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Abstract

We consider the problem of finding a linear combination of at most t out of K columns in a matrix, such that a close as possible approximation to a target vector is found. The motivation of the model is to compress a signal (target) by a given rate and by minimum loss of accuracy. We propose an MILP-formulation of the problem, and suggest some greedy heuristic solution methods.

1 Introduction

Signal representation by the method of frames amounts in general to selecting a small subset of columns from a matrix, called a frame. Weights are associated with each selected column, in order to construct a close approximation to a given signal target. Typically, the number of columns in the frame is big compared to the number of columns that can be extracted.

Models and methods for frame based signal representation, including the popular matching pursuit method [Mallat and Zhang 1993], are most often based on a Euclidean error measure [Engan 2000, Haugland 2001]. The goal of the current work is to point out some directions for further work in the case where distance is defined in terms of the l1 – norm. We give a Mixed Integer Linear Programming (MILP) model for the problem, and suggest some LP-based greedy heuristics in order to find near-optimal solutions.

2 Notation and preliminaries

In the following we will to a large extent use the concepts and notation defined in [Engan, 2000]. Assume that the signal to be compressed is represented as a real N-dimensional vector x. Frame based compression makes use of a frame (also called a dictionary) F which is a N×K real matrix, where K ≥ N, and rank(F) = N. The idea is to approximate the signal vector x by a linear combination of selected columns from F :

( 1 )                x ≈ y = ∑j((wjfj ,   
where fj is column vector j of F , and ( is a subset of all the columns of F, i.e. ( ( ( = {1,2,…,K}. The set of coefficients {wj}, j((, (also called the weights) may be considered as a representation (or an alternative description) of the signal vector x. If x = y, we have an exact representation, otherwise the representation is called approximate provided ((x – y (( ( T, i.e. the length of the distortion vector  r = x – y should not exeed a given tolernce T, where ((((( is some norm.

An approximate representation is called sparse if ((((( N. Since compression most often implies sparsity, not only a tolerance T on the approximation is required, but also an upper bound, t,  on the number of nonzero weights may be given, i.e. ((( (  t, where t << N.

Recently a number of methods for finding the optimal set of columns in F (i.e. finding () and simultaneously finding the corresponding set of optimal weights {wj}, j((, have been published ([Engan,2000]). Most of these methods are based on the minimization of the l2 – norm (the Euclidean length) of the distortion vector subject to some constraints. The method by [Ryen,2001] is, however, minimizing the l1 – norm of the distortion. But this method does not compute any weights, only the indexes of the columns of an extended frame is needed since the extended frame also contains quantization. 

In the following section we formulate a MIP-model for finding ( and simultaneously compute the       set of optimal weights based on minimizing the l1 – norm of the distortion vector.

    3  Vector selection based on l1 – norm minimization

Let the signal x( RN and a frame F( RN(K  be given, and suppose we want to represent x by at most t columns of F, where the integer t is a given number (1( t ( N). The distortion vector then is

                                      ( 2 )                             r = x - ∑j((wjfj ,   

where ( ( ( and  ((( (  t. We want to determine ( and the weights {wj}, j((, such that 

          ((r((1= 
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is minimized.

We now formulate a MIP- model for solving this problem. Since the weights  wj may have any sign, we set 

                                        wj = wj+ - wj-,  wj+ ≥ 0, wj- ≥ 0, j = 1,…,K

in the model. Similarly the components of the distortion vector ( 2 ) may have any sign, thus we set

                                         ri = ri+ - ri-,  ri+ ≥ 0, ri- ≥ 0, i = 1,…,N.

The objective function then becomes                                                                                                   

                                              ( 3 )                  z   = 
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The equation ( 2 ) may now be written as

                                        ( 4 )                 F (w+ – w-) + r+ – r- = x  ,

where we assume that for all j((, the weights   wj+ = wj- = 0 .    

To allow at most t columns of F to be selected, we introduce binary variables, yj , j = 1, … , K, where
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 Then the constraint

                                     ( 5 )                   
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limits the number of columns to be selected.

 In order to find the best columns and their corresponding weights, we introduce the following constraints:

                                    ( 6 )         
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where M is a positive number. Provided M is big enough, these constraints will allow wj+ or wj- to be nonzero if and only if  yj = 1.

In summary, ( 3 ) – ( 6 ) define the following MIP model for our vector selection problem:

                              minimize         z   = 
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subject to                  F (w+ – w-) + r+ – r- = x  
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                ( 7 )                           
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                                                   ri+ ≥ 0, ri- ≥ 0,  i = 1,…,N

                                                  wj+ ≥ 0, wj- ≥ 0,  j = 1,…, K
                                                              yj ( (0,1(, j = 1, ... , K.

In section 6 some numerical results are reported.

4  Greedy Approaches Using the l1 – norm model

The vector selection model ( 7 ) is in general computationally rather hard. However, when t = 1 (find the best vector) the model is rather easy to solve. This motivates a greedy approach (analogous with the Matching Pursuit techniques in [Engan,2000]): select iteratively one vector at a time until we have a matching pursuit.

The vector to be selected in iteration k + 1 is the vector that best approximates the present distortion vector rk ( r0 ( x). At the same time we allow changing the k weights for the vectors which are already selected, such that the l1 – norm of the new distortion vector, rk+1, is minimal.

To describe more precisely the necessary modifications of the model ( 7 ), we introduce two subsets of the set of indexes (: 

     
[image: image9.wmf]=

W

1

 the set of indexes of the candidate columns from which the best column is to be selected
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 the set of indexes of the columns that have been selected in the previous iterations,

i.e. 
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The model ( 7 ) may then be rewritten as follows:

                                     minimize         z   = 
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                              subject to                  F (w+ – w-) + r+ – r- = x    
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                        ( 8 )                                  
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                                                                    ri+ ≥ 0, ri- ≥ 0,  i = 1,…,N

                                                                   wj+ ≥ 0, wj- ≥ 0,  j = 1,…, K
                                                                     yj ( (0,1(,  j ( (1.

Now suppose we have a procedure PICK which executes the model ( 8 ), and assume that F, N, K and M are globally known data. A greedy algorithm may then be as follows:

begin
    (1:=(; (2:=(; k:=0;                                   (* initialization *)

    get r0 ;                                                          (*r0 ( x *)

    repeat
           PICK (rk, (1, j, wj+ , wj-, z) ;

           ( := ( wj+- wj-) fj + 
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fi ;    (*( is the current approximation of x *)

           (1 :=    (1 \ {j};     (2 :=    (2 ( {j};

           k := k+1;

           rk := x - ( ;

    until ( z ( tolerance);

end

Alternatively, the greedy algorithms can be based on pivoting operations in the LP:

                                     minimize         z   = 
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                              subject to                  F (w+ – w-) + r+ – r- = x    

                        (LP)                         ri+ ≥ 0, ri- ≥ 0,  i = 1,…,N

                                                        wj+ ≥ 0, wj- ≥ 0,  j = 1,…, K
Let B be a basis matrix of LP, and let A=B-1F and b=B-1x. Furthermore, let c+, c-, q+, and q- denote the corresponding reduced costs of w+, w-, r+, and r-, respectively. Also, let 
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denote the submatrix of F with columns defined by the index set (, and adopt a similar notation for all other matrices and vectors defined over .

Any ( ( (, where |(|=N, defines an optimal solution to LP by setting r+=r-=0, wj=0 
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. In the case of non-degeneracy, such a solution will be the result of any primal simplex algorithm starting at the feasible solution where w+=w-=0, r-=0, r+=x. The pricing strategy will determine what solution that actually is produced.

In the following, we consider various truncated pivoting algorithms based on LP. They all start with ( = Ø, and extend ( gradually by pivots based on the simplex tableau introduced above. The algorithms stop when such a pivot would violate the constraint 
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We consider the following variants of the greedy heuristic:

1. Non-monotonous subset: Choose some variable (can be a w or an r) with a positive reduced cost to enter the basis. Let the leaving variable be defined by the ratio-test of the primal simplex method. If any of the variables defining the pivot is a w, update (1 and (2.

2. Monotonously non-decreasing subset: Choose some 
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 where either 
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 is positive. Let the leaving variable be defined by the ratio-test of the primal simplex method. Update (1 and (2. 

3. Monotonously increasing subset: Choose some 
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 is positive. Let the leaving variable be defined by the ratio-test of the primal simplex method, in which all basic w-varibles are ignored. Update (1 and (2. Replace in basis all basic 
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Selection of the leaving variable is based on one out of three possible principles:

1. Largest reduced cost
2. Steepest edge [Forrest and Goldfarb, 1992]
3. Biggest change in objective function value
5 Convergence

A reasonable assumption about the column vectors of the frame F is that any subset of less than N+1 columns consists of linearly independent vectors. Then since a selected vector will not be replaced by any of the later selected vectors, the maximal number of repetitions in the greedy algorithm is N (then ( = x and z = 0).

More important, however, is the property that the objective value z (which is the l1 – norm of the current distortion vector) is monotone decreasing. To see this, let us consider an effective way to implement the procedure PICK. Since we only look for one vector to be selected, we do not need the binary variables yj, j ( (1 , and the constraints in ( 8 ) where these variables are involved. An ordinary LP – model is then what remains:

                                     minimize         z   = 
[image: image31.wmf]å

å

=

-

=

+

+

N

i

i

N

i

i

r

r

1

1


                                               subject to                  F (w+ – w-) + r+ – r- = x    
            ( 9 )                                                 ri+ ≥ 0, ri- ≥ 0,  i = 1,…,N

                                                                   wj+ ≥ 0, wj- ≥ 0,  j = 1,…, K
The procedure PICK does not solve this model to optimality. It performs only one pivoting operation: find the nonbasic column of F which when pivoted into the present basis reduces the (present) value of z with the largest amount. To find that column, we do not use the most common simplex method criterion (select the incoming column to be the one corresponding to the largest positive reduced cost). Instead we look at all candidate vectors, and select the incoming one to be the one that provides the best reduction of the objective value while none of the vectors already selected is replaced. Clearly this will give a monotone reduction of the objective value.

In a forthcoming paper we discuss the convergence properties of each of the greedy heuristics proposed here. We also discuss the computational work involved, and present results from numerical experiments.
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