Aging - cognition, brain imaging and genetics

Multimodal MRI recordings, image processing, and data analysis

Arvid Lundervold MD, PhD

Neuroinformatics and Image Analysis Laboratory
Neural Networks Research Group
Department of Biomedicine, University of Bergen, Norway

https://www.uib.no/rg/neuronet

Visual Computing Forum

http://www.ii.uib.no/vis/vcf

1 March 2013
• Multimodal MRI
 = Collection of MRI recordings obtained with different MR measurement techniques from the same subject - in the same imaging session
 • Structural 3D MRI (sMRI)
 • Diffusion tensor imaging (DTI)
 • Functional BOLD MRI (fMRI) in the resting state
 ↑ Blood Oxygen Level Dependent contrast

• Image processing workflows
 • Brain morphometry (FreeSurfer)
 • White matter integrity and fiber tracking (Diffusion Toolkit & TrackVis)
 • Resting state networks (the FCON1000 scripts)

• Longitudinal data analysis
 • Linear mixed models (R: lmer in the lme4 package)
 • Nonlinear mixed effects estimation (MATLAB: nlmefit)

• Data organization
The multimodal MRI protocol

Wave1 2005, Wave2 2008/9, Wave3 2011/12

1.5 T GE Signa Excite MRI scanner with a standard 8 chn receive only head coil:

<table>
<thead>
<tr>
<th>Series</th>
<th>Pulse sequence parameters</th>
<th>W1</th>
<th>W2</th>
<th>W3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Localizer 2D</td>
<td>TR/TE = 7.8[ms]/1.7[ms]/30[°]; acq.voxel: 1.0 × 1.0 × 5.0 [mm³]; 3 [imgs]</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>2 Ax PD/T2 2D FSE</td>
<td>TR/TE₁/TE₂/FA = 3840/12.1/84.9/90; voxel: 0.94 × 0.94 × 4.0; 52</td>
<td>√</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Sag T1 3D FSPGR IR preped</td>
<td>TR/TE/TI/FA = 9.45/2.41/450/7; voxel: 0.94 × 0.94 × 1.40; 124</td>
<td></td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>4 Sag T1 3D FSPGR IR preped</td>
<td>[same as 3 to improve SNR for FreeSurfer segmentation]</td>
<td></td>
<td></td>
<td>√</td>
</tr>
<tr>
<td>5 Sag T1 3D FSPGR IR preped</td>
<td>TR/TE/TI/FA = 9.12/1.77/450/7; voxel: 0.94 × 0.94 × 1.40; 124</td>
<td></td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>6 Sag T1 3D FSPGR IR preped</td>
<td>[same as 5 to improve SNR for FreeSurfer segmentation]</td>
<td></td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>7 Ax DTI, EP SE, 26 slices</td>
<td>TR/TE/FA = 7900/97.1/90; 25 b=1000, 5 b=0; voxel: 0.94 × 0.94 × 4.0; 780</td>
<td></td>
<td></td>
<td>√</td>
</tr>
<tr>
<td>8 Ax DTI, EP SE, 25 slices</td>
<td>TR/TE/FA = 7900/104.8/90; 25 b=1000, 5 b=0; voxel: 0.94 × 0.94 × 4.0; 750</td>
<td></td>
<td></td>
<td>√</td>
</tr>
<tr>
<td>9 Ax DTI, EP SE, 25 slices</td>
<td>TR/TE/FA = 7900/110.5/90; 25 b=1000, 5 b=0; voxel: 0.94 × 0.94 × 4.0; 750</td>
<td></td>
<td></td>
<td>√</td>
</tr>
<tr>
<td>10 Ax fMRI GRE EPI Resting</td>
<td>TR/TE/FA=2000/50/90; voxel: 3.75 × 3.75 × 5.5; 25 slices; 256 volumes; 6400</td>
<td></td>
<td></td>
<td>√</td>
</tr>
<tr>
<td>11 Ax fMRI GRE EPI Fingertap</td>
<td>TR/TE/FA=3000/50/90; voxel: 3.75 × 3.75 × 5.5; 25 slices; 120 volumes; 3000</td>
<td></td>
<td></td>
<td>√</td>
</tr>
<tr>
<td>12 Ax GRE Haemoseries</td>
<td>TR/TE₁/TE₂/FA=540/15/67/20; voxel: 0.94 × 0.94 × 4.0; 25 slices; 50</td>
<td></td>
<td></td>
<td>√</td>
</tr>
</tbody>
</table>

FSE=Fast spin-echo; FSPGR=Fast spoiled gradient-echo; EP SE=Echo-planar spin-echo; GRE EPI=Gradient-echo echo-planar; IR=Inversion recovery.

- Image acquisitions being analysed in the project:*
 - Structural 3D Anatomy - 2 × 124 images / subject / wave (series 5 & 6)
 - Diffusion tensor imaging - 750 images / subject / wave (series 9)
 - Resting state fMRI - 6400 images / subject / wave (series 10)

*Up until now ...

Arvid Lundervold (www.uib.no) Aging - cognition, brain imaging and genetics 3 / 13
An example of multimodal MRI recordings

DTI – diffusion tensor imaging (Series 9)
- 5 baseline acquisitions
- 25 diffusion sensitizing directions

fMRI – resting state (Series 10)
- 8 ½ min

fMRI – fingertapping (Series 11)
- 6 min

3D MRI – anatomy (Series 5 & 6)

Haemoseries (Series 12)
- TE=15 ms
- TE=67 ms
Voxels and their constituents in brain MRI

Scales:
- Microscopic
- **Mesoscopic** [mm][s]
- Macroscopic

"Given these neuro-statistical data, what are the actual contents of a neuroimaging voxel? An examination of the 300 top-cited cognitive fMRI studies suggests that the commonly used in-plane resolution is 9–16 mm², for slice thicknesses of 5–7 mm. The average voxel size before any pre-processing of the data is thus 55 µl (or 55 mm³). Often the effective size is 2–3 times larger due to the spatial filtering that most investigators apply to improve the functional SNR. Less than 3% of this volume is occupied by vessels and the rest by neural elements.

A typical fMRI voxel of 55 µl in size thus contains 5.5 million neurons, 2.2–5.5 x 10¹⁰ synapses, 22 km of dendrites and 220 km of axons."

N.K. Logothetis, Nature 2008 p.875
Image processing workflows - FreeSurfer

Brain segmentation:

- rawavg.mgz
- aseg.mgz
- aseg.mgz

Brain surface reconstruction and cortical parcellation:

- lh.pial
- FreeSurferColorLUT
- FreeSurfer 5.1 & Freeview
The diffusion tensor:

\[
D = \begin{pmatrix}
D_{xx} & D_{xy} & D_{xz} \\
D_{xy} & D_{yy} & D_{yz} \\
D_{xz} & D_{yz} & D_{zz}
\end{pmatrix}
\]

Principal diffusion directions

\[
\mathbf{e}_1 = (\varepsilon_{1x}, \varepsilon_{1y}, \varepsilon_{1z})
\]

Eigen decomposition:

\[
D \varepsilon_1 = \lambda_1 \varepsilon_1 \\
D \varepsilon_2 = \lambda_2 \varepsilon_2 \\
D \varepsilon_3 = \lambda_3 \varepsilon_3
\]

\[
\lambda_1 \geq \lambda_2 \geq \lambda_3 \geq 0
\]

Fractional anisotropy (“white matter integrity”):

\[
FA = \sqrt{\frac{1}{2} \frac{\sqrt{(\lambda_1 - \lambda_2)^2 + (\lambda_1 - \lambda_3)^2 + (\lambda_2 - \lambda_3)^2}}{\sqrt{\lambda_1^2 + \lambda_2^2 + \lambda_3^2}}} \\
0 \leq FA \leq 1
\]

Checking goodness of co-registration between Anatomy and DTI (FA)
Image processing workflows - TrackVis

Whole-brain tractography:

Sagittal view

Coronal view

Tract selection:

Corticospinal tract

Forceps anterior

Left

Right

F_anterior

Superior

Inferior

CST

Arvid Lundervold (www.uib.no) Aging - cognition, brain imaging and genetics
Image processing workflows - FCON1000 scripts

Graph analysis of resting state functional connectivity:

(Wave 2 & 3: 80 subjects)

Pairwise MIC similarity between 20 time courses - dual regression metaICA.nii template

MIC = Maximal Information Coefficient (Reshef et al., 2011)

Node degree:

MIC

Mean adjacency matrix

Node #

Comp # i – spatial part

Comp # j – spatial part

Comp # i - temporal part

Comp # j - temporal part
Longitudinal data analysis (LDA) - Linear mixed-effect models

Let y_{ij} denote the response at the jth observation of the ith subject; $i = 1, \ldots, N$, $j = 1, \ldots, n_i$, and x_{ij} be the corresponding value of the explanatory (covariate) variable x, then the standard linear mixed-effects model with random intercept b_{0i} and random slope b_{1i} is:

$$y_{ij} = \beta_0 + \beta_1 x_{ij} + (b_{0i} + b_{1i} x_{ij}) + \epsilon_{ij}$$

- the β_ks are fixed effect parameters
- the b_{ki}s are random effect parameters
- ϵ_{ij} is the error for observation j in subject i, where the errors for subject i are assumed to be multivariate normally distributed
CVLT LongDelay - fit a linear mixed-effect model

Age\textsubscript{ij} as a predictor for \(y_{ij} = \text{LongDelay}_{ij} \) across subjects \(i = 1, \ldots, 106 \) and waves \(j = 1, 2, 3: \quad y_{ij} = \beta_0 + \beta_1 \text{Age}_{ij} + (b_0i + b_1i \text{Age}_{ij}) + \epsilon_{ij} \)
Data organisation (SVN/mySQL - Sebastian Bablock, 2009)
Thanks!

UiB project members

and collaborators:

Erlend Hodneland
Biomed/math, post doc

Martin Ystad
Biomed, MD, PhD

Steinunn Adolfsdottir
IBMP, PhD student

Judit Haasz
Biomed, MD PhD student

Erling Tjelta Westlye
Biomed, MD PhD student

Alexandra Vik
IBMP, PhD

Rune Eikeland
IBMP, PhD

Erik Hanson
Math, PhD

Martin Andersson
IBMP, PhD

Jonn-Terje Geitung
Radiology, HDS

Tom Eichele
Neurology/IBMP, MD, PhD

Eike Wehling
IBMP, post doc

Are Losnegård
Biomed, PhD student

Ivar Reinvang
UiO

Thomas Espeseth
UiO / IBMP

Tessa Welte
Tu/E, Eindhoven, Netherlands

Clément de Ribet
ISIMA, Blaise Pasacal University, FR

MedViz
UiB / HUS / CMR

The Vis Group
UiB / Informatics

www.neuroinformatics-imageanalysis.org