhσ(ϕh) et cetera,
which is the binary conjugation of ϕ[2].

Thus, at each step, the order of symmetry is increased by one unit as it follows from
[3]. However, for exact preservation of the symmetry S one needs an infinite Thue–
Morse sequence. The fact that the length of Thue–Morse sequences doubles at each
iteration makes it difficult to prove any relation between the real χh factor in the polar
decomposition of ϕh and the approximating sequence χ[k]

h .

3.5 A Yoshida-type technique for systems with symmetries

In a famous paper appeared in 1990, [20] showed how to construct high order time-
symmetric integrators starting from lower order time-symmetric symplectic ones. Yoshida
showed that, if ϕ is a selfadjoint numerical integrator of order 2p, then

ϕαh(αt)ϕ(βh)(βt)ϕαh(αt)

is a selfadjoint numerical method of order 2p + 2 provided that the coefficients α and β
satisfy the condition

2α+ β = 1
2α2p+1 + β2p+1 = 0,

whose only real solution is

α =
1

2− 21/(2p+1)
, β = − 21/(2p+1)

2− 21/(2p+1)
. (3.6)

In the formalism of this paper, time-symmetric methods correspond to Gσ-type elements
with σ as in (3.4) and it is clearly seen that the Yoshida technique can be used in general
to improve the order of approximation of Gσ-type elements.

In this section we shall show that a Yoshida-type procedure can be instead applied to
improve the order of the retention of symmetries and not just reversing symmetries. To be
more specific, let S be a symmetry of the given differential equation, namely S∗F = FS,
with S 6= id, S−1 = S and S∗ denoting the pullback of S to g = Vect(M) (see § 3.2).
Here, the involutive automorphism is given by

σϕh(t) = Sϕh(t)S,

so that
p = {P : S∗P = −PS}, k = {K : S∗K = KS}.

13



Let us assume that ϕh(t) is the flow of a selfadjoint numerical method (the numerical
method is obtained for t = h) of order 2p,

ϕh(t) = exp(tFh),

where
Fh = F + h2pE2p + h2p+2Ep+2 + · · ·

and
Ej = Pj +Kj , Pj ∈ p,Kj ∈ k.

We consider the composition

ϕ
[1]
h (t) = ϕah(at)σ(ϕbh(bt))ϕah(at). (3.7)

which reduces to

ϕ
[1]
h (t) = exp(atFah) exp(bt dσ(Fbh)) exp(atFah).

Application of the symmetric BCH formula, together with the fact that dσ acts by chang-
ing the signs on the p-components only, allows us to write the relation (3.7) as

ϕ
[1]
h (t) = exp((2a+ b)tF + (2at(ah)2p − bt(bh)2p)P2p (3.8)

+ (2at(ah)2p + bt(bh)2p)K2p +O
(
th2p+2

)
+O

(
t3h2p

)
+ · · ·).

We recall that the corresponding numerical method is obtained letting t = h. Setting

2a+ b = 1 (3.9)

for consistency, and
2a2p+1 − b2p+1 = 0, (3.10)

to annihilate the lowest order p-term, we observe that the resulting method ϕ[1]
h (t) is still

time-symmetric (because of the symmetric BCH formula), has still order 2p but it satisfies
the symmetry S to order 2p + 2. This procedure allows us to gain two extra degrees in
the retention of symmetry per iteration, compared with the Thue–Morse sequence of [3]
yielding one extra degree in symmetry per iteration.

Note that, differently from the case of the Yoshida technique, whereby the second step
(corresponding to β in (3.6)) is required to be negative, for our sequence, (3.9)-(3.10)
imply that

a =
1

2 + 21/(2p+1)
, b =

1/22p+1

2 + 21/(2p+1)

hence all the time steps are positive. In general, the procedure can be iterated in the
following manner: Assume that ϕ[k]

h (t) is known and it is associated with a time-symmetric
method of order 2p which retains the symmetry S to order 2(p+ k). Then,

ϕ
[k+1]
h (t) = ϕ

[k]
ak+1h(ak+1t)σ(ϕ[k]

bk+1h(bk+1t))ϕ
[k]
ak+1h(ak+1t) (3.11)
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yields a numerical method that retains the symmetry S to order 2(p + k + 1) provided
that

ak+1 =
1

2 + 21/(2(p+k)+1)
, bk+1 =

1/2(2(p+k)+1)

2 + 21/(2(p+k)+1)
.

One might question what is the advantage of this technique when compared to the Yoshida
technique, since the latter increases of two units the order of the numerical integrator
hence the retention of symmetry in a similar manner. As we have mentioned above, our
procedure can be applied to stiff problems, whereas the Yoshida technique is not suitable
for stiff problems since it requires the second step to be negative.

4 Numerical experiments

In this section we illustrate some of the results discussed in this paper by numerical
experiments.

4.1 The Yoshida-type technique for systems with symmetries

Let u ∈ GL(R, N) and consider the differential equation

u′ = b(u)u, u(0) = I, t ∈ [0, T ], (4.1)

where b is a N × N matrix function of u and I is the usual N × N identity matrix. We
assume that b has the form

b(u) = l− − l+, l = ul0u
−1,

where l0 is a fixed symmetric matrix and l−, l+ denote the lower and upper triangular
parts of the matrix l respectively. Differential equations of this kind appear time and
again in conjunction with isospectral flows, since the eigenvalues of the matrix l do not
change with time. The numerical solution of isospectral flows has been discussed at length
in [21].

The differential equation (4.1) possesses the symmetry Su = u−T, namely σ(ϕ) = SϕS
and the set Gσ corresponds to orthogonal matrices. In particular, if the initial condition
is an orthogonal matrix (as in our case), the theoretical solution u(t) stays orthogonal for
all t ∈ [0, T ]. This retention of symmetry of this differential equation by means of the
Thue–Morse technique was discussed in [3].

Unfortunately, when solving numerically (4.1) with standard numerical schemes, like
for instance Runge–Kutta or multistep methods, orthogonality of the solution is usu-
ally lost: although orthogonality reduces to a quadratic constraint, even method pre-
serving quadratic conservation laws might fail to be orthogonal if the matrix b is not
skew-symmetric in the internal stages of the method. This happens, for instance, when
(4.1) is solved with the implicit midpoint rule, that in this case reads

un+1 = un + hb(un+ 1
2
)un+ 1

2
, un+ 1

2
=
un + un+1

2
,

whenever un+1 is obtained by fixed point iteration, the first iteration being approximated
by a forward Euler step.
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The implicit midpoint rule (IMR), however, possesses a time-reversing symmetry, hence
the shadow vector field Fh expands in even powers of h only. Thus, we can apply a step
of the Yoshida-type technique (3.7) to improve of two units the retention of the symmetry
S (i.e. of orthogonality). Since the order of the method is two, we choose

a =
1

2 + 21/3
, b =

21/3

2 + 21/3

and solve the second step in the variables x = Su = u−T. The differential equation for x
is given by

x′ = b(xl′0x
−1)x,

which is obtained from (4.1) taking into account that b(l)T = −b(lT).
The improvement of the retention of orthogonality is displayed in Figure 4.1 for a 3×3

problem with matrix

l0 =

 1 1
2 0

1
2 2 3

2
0 3

2 −3

 ,
with T = 5. The errors are sampled for h = 1

20 ,
1
40 , . . . ,

1
640 and the reference solution is

computed with the Matlab routine ode45 with absolute and relative tolerance set to 1e-12.
Clearly, the order of the resulting method is still two, while orthogonality is retained to
order four. The slopes of the lines corresponding to h2 and h4 are reported in the figure
for reference.

10-3 10-2 10-1
10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

Step size

E
rr

or

Orthogonality error
Slope h4

Global error
Slope h2

Figure 1: Orthogonality error and global error for one step of the Yoshida-type sequence
applied to the IMR (logarithmic scale). The symmetry is retained to two orders of accuracy
higher than the order of the scheme.
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5 Conclusions

The structures of symmetric spaces and Lie triple systems are frequently encountered in
numerical analysis. We have seen examples of how these concepts form a unifying approach
to a number of different algorithmic problems in numerical analysis. This mathematical
theory is an important tool in the study of numerical integration of differential equations
and in linear algebra.
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