Evaluating Non-Photorealistic and Illustrative Visualizations

Tobias Isenberg
Which of these images do you like?
Computer-Generated or Hand-Drawn?

Evaluating Non-Photorealistic and Illustrative Rendering
Tobias Isenberg
IllustraVis 2009, Bergen, Norway
How to evaluate illustrative rendering?

• measure some quality?
 – issue: what is the right quality to measure?
 – technique: statistical approaches

• ask people, ask an expert?
 – issue: what are the right questions?
 → avoid bias
 – techniques: qualitative, ethnographic

• mixed approaches?
 – issue: how to validate current algorithmic approaches?
 – technique: directly compare drawings by people with those generated by an algorithm
Overview

- evaluation of hybrid illustrations with medical doctors [Tietjen et al., 2005]

- evaluation of pen-and-ink styles using an ethnographic technique [Isenberg et al., 2006]

- statistical evaluation of stipple rendering [Maciejewski et al., 2008]
Evaluation of Hybrid Illustrations with Medical Doctors
Evaluation of Medical Illustration

- objects in focus, near the focus, and as context
- combinations of lines, shading, volume rendering
- comparison of different combinations of styles
 - specific application domain: experts in liver surgery
 - questionnaire-based evaluation, comparing 2 images per page: general impression, specific tasks/problems
Evaluating Non-Photorealistic and Illustrative Rendering

Evaluation of Medical Illustration

Welches Bild gefällt Ihnen auf den ersten Blick besser?

Auf dieser Seite geht es um die direkte Gegenüberstellung der beiden Visualisierungstechniken.

Wie gut ist die Leber von den umgebenden Strukturen zu unterscheiden?
(gar nicht (-) bis sehr gut (++))

Können Sie die Lage der Leber zum Brustkorb einschätzen?
(nein, überhaupt nicht (-) bis ja, sehr gut (++))

Wie gut sind die extrahepatischen Strukturen untereinander differenzierbar?
(gar nicht (-) bis sehr gut (++))

Mit welchem Bild würden sie sich auf eine Tumorsektion vorbereiten wollen?

links - - ++

rechts - - ++
Evaluation of Medical Illustration: Results

• less context information, but context is necessary
• silhouette representation of context appropriate
• lay people’s opinions similar
 – only silhouettes not good, some shading important
 – colored silhouettes better, also slight shading good
Evaluation of Pen-and-Ink using an Ethnographic Technique
Introduction
Studying How People See Illustrations

- viewing/evaluating/understanding illustrations
 - complex process
 - difficult to analyze

- approach: exploratory observation
 - qualitative study, non-numeric results
 - no pre-determined hypothesis
 - criteria & terminology determined by participants
 - observing participants’ actions & opinions
Side Note: Ethnographic Studies

• qualitative evaluation technique
 – extraction of non-numeric criteria
 – e.g., opinions, feelings, concepts, common practices, etc.
 – major goal: not to bias/influence people

• bias already by wording of questions:
 – What do you like about this image?
 – Do you think this image lets you understand things well?
 – Why do you think this illustration is bad?

• question-based interviews will always bias people

• use techniques instead that do not ask questions but extract opinions/concepts otherwise
Ethnographic Evaluation of NPR

• scope of the evaluation: compare NPR pen-and-ink techniques with ones created by illustrators by hand
• 5 NPR techniques compared to 5 illustrators: hatching and stippling techniques
Ethnographic Evaluation of NPR

- different domains, comparability between images
 - 3 different shapes: archaeology, anatomy, biology
 - same default few for each object
Overview of Study Images
Study Setup: Participants

- four main groups identified:
 1. domain experts:
 scientists etc. who know their field
 2. professional illustrators:
 know how to create good illustrations
 3. illustration “end users:”
 learn with created illustrations
 4. NPR researchers:
 develop methods to generate illustrations with computers
- in our study: groups 2–4; mainly graduate students
- 8 participants per group; Σ 24 participants
Study Setup: Procedure
Results: Cluster Analysis

- categorization by drawing/rendering style by most ppl.

- criteria less often used: realism/detail, aesthetics, information contents, and orientation

- no significant differences between how the three groups categorized

- cluster graph from correlation table

- four main clusters
Results: Style and Detail
Results: Style and Detail (Cluster 3)
Results: Style and Detail

hand-drawn:

computer-generated:
Results: Categorization by Artist/Algorithm
Results: Cluster 1 – Loose and Sketchy
Results: Cluster 1 – Loose and Sketchy
Results: No Clustering w.r.t. Model
Image Liking and Appeal

• no clear favorites, neither hand-drawn nor cg

• least favorites (named by ≥58%, all others ≤25%):

• depends on context!
Results: Images Looking CG or Hand-Drawn

- many hand-drawn images stood out as such – lines:
- hand-drawn images less often named to stand out as such: stippling or mix of stippling with lines
Results: Images Looking CG or Hand-Drawn

- cg images often named to stand out as such: stippling or high-resolution lines
Results: Images Looking CG or Hand-Drawn

- hand-drawn images rarely thought to be cg (≤13%)
- some cg images frequently thought to be hand-drawn:

- randomness, longer and less dense lines, lower detail

67%
63%
46%
29%
Other Observations (from Discussion)
Results

• NPR-Turing test not passed, CG images recognized as such (named standing out as hand-drawn by ≤29%)

• some almost always recognized as CG: detail, 3D shading, exactness

• depending on algorithm & parameters

• one major exception: RenderBots hatching “sketchy,” “simplified,” “not show shape well”
Other Result: Interfaces and Interaction
Statistical Evaluation of Stippling
Statistical Evaluation of Stippling

• what characterizes a hand-drawing style?
• stippling: distribution of stipple points
 – can be analyzed with respect to each other
 – statistical metrics to analyze properties of distribution

• goal: compare hand-drawn stippling to CG images
Statistical Evaluation of Stippling

• based on gray-level co-occurrence matrix (GLCM)
 – 2D array recording the number of co-occurrences of gray level values in given spatial relationship
 – based on given offset vector, example:

- probability that a given gray value occurs in certain spatial relationship with respect to other gray value
Statistical Evaluation of Stippling

- **CG images:**
 - higher correlation of stipple placement to distance from other stipplers in certain distances

- **Other results:**
 - artifacts of CG stippling can be found in statistics
 - hand-drawn stippling has similarities to natural textures
Statistical Evaluation – Next Step: Synthesis

- Artist's stippling work
- Extraction of a tone map
- Stipple Distribution
- Extraction of stipple marks

- Statistical Analysis
- Synthesis of distribution
- Rendering with distribution
- Placement of stipple marks

Evaluating Non-Photorealistic and Illustrative Rendering
Tobias Isenberg
IllustraVis 2009, Bergen, Norway
Statistical Evaluation – Next Step: Synthesis
Other Evaluation Approaches
Other Evaluation Approaches (Selection)

NPR in architecture

space perception

psychology of NPR

[Schumann et al., 1996]

[Gooch & Willemsen, 2002]

[Halper et al., 2003]

influence on gaze

facial illustration

where do people draw lines

[Santella & DeCarlo, 2004]

[Gooch et al., 2004]

[Cole et al., 2008]
Where do people draw lines? [Cole et al., 2008]

• goal: correlate people’s line drawings with NPR
 – compare hand-drawings with current NPR line rendering concepts (silhouettes and feature lines)
 – derive algorithms that predict where artists would draw lines with certain probabilities

• approach: let people draw shapes from CG images
 – 2 steps: free drawing in frame and tracing a faint copy
 – traced images scanned and registered within frame
 – post-processing to obtain one pixel wide lines
 – 29 artists, each person drew 12 shapes
Where do people draw lines? Results

- images very similar to each other
 - 75% within 1mm for pair-wise comparisons
 - (a): five drawings overlaid in different colors
 - (b): pair-wise closest distance
Where do people draw lines? Results

• many hand-drawn lines are part of the CG line zoo; lines are near (1mm):
 – silhouettes/
 occluding contours
 – suggestive contours
 – apparent ridges
 – image edges
Summary
Evaluating NPR – Summary

- new insight on where NPR techniques are applicable
- new insight on what people think about NPR images
- new insight on usefulness of NPR for specific domains and applications
- different techniques
 - qualitative and quantitative study techniques
 - experiments often w.r.t. given goal/purpose/domain
- (potential) ultimate goal:
 - algorithms to evaluate the produced images
 - algorithms to produce better images for a given purpose
Results: Percentages Liked

29%

46%

17%
Results: Hand-Drawn vs. CG
Results: Stood out as Hand-Drawn

67%

13%

63%
Results: Stood out as CG

0% 46% 4%
Thanks for your attention!

- Thanks to all collaborators, in particular: William M. Andrews, Sheelagh Carpendale, Wei Chen, David Ebert, Petra Isenberg, Joaquim A. Jorge, SungYe Kim, Ross Maciejewski, Bernhard Preim, Mario Costa Sousa, Christian Tietjen
- Thanks to illustrators and study participants