
REPORTS
IN

INFORMATICS

ISSN 0333-3590

(Co)Institutions for Coalgebras

Uwe Wolter

REPORT NO 415 October 2016

B

ERGENSI
S

U
NI

VERSITAS

Department of Informatics

UNIVERSITY OF BERGEN
Bergen, Norway

This report has URL
http://www.ii.uib.no/publikasjoner/texrap/pdf/2016-415.pdf

Reports in Informatics from Department of Informatics, University of Bergen, Norway, is available
at http://www.ii.uib.no/publikasjoner/texrap/.

http://www.ii.uib.no/publikasjoner/texrap/pdf/2016-415.pdf
http://www.ii.uib.no/publikasjoner/texrap/

Abstract

The paper presents a further step within a comprehensive program of “Dualizing
Universal Algebra”. The concept of equation has been dualized in [16] based on the
concept of cofree coalgebras, the dual of term algebras. Here we show that this concept
allows even for a dualization of the whole institution [6] of equational logic, i.e., allows
to define a wide range of “coinstitutions” for coalgebras. Especially, we are able to
define coinstitutions based on the model-theoretic extension of CSP developed in [17].
Thereby, coinstitutions are essentially the same as institutions only that the rôle of
syntax and semantics is interchanged.

It has been shown that institutions are well-suited to present, to reformulate and
to generalize the very many insights and results on structuring and modularization of
algebraic specifications. In analogy, the results of the paper should provide a basis for
developing general structuring formalisms for “system specifications” [13].

1 Introduction
The paper1 presents a further step within a comprehensive program of “Dualizing Univer-
sal Algebra” [7, 10, 11, 13, 16, 17, 18]. Trusting the methodological power of Category
Theory our part of the program is based on a clean three step strategy: In a first, most
demanding, step we analyze the algebraic concepts, constructions, and results in question
and reformulate them in a systematic categorical way. In a second step we dualize the
categorical description in a quite formal way. And, in a third, creative, step, we try to in-
terpret the abstract dual concepts, constructions, and results in terms of known, let us say
set-theoretical, concepts.

It may happen that we end up with concepts already introduced and used in other fields
of Computer Science. This will give new insights and conceptual connections that con-
tribute to a “Unification of Theories” [9]. The interesting experience is that the new con-
ceptual connections are often not apparent or even not expressible on the level of traditional
concepts. The categorical level seems to be the natural level to organize and systematize the
conglomeration of all our concepts and theories in Computer Science. Sometimes, we may
end up with more general or even quite new concepts worth to investigate and to become
used.

categorical concepts
and constructions

dualization +3 dual categ. concepts
and constructions

interpretation

��algebraic concepts
and constructions

reformulation

KS

new insights
conceptual connections

? ? ?

The experiences made in the area of Algebraic Specification have shown that the con-
cept of institution [6] is well-suited to present, to reformulate and to generalize the very
many insights and results on structuring and modularization of algebraic specifications.
Especially, this concept reflects the insight that any reasonable structuring formalism has
to be based on a certain compatibility between the structures on the level of specifications
and structures on the level of models.

Based on these experiences in Algebraic Specification we should expect that structuring
formalisms for “system specifications” [13] can be based on something similar as institu-
tions. Dually to the concept of equations in Universal Algebra and in accordance with the

1The paper had been written in 2006 for publication in LNCS. Unfortunately, it was rejected and I decided to
publish it now “for the records” as a Technical Report.

1

proposals in [7, 13] the concept of coequations introduced by the author in [16] is based on
the existence of cofree coalgebras. In the present paper we show that this concept allows,
indeed, to define quite naturally a range of coinstitutions for coalgebras. As an application
of this general result we show, especially, that there are coinstitutions strongly related to
CSP [8]. Thereby, the concept of coinstitution is essentially the same as the concept of in-
stitution only that the rôle of syntax and semantics is interchanged, as we should, of course,
expect since coalgebras are the dual of algebras.

The paper gives a full exposition of the “unsorted” case, but outlines also, in some
detail, a generalization to the “many-sorted” case.

A detailed presentation of the above mentioned three methodological steps seems to be
not convenient for a conference paper. But we hope that, besides the cited literature, the
included remarks will help the reader on his journey from Universal Algebra to Universal
Coalgebra.

2 Coalgebras
It is an old observation that unsorted signatures Σ used in Universal Algebra and Algebraic
Specifications can be coded by functors FΣ : Set → Set, where Set is the category of
sets and total maps. The crucial idea is to collect all the operations of a corresponding
Σ-algebra with carrier A into a single map α : FΣ(A) → A, where FΣ(A) is just the
disjoint union of the domains of all the operations of the corresponding Σ-algebra, i.e., a
finite coproduct of finite products. Generalizing and dualizing this observation we obtain

Definition 1 (Coalgebras). Given a functor F : Set → Set an F-coalgebra (A,α) con-
sists of a set A, called the carrier, and a map α : A → F(A), called the (coalgebraic)
structure map2. An Fc-homomorphism f : (A,α) → (B, β) between F-coalgebras is a
map f : A→ B such that β ◦ f = F(f) ◦ α.

A
α //

f

��

F(A)

F(f)

��
B

β // F(B)

By Algc(F) we denote the category of all F-coalgebras and all Fc-homomorphisms be-
tween them.

Immediately by definition we have

Corollary 1 (Coforgetful functor). The assignments (A,α) 7→ A and (f : (A,α) →
(B, β)) 7→ (f : A→ B) extend to a functor U cF : Algc(F)→ Set.

Note, that dually to algebras U cF creates colimits [11, 13, 16].

Remark 1 (Many-sorted Coalgebras). We can define, of course, F-coalgebras for any
category C and any functor F : C → C. Many-sorted coalgebras would be defined, in
such a way, as F-coalgebras for functors F : Setn → Setn, where n is the corresponding
number of sorts. We are not aware of any explicit investigations or applications of many-
sorted coalgebras. But it is quite natural to interpret many-sorted F-coalgebras as systems
with n components and a certain kind of interaction between these components.

Definition 2 (Subcoalgebra). AnF-coalgebra (A,α) is anF-subcoalgebra of anF-coalgebra
(B, β) iff A ⊆ B and the inclusion map ⊆: A → B defines an Fc-homomorphism
⊆: (A,α)→ (B, β).

2Note, that the position of A in (A,α) indicates that A is the domain of α.

2

Many applications of coalgebras in system theory are based on extended polynomial
functors, i.e., functors that can be build from constant functors M : Set→ Set (where M
is any set), the identical functor ID : Set→ Set, the diagonal functor ∆ : Set→ Set×
Set, the product functor × : Set× Set→ Set, the coproduct functor + : Set× Set→
Set, and the function space functor [M ⇒] : Set→ Set, where M is again an arbitrary
set [10, 13].

More recently we have seen that coalgebras allow to define a loose semantics for CSP:

Example 1. Given a set I of “input symbols” we can define a functor DI : Set → Set

with DI(X)
def
= [I ⇒ 1 + X] for any set X , where 1 = {∗} is a fixed singleton set, i.e.,

the empty product and thus the terminal object in Set. DI -coalgebras represent (partial)
deterministic automata without output in a curried fashion. The uncurried representation
of aDI -coalgebra (A,α : A→ [I ⇒ 1+A]) would be given by the partial state transition
δα : I×A→ 1+Awith δα(i, a) = α(a)(i) for all i ∈ I, a ∈ A. These “curried automata”
are exactly the systems CSP has dealt with [17]. For any DcI -homomorphism f : (A,α)→
(B, β) and any map g ∈ DI(A) = [I ⇒ 1 +A] we have DI(f)(g) = (id1 + f) ◦ g

A
α //

f

��

[I ⇒ 1 +A]

(id1+f)◦
��

B
β // [I ⇒ 1 +B]

This means, especially, that for any i ∈ I, a ∈ A the result β(f(a))(i) is defined (6= ∗)
iff α(a)(i) is defined. That is, in terms of partial algebras, the DcI -homomorphisms are
exactly the closed homomorphisms [12, 15].

3 Process Coalgebras and Coequations
In Universal Algebra and Algebraic Specifications (conditional) equations are used to ax-
iomatize classes of algebras. (Conditional) equations are build up by terms, and terms are
constructed in a canonical way for any given signature Σ and any set X of variables. A
crucial insight is that the set TΣ(X) of all Σ-terms over X is the carrier of a Σ-algebra
and that this Σ-algebra can be characterized, in categorical terms, as the Σ-algebra freely
generated by X . Generalizing and dualizing this insight we obtain

Definition 3 (Cofree Functor). LetC be a set (of ‘colors’). AnF-coalgebra (PF (C), φF,C)
together with a ‘coloring’ εF,C : PF (C) → C is cofree over C w.r.t. U cF : Algc(F) →
Set if for every F-coalgebra (A,α) and for every coloring c : A → C there exists a
unique in Fc-homomorphism cF : (A,α) → (PF (C), φF,C) such that εF,C ◦ U cF (cF) =
εF,C ◦ cF = c.

(PF (C), φF,C) PF (C)
εF,C // C

(A,α)

cF

OO

A

cF

OO

c

<<

In general, the ‘elements’ of PF (C) can be interpreted as the ‘observable behaviours’
of systems of typ F [7, 10, 11, 13] or as ‘F-processes’ [17]. Therefore, we will call
(PF (C), φF,C) the F-process coalgebra over C. Moreover, εF,C : PF (C) → C will be
called the Fc-counit for C and cF : (A,α) → (PF (C), φF,C) the (unique) Fc-extension
of c. The image cF (A) ⊆ PF (C) can be interpreted as a behaviour “observable in A” or
“realized by A”.

Standard categorical arguments show that cofree coalgebras define a functor

3

Corollary 2 (Cofree functor). If for all sets C there exists an F-coalgebra cofree over C
w.r.t. U cF , then the assignments C 7→ (PF (C), φF,C) and (s : Y → C) 7→ (s ◦ εF,Y)F :
(PF (Y), φF,Y) −→ (PF (C), φF,C) define a functor PF : Set→ Algc(F) right-adjoint
to U cF : Algc(F) → Set and called the cofree functor for F . Moreover, F will be called
co-syntactical in this case.

The possibility to construct Σ-terms is reflected, categorically, by the fact that the cor-
responding functor FΣ : Set→ Set is ω-continuous [14]. Dually, the existence of cofree
coalgebras is ensured if the functor F : Set→ Set is ωop-continuous [7, 11, 13, 17]. For-
tunately, extended polynomial functors are ωop-continous thus we have cofree coalgebras
for a wide range of applications.

Remark 2 (Final Coalgebra). An F-coalgebra (A,α) and a coloring c : A→ C define an
F × C-coalgebra (A, 〈α, c〉 : A → F(A) × C) where the functor F × C : Set → Set

is given by (F × C)(A)
def
= F(A) × C for all sets A. The statement that (PF (C), φF,C)

together with εF,C : PF (C) → C is cofree over C w.r.t. U cF becomes, in such a way,
equivalent to the statement that (PF (C), 〈φF,C , εF,C〉) is a final F × C-coalgebra. This
makes evident that colors play the rôle of additional “observations” in the definition of
processes. That is, colors allow for additional “distinctions” between processes. This is
dual to the rôle of variables as additional “generators”.

Straightforward categorical reasoning shows that the structure maps in final coalge-
bras are isomorphisms [10, 13]. In such a way the F-coalgebra cofree over C w.r.t. U cF
provides an isomorphism 〈φF,C , εF,C〉 : PF (C)→ F(PF (C))× C.

Example 2. The functor DI : Set → Set is polynomial thus there exists for any C an
DI -coalgebra (PDI (C), φDI) cofree over C. Due to Remark 2 we have an isomorphism

〈φDI ,C , εDI ,C〉 : PDI (C)→ [I ⇒ 1 + PDI (C)]× C

thus it becomes evident that the elements of PDI (C) are, possibly infinite, trees with el-
ements from C at the nodes and “input symbols” from I at the branching edges. There
can be finite and infinite branches where the finite branches are caused by the partial-
ity of the state transition. εDI ,C : PDI (C) → C provides the color at the root and
φDI ,C : PDI (C)→ [I ⇒ 1 + PDI (C)] is defined for p ∈ PDI (C) and i ∈ I iff there is an
edge from the root labelled by i and φDI ,C(p)(i) provides than the subtree at this branch.

For a coloring c : A→ C of the states of an automaton (A,α : A→ [I ⇒ 1 +A]) the
unique DcI -extension cDI : A→ PDI (C) assigns to each state a ∈ A the process starting
in this state, i.e., a tree with the colors of all the states, reachable from a via α, at the nodes
and with input symbols from I at the edges, according to the state transition α.

For C = 1 a singleton set PDI (1) is equivalent to the set of all deterministic CSP
processes over the alphabet I , and (PDI (1), φDI ,1) is, of course, the final DI -coalgebra
[17].

A Σ-equation over a set X of variables is a pair of Σ-terms and can be represented, in
such a way, as a pair l, r : 1 → TΣ(X) of maps. A thouroughly categorical analysis [16]
shows that a reasonable dualization is given by

Definition 4 (Coequations). Let F : Set → Set be a functor and let C be a set of colors
such that there exists an F-coalgebra (PF (C), φF,C) cofree over C. An F-coequation on
C is a pair l, r : PF (C)→ 2 of maps where 2 = {0, 1}.

For a co-syntactical functor F : Set → Set we denote by Ceq(F) the set of all
F-coequations on arbitrary sets C.

Remark 3 (Coequation vs. subcoalgebra). Any Σ-equation gives rise to (or can be repre-
sented by) a quotient Σ-algebra of the Σ-algebra of Σ-terms over X , i.e., of the Σ-algebra
freely generated by X [11].

4

Dually, any F-coequation ce = (l, r : PF (C) → 2) defines an F-subcoalgebra
(Pce, φce) of the F-coalgebra (PF (C), φF,C) cofree over C. (Pce, φce) is the greatest
F-subcoalgebra such that Pce is contained in the equalizer of the pair l, r : PF (C) → 2
of maps [13]. Pce can be seen as the behaviour required or specified by the coequation ce
(compare [11, 13] where subcoalgebras have been proposed as a synonym for coequational
specifications).

Example 3. To what extend can we consider CSP as a coequational specification for-
malism? Any CSP process (expression) Q over an alphabet I determines an element in
the final DI -coalgebra (PDI (1), φDI ,1). There is a minimal DI -subcoalgebra (PQ, φQ)
of (PDI (1), φDI ,1) containing this element [13]. And, of course we can define a DI -
coequation ceQ = (lQ, rQ : PDI (1) → 2) with lQ(p) = 1 for all p ∈ PDI (1) and
with rQ(p) = 1 for all p ∈ PQ and rQ(p) = 0 for all p ∈ PDI (1) \ PQ such that
(PceQ , φceQ) = (PQ, φQ).

A Σ-equation l, r : 1→ TΣ(X) is satisfied in a Σ-algebra with carrier A for a variable
assignment γ : X → A iff the corresponding unique evaluation γ : TΣ(X) → A of
Σ-terms equalizes l and r, i.e., if we have γ ◦ l = γ ◦ r. Dually we define

Definition 5 (Validity). An F-coalgebra (A,α) satisfies an F-coequation ce = (l, r :
PF (C) → 2) for a coloring c : A → C, (A,α), c |=F ce in symbols, iff l ◦ cF = r ◦ cF
for the unique Fc-extension cF : (A,α)→ (PF (C), φF,C) of c.

The F-coequation ce is valid in (A,α), (A,α) |=F ce in symbols, iff (A,α), c |=F ce
for all colorings c : A→ C.

Remark 4 (Satisfaction vs. specified behaviour). According to the definition of the F-
subcoalgebra (Pce, φce) in Remark 3 the statement (A,α), c |=F ce can be reformulated
by the requirement cF (A) ⊆ Pce, i.e., cF has to factorize through Pce

A
cF //

��

PF (C)
l

++

r

33 2

Pce

⊆

;;

In other words, the F-coalgebra (A,α) realizes or implements indeed the behaviour spec-
ified by ce.

Remark 5 (Coequation vs. excluded behaviour). The concept of coequational specification
proposed in [7] is based on the idea to exclude behaviour: That is, a coequation is an
element e ∈ PF (C) and (A,α), c |=F e iff e /∈ cF (A). We can define, of course, an
F-coequation ce = (le, re : PF (C) → 2) with le(p) = 1 for all p ∈ PF (C) and with
re(e) = 0 and re(p) = 1 for all p ∈ PF (C) \ {e}. In such a way (Pce , φce) will be
the greatest F-subcoalgebra of (PF (C), φF,C) such that Pce is contained PF (C) \ {e}
(see Remark 3). This shows that the concept of coequation in [7] is also covered by our
definition.

Remark 6 (Many-sorted Coequations). For a many-sorted signature Σ with a set S =
{s1, . . . , sn} of sorts an S-set of variables is given by an n-tuple X = (X1, . . . , Xn) ∈
|Setn| of sets and the corresponding S-set of Σ-terms over X is an n-tuple TΣ(X) =
(TΣ(X)s1 , . . . , TΣ(X)sn) ∈ |Setn| of sets of Σ-terms of sort si, 1 ≤ i ≤ n. A Σ-equation
has a sort si and is given by a pair l, r : 1 → TΣ(X)si of maps. Those pairs of maps
can be presented, equivalently, by pairs l, r : 1nsi → TΣ(X) of morphisms in Setn, where
1nsi = (∅, . . . ,1, . . . , ∅) is an n-tuple of empty sets except a singleton set at position i, and
l, r are n-tuples of inclusions of the empty set except the map l or r, respectively, at position
i.

5

Dually, it is reasonable to assume that also many-sorted coequations are sorted, i.e., put
requirements on single “system components”: Given a co-syntactical functor F : Setn →
Setn an F-coequation of sort si on an S-set C of colors is a pair l, r : PF (C)si → 2
of maps. Equivalently, those pairs can be represented by pairs l, r : PF (C) → 2nsi of
morphisms in Setn, where 2nsi = (1, . . . ,2, . . . ,1) is an n-tuple of singleton sets except
the set 2 at position i, and l, r are n-tuples of constant maps into 1 except the map l or r,
respectively, at position i. Note that, the empty set ∅ is the initial object in Set, and that,
dually, 1 is the terminal object in Set.

4 Coinstitutions
Up to now we have only considered single, isolated signatures. But within a stepwise and
modular system design we have also to take into account relations between signatures. The
comprehensive studies on structured and modular specifications within the area of Alge-
braic Specifications have shown the the concept of institution provides a well-structured,
abstract scheme for presenting logics and specification formalims in a uniform way. This
concept was introduced by GOGUEN and BURSTALL [6] and allowed them to reformulate
and to generalize, independent of the underlying logic, the work they had done in the 70’s
on structuring (equational) specifications. A similar proposal of an abstract concept of a
logic had been given already by BARWISE [2]. By interchanging the rôle of syntax and
semantics we obtain the following

Definition 6 (Coinstitution). A coinstitution Ic = (Sign,Mod, Sen, |=) consists of

• a category Sign of (abstract) signatures;

• a model functor Mod : Sign→ Cat;

• a syntax functor Sen : Signop → Set;

• and an indexed family of satisfaction relations |=Σ⊆ |Mod(Σ)| × Sen(Σ), Σ ∈
|Sign|

such that the following satisfaction condition

M |=Σ Sen(φ)(ϕ′) iff Mod(φ)(M) |=Σ′ ϕ
′

holds for each φ : Σ→ Σ′ in Sign, M ∈ |Mod(Σ)|, and ϕ′ ∈ Sen(Σ′).

Σ

φ

��

Mod(Σ) oo
|=Σ //

Mod(φ)

��

Sen(Σ)

Σ′ Mod(Σ′) oo
|=Σ′ // Sen(Σ′)

Sen(φ)

OO

Coinstitutions are dual to institutions in the trivial sense that coinstitutions are based
on covariant model functors and on contravariant syntax functors, where institutions, in-
stead, are based on contravariant model functors and covariant syntax functors, respec-
tively. More formally expressed: Any coinstitution Ic = (Sign,Mod, Sen, |=) defines
an institution I = (Signop,Mod, Sen, |=) and, vice versa, any institution institution
I = (Sign,Mod, Sen, |=) defines a coinstitution Ic = (Signop,Mod, Sen, |=). That
is, in principle there is no need for a new concept. But as a matter of taste and to emphasize
the duality between algebras and coalgebras, we prefer to coin the dual concept of coinsti-
tution. That the present categorical approach to Universal Coalgebra leads quite naturally
to structures establishing coinstitutions will be shown in the following subsections.

6

4.1 Signature Morphisms
In our unsorted categorical approach to Universal Coalgebra “signatures” are given by func-
tors, thus the canonical choice for “signature morphisms” will be, of course, natural trans-
formations between functors.

Definition 7. A category Sign of (unsorted) abstract signatures is an arbitrary, but fixed
subcategory of the functor category Func(Set,Set), i.e., abstract signatures are given by
functors F : Set→ Set and abstract signature morphisms are given by natural transfor-
mations τ : F ⇒ G : Set → Set. Sign is a category of abstract co-syntactical signatures
iff all abstract signatures F ∈ |Sign| are co-syntactical (see Corollary 2).

Example 4. In case of CSP it is natural to choose sets I of input symbols as signatures
and maps φ : I → J as signature morphisms. How does this approach fits into the general
categorical scheme of Definition 7? For any I we have the functor DI : Set → Set (see
Example 1) as the corresponding abstract signature, and any translation φ : I → J of input
symbols gives rise to a natural transformation in the opposite direction φD : DJ ⇒ DI
where the components

φDA
def
= (◦ φ) : [J ⇒ 1 +A]→ [I ⇒ 1 +A]

are simply given by pre-composition. These natural transformations are the corresponding
abstract signature morphisms. In other words: The assignments I 7→ DI and (φ : I →
J) 7→ (φD : DJ ⇒ DI) define a contravariant embeddingD : Setop → Func(Set,Set).
And instead of Set (or Setop) we take as Sign the subcategory of Func(Set,Set) given
by the image of D.

Remark 7 (Many-sorted Signature Morphisms). For many-sorted coalgebras the situation
will be more involved since different signatures may have different numbers of sorts: For
two abstract many-sorted signatures F : Setn → Setn and G : Setm → Setm an
abstract many-sorted signature morphism (V, τ) : F → G will be given by a functor
V : Setn → Setm and a natural transformation τ : V ◦ F ⇒ G ◦ V : Setm → Setm.

In analogy to Universal Algebra we could be even more specific about the functor V:
In Universal Algebra a many-sorted signature morphism φ : Σ → Σ′ is based on a map
φ : S → S′ between the corresponding sets S = {s1, . . . , sn} and S′ = {s′1, . . . , s′m}
of sorts. This map induces a functor Vφ : Setm → Setn with Vφ(As′1 , . . . , As′m)

def
=

(Aφ(s1), . . . , Aφ(sn)). Categorically spoken, Vφ is essentially build up by the diagonal
functor ∆ : Set → Set × Set (if φ is non-injective) and by the “delete” functor δ :
Set→ 1 (if φ is non-surjective). 1 denotes here the category with only one object and with
the identity on this object as the only morphism, i.e., 1 is the empty product of categories
and thus neutral w.r.t. formation of products of categories. In such a way, the signature
morphism φ : Σ → Σ′ will be represented, finally, on the categorical level by the functor
Vφ : Setm → Setn and natural transformation τφ : FΣ ◦Vφ ⇒ Vφ ◦GΣ′ : Setn → Setn

for the functors FΣ : Setn → Setn and GΣ′ : Setm → Setm coding the signatures Σ
and Σ′, respectively.

Dually, we consider for coalgebras a map ψ : Σ′ → Σ with S = {s1, . . . , sn} and S′ =
{s′1, . . . , s′m} being the sets of sorts connected to the functors F : Setn → Setn and G :
Setm → Setm, respectively. ψ induces, as above, a functor Vψ : Setn → Setm, build up

by the diagonal functor ∆ and by the “delete” functor δ, i.e., with Vψ(As1 , . . . , Asn)
def
=

(Aψ(s′1), . . . , Aψ(sm)) for all (As1 , . . . , Asn) ∈ |Setn|. Abstract signature morphisms
(Vψ, τ) : F → G induced by maps ψ : Σ′ → Σ between sets of sorts will be called sort
based.

7

4.2 Covariant Model Functor
In Universal Algebra any signature morphism φ : Σ → Σ′ gives rise to a forgetful functor
(in the opposite direction) from the category of all Σ′-algebras into the category of all Σ-
algebras. Dually, we obtain for any unsorted abstract signature morphism a coforgetful
functor

Definition 8 (Coforgetful Functor). Any natural transformation τ : F ⇒ G : Set→ Set
gives rise to a functor U cτ : Algc(F) → Algc(G) defined for any F-coalgebra (A,α)

and any Fc-homomorphism f : (A,α) → (B, β) by U cτ (A,α)
def
= (A, τA ◦ α) and

U cτ (f)
def
= f .

A

f

��

α // F(A)
τA //

F(f)

��

G(A)

G(f)

��
B

β // F(B)
τB // G(B)

According to the definition of natural identities and of (vertical) composition of natural
transformations we have immediately from Definition 8

Proposition 1 ((Covariant) Model Functor). For any category Sign of (unsorted) abstract
signatures (for coalgebras) the assignments F 7→ Algc(F) and (τ : F ⇒ G) 7→ (U cτ :
Algc(F)→ Algc(G)) define a (covariant) model functor Algc : Sign→ Cat.

Proof. According to Definition 8 the coforgetful functors U cτ are identities on morphisms
or, for being more precise, on the underlying maps, thus we have only to prove something
for coalgebras:
Identities: For any natural identity ιF : F ⇒ F and any F-coalgebra (A,α) we obtain
according to Definition 8 and the definition of natural identities: U cιF (A,α) = (A, ιF,A ◦
α) = (A, idF(A) ◦ α) = (A,α). That is, U cιF is indeed the identical functor on Algc(F).
Composition: For any natural transformations τ : F ⇒ G and κ : G ⇒ H we have
to show that U cκ ◦ U cτ = U cκ◦τ : Algc(F) → Algc(H): For any F-coalgebra (A,α)
we obtain according to Definition 8 and according to the definition of composition for
functors and natural transformations: U cκ ◦U cτ (A,α) = U cκ(U cτ (A,α)) = U cκ(A, τA ◦α) =
(A, κA ◦ τA ◦ α) = (A, (κ ◦ τ)A ◦ α) = U cκ◦τ (A,α).

Example 5. Given a map φ : I → J the corresponding natural transformation φD : DJ ⇒
DI provides a functor U cφD : Algc(DJ)→ Algc(DI) with U cφD (A,α) = (A,α() ◦φ) for
any DJ -coalgebra (A,α).

A
α //

f

��

[J ⇒ 1 +A]

(id1+f)◦
��

(◦φ) // [I ⇒ 1 +A]

(id1+f)◦
��

B
β // [J ⇒ 1 +B]

(◦φ) // [I ⇒ 1 +B]

That is, we delete all transitions in the partial automaton (A,α) labelled by elements in
J \ φ(I), and the other transitions are multiplied, if φ is non-injective, and the labels are
renamed according to φ.

Remark 8 (Many-sorted Coforgetful Functors). Given an abstract many-sorted signature
morphism (V, τ) : F → G as in Remark 7 we will obtain a functor U c(V,τ) : Algc(F) →
Algc(G) defined for any F-coalgebra (A,α) and any Fc-homomorphism f : (A,α) →

8

(B, β) by U c(V,τ)(A,α)
def
= (V(A), τA ◦ V(α)) and U c(V,τ)(f)

def
= V(f).

A

f

��

α // F(A)

F(f)

��

V(A)

V(f)

��

V(α) // V(F(A))
τA //

V(F(f))

��

G(V(A))

G(V(f))

��
B

β // F(B) V(B)
V(β) // V(F(B))

τB // G(V(B))

For a sort based abstract many-sorted signature morphism (Vψ, τ) : F → G the coforgetful
functor U c(Vψ,τ) : Algc(F) → Algc(G) may “destroy” some system components (if
ψ : Σ′ → Σ is non-surjective) and may duplicate other components (if ψ is non-injective).

4.3 Contravariant Syntax Functor
In Universal Algebra, not only the evaluation of terms in algebras and thus satisfaction and
validity of equations are based on the property “freely generated”, but also the translation
of terms and equations along signature morphisms. A thoroughly categorical analysis of
this situation leads to the following dualization

Definition 9 (Translation of Coequations). Any natural transformation τ : F ⇒ G :
Set → Set between co-syntactical functors F and G gives rise to a map Ceq(τ) :
Ceq(G) → Ceq(F): To any G-coequation ce = (l, r : PG(C) → 2) on a set C we
assign the F-coequation

Ceq(τ)(ce)
def
= (l ◦ εGF,C , r ◦ ε

G
F,C : PF (C)→ 2)

on C, where εGF,C : U cτ (PF (C), φF,C) → (PG(C), φG,C) is the unique Gc-extension of
the Fc-counit εF,C : PF (C)→ C.

(PG(C), φG,C) PG(C)
εG,C // C

(PF (C), τPF (C) ◦ φF,C)

εGF,C

OO

PF (C)

εGF,C

OO

εF,C

<<

Proposition 2 (Contravariant Syntax Functor). For any category Sign of (unsorted) ab-
stract co-syntactical signatures the assignments F 7→ Ceq(F) and (τ : F ⇒ G) 7→
(Ceq(τ) : Ceq(G) → Ceq(F)) define a contravariant syntax functor Ceq : Signop →
Set.

Proof. Identities: For any natural identity ιF : F ⇒ F we have U cιF = IdAlgc(F), ac-
cording to Proposition 1, and, in such a way, also Ceq(ιF)(ce) = ce for any F-coequation
ce = (l, r : PF (C) → 2) since εFF,C = idPF (C) according to the uniqueness of Fc-
extensions.
Composition: For any natural transformations τ : F ⇒ G and κ : G ⇒ H we have to show
that Ceq(κ ◦ τ) = Ceq(τ) ◦Ceq(κ). That is, for anyH-coequation ce = (l, r : PH(C)→
2) we have to show

(l ◦ εHF,C , r ◦ εHF,C : PF (C)→ 2) = (l ◦ εHG,C ◦ εGF,C , r ◦ ε
H
G,C ◦ εGF,C : PF (C)→ 2).

And this holds if the equation εHF,C = εHG,C ◦ ε
G
F,C holds in Set: According to Defi-

nition 3 we have for the Hc-extension εHG,C : U cκ(PG(C), φG,C) → (PH(C), φH,C) of
the Gc-counit εG,C : PG(C) → C the equation εH,C ◦ εHG,C = εG,C in Set, and for
the Gc-extension εGF,C : U cτ (PF (C), φF,C) → (PG(C), φG,C) of the Fc-counit εF,C :

9

PF (C)→ C we have the equation εG,C ◦ εGF,C = εF,C in Set. But due to Definition 8, we
have the same equation in Set for the translation U cκ(εGF,C) = εGF,C : U cκ(U cτ (PF (C), φF,C))→
U cκ(PG(C), φG,C). Thus we get finally for the composition εHG,C ◦ ε

G
F,C in Algc(H) the

equation εH,C◦εHG,C◦ε
G
F,C = εG,C◦εGF,C = εF,C in Set, thus we have εHF,C = εHG,C◦ε

G
F,C

due to the uniqueness ofHc-extensions.

Remark 9 (Translation). At the moment we are not able to give a satisfactory interpreta-
tion of the translation of coequations in terms of translations of processes or in terms of
transformations of subcoalgebras. But it seems likely that the requirement on functors of
being “weak pullback preserving” [7, 11, 13] will be relevant also in this context.

Remark 10 (Many-sorted Translation). In Universal Algebra a many-sorted signature
morphism φ : Σ → Σ′ as in Remark 7 induces a translation of Σ-equations into Σ′-
equations. And this translation is based on a translation of S-sets of variables into S′-sets
of variables. That is, to any S-sets X = (Xs1 , . . . , Xsn) ∈ |Setn| we assign an S′-set
Y = (Ys′1 , . . . , Ys′m) ∈ |Setm|, where the components are constructed as sums (disjoint

unions): Ys′i
def
=]{Xsj | φ(sj) = s′i}, 1 ≤ i ≤ m. Note, that Ys′i will be the empty set,

i.e., the initial object in Set if s′i ∈ S′ \ φ(S).
Categorically spoken, these translations define a functor V#

φ : Setn → Setm left-

adjoint to the functor Vφ : Setm → Setn, i.e., V#
φ is essentially build up by the coproduct

functor + : Set× Set→ Set (the functor left-adjoint to the diagonal functor ∆ : Set→
Set× Set) and by the “initial object functor” ∅ : 1→ Set (the functor left-adjoint to the
“delete” functor δ : Set → 1). Note, that V#

φ (1nsi) = 1mφ(si)
thus the translation of the

many-sorted equations introduced in Remark 6 is indeed insured.
Dually, we can define a translation Ceq(Vψ, τ) : Ceq(G) → Ceq(F) of many-sorted

coequations, as defined in Remark 6, for any sort-based abstract many-sorted signature
morphism (Vψ, τ) : F → G as in Remark 7: Since Vψ : Setn → Setm is build up by the
diagonal functor and the “delete” functor, there exists a functor V•ψ : Setm → Setn right-
adjoint to Vψ . V•ψ will be essentially build up by the product functor× : Set×Set→ Set
(the functor right-adjoint to the diagonal functor) and by the “terminal object functor”
1 : 1 → Set (the functor right-adjoint to the “delete” functor), thus there exists for all
1 ≤ i ≤ m an isomorphism ιi : V•ψ(2ms′i

)→ 2nψ(s′i)
.

V•ψ right-adjoint to Vψ means that we have for any A ∈ |Setn| and any C ∈ |Setm|
a bijection bA,C : Setm(Vψ(A), C) → Setn(A,V•ψ(C)) (compare the concept of “cor-
responding variable assignment” in [19]). This ensures that we can assign to any many-
sorted G-coequation l′, r′ : PG(C) → 2ns′i

of sort s′i ∈ S′ on an S′-set C ∈ |Setm|
of colors the F-coequation l, r : PF (V•ψ(C)) → 2mψ(s′i)

of sort ψ(s′i) ∈ S on the S-set

V•ψ(C) ∈ |Setn| of colors where l
def
= ιi ◦ bPF (V•ψ(C)),C(l′ ◦ (b−1

PF (V•ψ(C)),C(εF,V•ψ(C)))
G)

and r
def
= ιi ◦ bPF (V•ψ(C)),C(r′ ◦ (b−1

PF (V•ψ(C)),C(εF,V•ψ(C)))
G).

4.4 Satisfaction Condition
The satisfaction condition is the last missing piece for our main result. That is, we have to
show that “truth is invariant under change of notation” [6]:

Proposition 3 (Satisfaction Condition). For any natural transformation τ : F ⇒ G :
Set → Set between co-syntactical functors F and G, any F-coalgebra (A,α), and any
G-coequation ce = (l, r : PG(C) → 2) on a set C the following satisfaction condition
holds:

(A,α) |=F Ceq(τ)(ce) iff U cτ (A,α) |=G ce

10

Proof. Due to the Definitions 5, 8, and 9 we have to show that for all colorings c : A→ C:
(A,α), c |=F (l ◦ εGF,C , r ◦ ε

G
F,C : PF (C)→ 2) iff (A, τA ◦α), c |=G (l, r : PG(C)→ 2).

Due to Definition 5 this statement is equivalent to the statement: l◦εGF,C◦cF = r◦εGF,C◦cF

iff l ◦ cG = r ◦ cG for all colorings c : A → C. And this equivalence holds, finally, if
we can prove εGF,C ◦ cF = cG for all colorings c : A → C. But due to the definition of
Fc- and Gc-extensions we have εF,C ◦ cF = c and εG,C ◦ εGF,C = εF,C . This entails
εG,C ◦ (εGF,C ◦ cF) = c thus the uniqueness of Gc-extensions insures εGF,C ◦ cF = cG , as
required.

Remark 11 (Many-sorted Satisfaction Condition). The satisfaction condition holds also
for the many-sorted case. We drop the tedious and long proof, and let it as an exercise for
the interested reader. Additionally to the uniqueness of Fc- and Gc-extensions the proof is
based on the fact the the ιi are isomorphisms and that the bA,C are bijections (natural in
A and C).

Summarizing Definition 7 and the Propositions 1, 2, 3 we obtain the main result of our
paper

Theorem 1 (Coinstitutions). Any category Sign of abstract co-syntactical signatures to-
gether with the corresponding model functor Algc : Sign → Cat, the corresponding
syntax functor Ceq : Signop → Set and the corresponding family |=F⊆ |Algc(F)| ×
Ceq(F),F ∈ |Sign| of satisfaction relations constitutes a coinstitution Ic = (Sign, Algc, Ceq, |=
) for coalgebras.

Example 6 (Coinstitutions for CSP). Applied to our example Theorem 1 tells us that there
is a coinstitution of “colored deterministic CSP processes”. Since the non-deterministic
processes in CSP ared also based on extended polynomial functors [17], i.e., since there is
no “real” non-determinism in CSP, it seems to be possible to define also coinstitutions of
“colored non-deterministic CSP processes”. But a more detailed analysis will be necessary
to varify this conjecture.

Remark 12 (Un-colored Coequations). Theorem 1 is formulated for co-syntactical func-
tors F : Set → Set, i.e., concerns “colored coequations”. In analogy to “ground equa-
tions” in Universal Algebra we could, of course, restrict ourselves to “un-colored coequa-
tions”, i.e., we could only require that there is a terminal F-coalgebra. Since the defini-
tions and results in the paper include this simple case, we could formulate corresponding
variants of Definition 7 and of Theorem 1.

5 Conclusions and further work
In the paper we have shown that the concept of coequation introduced in [16] allows to de-
fine a wide range of coinstitutions for coalgebras. This result gives, besides [1], a further in-
dication that the approach to dualization developed in [16] can be seen as a well-structured
and reasonable one.

As an application we have shown that the model-theoretic extension of CSP presented
in [17] gives rise to coinstitutions.

Further we have outlined, in some detail, a generalization of the definitions and results
to the many-sorted case. But a full exposition of the many-sorted case deserves a next paper
for its own.

In view of the three step methodology, described in the introduction, there are, at the
present stage, open questions mainly concerning the “interpretation step”:

• What are many-sorted coalgebras (good for)?

• How can the translation of coequations be interpreted in terms of translation of pro-
cesses or in terms of transformations of subcoalgebras?

11

• What are “colors” good for in applications like CSP, for example?

Structuring formalisms in Algebraic Specifications are based, on the model-theoretic
level, on free functors and on amalgamation [4, 5, 3]. First results on cofree functors
for coalgebras are already available [18]. A natural next question would be to investigate
possibilities to dualize amalgamation. Especially, the relation between co-amalgamation
and synchronization will be worth to investigate.

References
[1] F. Bartels, A. Sokolova, and E. de Vink. A hierarchy of probabilistic sytem types.

TCS, 327:3–22, 2004. 5

[2] K. J. Barwise. Axioms for Abstract Model Theory. Annals of Mathematical Logic,
7:221–265, 1974. 4

[3] H. Ehrig, M. Große–Rhode, and U. Wolter. Applications of category theory to the
area of algebraic specification in computer science. Applied Categorical Structures,
6(1):1–35, 1998. 5

[4] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 1: Equations and
Initial Semantics, volume 6 of EATCS Monographs on Theoretical Computer Science.
Springer, Berlin, 1985. 5

[5] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 2: Module Specifi-
cations and Constraints, volume 21 of EATCS Monographs on Theoretical Computer
Science. Springer, Berlin, 1990. 5

[6] J. A. Goguen and R. M. Burstall. Institutions: Abstract Model Theory for Specifica-
tion and Programming. Journals of the ACM, 39(1):95–146, January 1992. (docu-
ment), 1, 4, 4.4

[7] H. P. Gumm. Equational and implicational classes of coalgebras. TCS, 260:57–69,
2001. 1, 3, 3, 5, 9

[8] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985. 1

[9] C.A.R. Hoare. Unification of Theories: A Challenge for Computing Science. In
M. Haveraaen, O. Owe, and O.-J. Dahl, editors, Recent Trends in Data Type Specifica-
tion, pages 49–57. 11th Workshop on Specification of Abstract Data Types, WADT11,
Oslo Norway, September 1995, Springer, LNCS 1130, 1996. 1

[10] B. Jacobs and J. Rutten. A Tutorial on (Co)Algebras and (Co)Induction. Bulletin of
EATCS, 62:222–259, June 1997. 1, 2, 3, 2

[11] A. Kurz. Logics for Coalgebras and Applications to Computer Science. PhD thesis,
Ludwig-Maximilians-Universität München, Fakultät für Mathematik und Informatik,
2000. 1, 2, 3, 3, 3, 9

[12] H. Reichel. Initial Computability, Algebraic Specifications, and Partial Algebras.
Oxford University Press, 1987. 1

[13] J.J.M.M. Rutten. Universal coalgebra: A theory of systems. TCS, 249:3–80, 2000.
(document), 1, 2, 2, 3, 3, 2, 3, 3, 9

[14] M.B. Smyth and G.D. Plotkin. The category theoretic solution of recursive domain
equations. SIAM Journ. Comput., 11:761–783, 1982. 3

12

[15] U. Wolter. An Algebraic Approach to Deduction in Equational Partial Horn Theories.
J. Inf. Process. Cybern. EIK, 27(2):85–128, 1990. 1

[16] U. Wolter. On Corelations, Cokernels, and Coequations. In H. Reichel, editor, Third
Workshop on Coalgebraic Methods in Computer Science (CMCS’2000), Berlin, Ger-
many, Proceedings, volume 33 of ENTCS, pages 347–366. Elsevier Science, 2000.
(document), 1, 2, 3, 5

[17] U. Wolter. CSP, Partial Automata, and Coalgebras. TCS, 280:3–34, 2002. (docu-
ment), 1, 1, 3, 3, 2, 6, 5

[18] U. Wolter. Cofree Coalgebras for Signature Morphisms. In H.-J. Kreowski, editor,
Formal Methods (Ehrig Festschrift), pages 275–290. Springer, LNCS 3393, 2005. 1,
5

[19] U. Wolter, M. Klar, R. Wessäly, and F. Cornelius. Four Institutions – A Unified
Presentation of Logical Systems for Specification. Technical Report Bericht-Nr. 94-
24, TU Berlin, Fachbereich Informatik, 1994. 10

13

	Introduction
	Coalgebras
	Process Coalgebras and Coequations
	Coinstitutions
	Signature Morphisms
	Covariant Model Functor
	Contravariant Syntax Functor
	Satisfaction Condition

	Conclusions and further work

