
REPORTS
IN

INFORMATICS

ISSN 0333-3590

Fibred Amalgamation, Descent Data, and
Van Kampen Squares in Topoi

Uwe Wolter, Department of Informatics,
University of Bergen, Norway

H. König, University of Applied Science FHDW
Hannover, Germany

REPORT NO 404 December 2012

B

ERGENSI
S

U
NI

VERSITAS

Department of Informatics

UNIVERSITY OF BERGEN
Bergen, Norway

This report has URL http://www.ii.uib.no/publikasjoner/texrap/pdf/2012-404.pdf

Reports in Informatics from Department of Informatics, University of Bergen, Norway, is available at
http://www.ii.uib.no/publikasjoner/texrap/.

http://www.ii.uib.no/publikasjoner/texrap/pdf/2012-404.pdf
http://www.ii.uib.no/publikasjoner/texrap/

Contents
1 Introduction 1

2 The Problem of Successful Amalgamation 6

3 Related Work 7

4 Descent Theory 8
4.1 Descent Data in Topoi . 9
4.2 Descent Data in Presheaves . 13

4.2.1 Diagrammatic Specifications and Presheaves . 13
4.2.2 Descent Data in SET . 15
4.2.3 Descent Data in SETS . 15

5 Amalgamation, Van Kampen, and Coherence in Topoi 17
5.1 Amalgamation and Van Kampen Squares . 17
5.2 Coherence in Topoi . 19
5.3 Amalgamation vs. Coherence in Topoi . 22

6 Amalgamation and Van Kampen Squares in Presheaves 25
6.1 General analysis . 25
6.2 Examples (revisited) . 28

7 Outlook 29

8 Appendix 33
8.1 Adjointness of Pullback Functor . 33
8.2 Epi-Mono-Factorizations . 33
8.3 Towards a transition from monadic descent to families of fibre assignments 34
8.4 The Monad Embedding . 35
8.5 Domain cycles and alternating sequences . 36
8.6 Twisting . 38

Abstract

Reliable semantics for software systems has to follow the semantics-as-instance principal (fibred semantics)
rather than the semantics-as-interpretation principal (indexed semantics). While amalgamation of interpretations
is simple and nearly always possible, amalgamation of instances is very much involved and not possible in many
cases.

The paper presents for presheaves, i.e. for functor categories SETS , a condition when two compatible
instances, i.e. a span of pullbacks, are amalgamable. Based on this individual condition we prove further a
total condition for amalgamation in presheaves, i.e. a necessary and sufficient condition for pushouts to be Van
Kampen squares.

As a necessary and adequate basis to achieve these results we provide a full revision and adaption of the
theory of descent data in topoi for applications in diagrammatic specifications including graph transformations.
Especially, we characterize Van Kampen squares in arbitrary topoi by pullbacks of categories of descent data.

1 Introduction
Explaining formal arrangements like type diagrams, entity-relationship (ER) diagrams, class diagrams, state charts,
process models or metamodels is challenging. The artefacts of a computer scientist are syntactic constructs. While,
in most cases, we have accurate means available to specify correct syntax, like contextfree grammars or metamod-
els, for example, the description of the semantics, i.e. of the intended meaning, of our artefacts still remains
intuitive and approximate. Basically, one can distinguish between static semantics, which explains the artefacts’
meaning by means of static structures like sets and functions, for example, and operational semantics, which pro-
vides meaning in terms of behaviour. This paper, is mainly motivated by problems related to static semantics of

1

diagrammatic specifications [7, 30, 33]. The presented concepts and results, however, are probably also useful for
operational semantics.

A software engineer questions the meaning of an element x of a syntactic structure S. The syntactic shape
of x may vary. In diagrammatic specifications, it may be a rectangle, a point, an arrow, a line, or some other
graphical template. A (static) interpretation i of S may assign to elements of S a set or a map between sets. If the
semantics of x is a set, each element of i(x) appears, in this context, as indexed by x. If S is a set, the resulting
family of sets is often denoted by (i(x))x∈S and called an indexed set. If S is a category (compare Section 4.2),
an interpretation of S becomes a functor from S or Sop, respectively, into SET . More generally, interpretations
may assign to syntactic elements categories and functors instead of sets and functions respectively. This gives
rise then to interpretations as functors i : S → CAT or i : Sop → CAT also called indexed categories. The
common codomain of a certian kind of interpretations, as the categories SET or CAT , for example, is called a
semantic universe in [33] because it contains all necessary correctness knowledge. Bearing in mind the special
cases of indexed sets and indexed categories, respectively, we will refer to any incarnation of the semantics-as-
interpretation pattern as indexed semantics.

Software engineering is a discipline which has to understand and to deal also with the relation between different
specifications S and S′ and their potential co-evolution: S might be a graphical class model which represents
classes of an object-oriented program, S′ might be an entity relationship diagram describing how these entities are
stored in a database.

Relations between specifications are usually formalized by specification morphisms turning the collection
of all specifications into a category C . The collection of all interpretations of a fixed object S in C together
with natural transformations between them constitute then a category Mod(S). In this indexed setting, any
specification morphism m : S → S′ gives rise, by simple pre-composition with m, to a (forgetful) functor
Mod(m) : Mod(S′)→Mod(S). Thus we obtain, on the global level, a functor Mod : C op → CAT .

A paradigmatic example of indexed semantics are algebraic specifications [9, 10], where S is a signature
(containing sorts and operation symbols) or a specification, in which axioms like equations or conditional equations
[3, 28, 32] are added to a signature. Algebras interpret sort symbols by sets and operation symbols by functions,
respectively. Homomorphisms between algebras are families of functions, indexed by sort symbols, satisfying
a homomorphism/naturality condition for each operation symbol. If we denote the category of all algebras and
homomorphisms for a given S by Alg(S), any specification morphism m : S → S′ induces a forgetful functor
from Alg(S′) to Alg(S), where specification morphisms are given by compatible and axiom preserving pairs of
functions between sets of sort symbols and sets of operation symbols, respectively.

Equations and conditional equations can also be formalized diagrammatically by product and limit sketches,
respectively [1]. An extension of this framework are generalized sketches [6, 25, 7]. They are an appropriate
underpinning for diagrammatic specifications in model driven engineering [7, 29, 30]: Diagrammatic specifications
contain (data) types, directed associations between them, and probably distinguished and labeled subdiagrams to
express constraints. Sketch morphisms relate different specifications. The original definitions of sketch semantics
[1, 5, 4, 25] are “indexed”. In most applications interpretations of types are sets and arrows are interpreted as
functions between sets.

Compositionality is an important and well-known concept in theoretical computer science [12]. It is a method to
uniquely and correctly compose (overlapping) semantics of components of an already composed specification. The
composition of specifications is usually carried out with the help of colimits. I.e. the category C of specifications
and specification morphisms is assumed to be cocomplete. E.g. in the left diagram of Figure 1 components A
and R are related via the common part L whose role as substructure of A and R is formalized with specification
morphisms a and r, resp. Syntactic composition is carried out by constructing the pushout of a and r.

Assume there are interpretations τ , γ, and β of the components A, L, and R resp., which are related to each
other according to the action of the functor Mod, i.e. Mod(a)(τ) = γ = Mod(r)(β). The compositionality
problem is formulated in [12], p. 10, as follows: Can these interpretations for the component specifications
uniquely be composed in the same way as the specifications, such that the composed interpretation is correct w.r.t.
the composed specification? Of course, such an implication is something we know from all over the mathematical
world: It is very desirable to infer global correctness from local correctness, because proofs can then be carried out
locally. A prominent examples are sheaves over topological spaces [27], where e.g. local properties like (analytic)
continuity ensure the corresponding global property.

Compositionality can shortly be circumscribed by the equation

Mod(Colim(D)) = Lim(Mod ◦Dop)

2

where D : Σ → C is an arbitrary diagram (in Figure 1 Σ is the pattern · ·oo // ·) and Colim and Lim
denote colimit and limit of diagrams. I.e. compositionality is continuity of Mod.

As an example consider the Amalgamation Lemma of [9], cf. Figure 1. It states that (2) is a pullback in the
category CAT of categories if (1) is a pushout of specifications. Here Vm denotes the above mentioned forgetful

L
r //

a

��

R

a

��

Alg(L)

(2)

Alg(R)
Vroo

A
r // S

(1)

Alg(A)

Va

OO

Alg(S)

Va

OO

Vroo

Figure 1: Amalgamation Lemma (Indexed version)

functor along a specification morphism m.
Note that the ”philosophy” of semantic universes and of semantics-as-interpretation implies two important

facts: On the one hand, elements of a set (objects) can be multiply interpreted (typed) (if e.g. i(t1) ∩ i(t2) 6= ∅ for
two different elements t1, t2 of specification S). On the other hand, i is a fixed assignment which maps an element
t to all objects that are t-typed.

Reliable semantics for model-driven structures, however, has to drop the ”philosophy” of semantic universes,
because in software environments each object possesses exactly one type and it should not be possible to determine
the set of t-typed objects. The second requirement is important since it enables external extensions of software
systems using inheritance and specialization techniques.

This mismatch between indexed semantics and software engineering requirements calls for a shift of paradigm.
First, we have to give up the strict separation of syntax and semantics. Instead of the syntax, on one side, and a
semantic universe, on the other side, we have to allow that syntactic and semantic entities live all together in the
same category C , and that, in addition, certain entities may play, at the same time, a syntactic and a semantic role.
Second, we have to switch to fibred semantics [7, 33]. Fibred semantics means semantics-as-instance, i.e., the
semantics of specifications are instances and are formalized by objects of the slice categories C ↓A, C ↓L, C ↓R,
and C ↓S. Mod gets traded for a functor Inst assigning to a specification S the category C ↓S or a subcategory
of it. Moreover Inst assigns to each specification morphism m : S → S′ the ”pulling back”-functor along m (e.g.
the functor r∗ which constructs the pullback of r and β ∈ C ↓ R, this is the back face in Figure 2). Since the
”meaning” of an element x of a specification S in terms of an instance ι ∈ C ↓S is now given by ι−1(x), i.e. the
fibre of ι over x, this approach is called fibred semantics.

A crucial question arises whether compositionality smoothly carries over to the fibred setting, i.e.

Inst(Colim(D))
?
= Lim(Inst ◦Dop). (1)

Unfortunately and surprisingly it turns out, that this is not the case. We encounter two serious problems. First,
Inst : C op → CAT is only a pseudofunctor, i.e. composition is only unique up to isomorphism.

The second problem can be uncovered already in the special case of amalgamation: Given two instances
τ ∈ C ↓ A and β ∈ C ↓ R with common part γ, i.e. r∗β = γ = a∗τ , one wants to prove that the syntactic
composition (pushout of a and r) is reflected on the instance level by a unique construction. The counterpart for
correctness is the requirement to obtain an S-instance of C ↓ S, such that its pullbacks along a and r yield β and
τ , resp., cf. Figure 2. This question, however, is closely related to the following concept:

Definition 1 (Van Kampen Square) A pushout as in the bottom of Figure 2 is called a Van Kampen square if
for all commutative cubes as in Figure 2 (without question marks) with two pullbacks as rear faces the following
equivalence holds: The top face is a pushout if and only if the front and right faces are pullbacks.

In indexed semantics we have amalgamation for arbitrary pushouts. In contrast, we know that already in the
category SET there are pushouts that are not Van Kampen squares (see [8] and the forthcoming examples). In
these cases there are rear pullback spans for which amalgamation fails as well as spans that can successfully be
amalgamated. Thus fibred amalgamation may or may not fail, if a and r together with their pushout do not enjoy
Van Kampen exactness.

3

I

γ

��

a′

����������
r′ // H

β

��

?~~}
}

}
}

J

τ

��

?
//_______ K

?

���
�
�
�
�
�
�

L
r //

a
����������

R

a~~}}}}}}}}

A
r

// S

Figure 2: Fibred Amalgamation of τ and β with common part γ

One way out of this dilemma is to restrict ourself to pushouts with a special property ensuring Van Kampen
exactness in most of the relevant application areas. A variant of this restrictive policy is the concept of adhesive
categories [31] where it is required that pushouts along monomorphisms are Van Kampen squares. This means
that if either a and r are monic, we can construct the pushout of a′ and r′ and know that front and right face
are pullbacks as desired. Topoi are adhesive [21] thus this restriction works fine for a wide spectrum of relevant
categories, as e.g. SET and GRAPH . It is well-known, however, that already in SET there are many more Van
Kampen squares than the ones where one participating morphism is monic. A precise characterization of all Van
Kampen squares in our categories of interest remained an open problem which is as well theoretical as practical
relevant.

Another way out of the dilemma could be to restrict the quantification in Definition 1 to the ”good” pullback
spans. The crucial observation is that for those pullback spans that arise by applying a corresponding Grothendieck
construction to coherent pairs of interpretations the equivalence in Definition 1 is satisfied [33]. A feasible char-
acterization of those ”good” pullback spans is practical relevant and would give us, at the same time, a better
understanding of the essential differences between indexed and fibred semantics.

A category possesses all finite colimits if there are pushouts and an initial object. Elementary conditions for
amalgamation of spans (by pushouts), if there are any, can easily be carried over to all coequalizers, because a
coequalizer of f, g : A → B is given by one arrow in the cocone of the pushout of [f, g] : A + A → B and
[id, id] : A+A→ A.

If the underlying category is extensive, i.e. if in the diagram

X
s //

u

��

C

f

��

Y
too

v

��
A

i // A+B B
joo

C is the coproduct of X and Y if and only if both squares are pullbacks (which is the case in our most general
setting, as we will see soon), these conditions can directly be used to describe compositional colimits, because
any colimit is constructed with a coequalizer and a coproduct. Hence understanding (the limits and conditions for)
fibred amalgamability means to understand the circumstances for fibred compositionality in general.

In this paper we want to draw and to describe an exact line which marks this border for amalgamation. We
distinguish between a total and an individual view. The total view addresses the problem when a diagram of
specifications yields amalgamation for all instance constellations, i.e. under which conditions (1) holds for pushouts
(or equivalently the resulting diagram is a Van Kampen square). The goal is to find a feasible condition which is
well-applicable for corresponding situations in software engineering (see e.g. Example 4 below).

The individual view is a precursor of the total view: It shall produce a similarly useful condition for successful
amalgamation of a fixed rear pullback span (especially, if the bottom square is not Van Kampen). This condition
should come in terms of the structures of the two rear pullbacks only. A request for such a condition was first
raised in [33].

To sum this up, the goal of this paper is to find answers for the following two questions:

Question 1 Can we find necessary and sufficient conditions for a pushout to be a Van Kampen square in terms of
the span (a, r) only?

4

Question 2 Can we find feasable conditions which characterize successful amalgamation of a fixed pullback span
in terms of the structure of the span (even in the case that the bottom square is not a Van Kampen square)?

We are interested to perform a comprehensive investigation of these questions in a more general categorical set-
ting that subsumes our main motivating application areas as graph transformations and generalized sketches. The
category GRAPH of multi graphs, as many other categories of graph structures, can be described as presheaves,
i.e., as functor categories SETS with S a finite “meta schema” category (see subsection 4.2). Also the category
of generalized multi sketches becomes a presheaf as long as the underlying base category is a presheaf [25]. In
such a way, presheaves appear as an adequate abstraction level to answer the above questions.

Presheaves are topoi [14], which are thus a good common biotop to develop and to present the theoretical
foundation for our investigations. A topos is a category with finite limits, which is cartesian closed, and where the
subobject functor is representable. We mention some further properties of a topos C which will be used frequently
throughout the paper:

1. C has all finite colimits, [14], 4.3.

2. C is extensive [14].

3. If an arrow is monic and epic, it is an isomorphism [14], 5.1.

4. Pullbacks preserve epimorphisms [14], 5.3.

5. Pushouts preserve monomorphisms and, moreover, pushouts with a monomorphism involved are also pull-
backs [14], 13.3.

6. The pullback functor preserves colimits [14], 15.3.

7. Epimorphisms are regular epimorphisms [26], Lemma 16.18.

Topoi are adhesive [21], i.e. pushouts along monomorphisms are Van Kampen squares. Thus the above questions
are relevant especially for the case where both a and r in Figure 2 have non-trivial kernel relations.

The paper is organized as follows. In section 2 we give examples which show the subtleties which may destroy
successful compositionality and how difficult it may be to decide whether a square is Van Kampen or whether a
given pullback span can be amalgamated. In order to show that the problems may frequently occur in practice, we
include an example from software engineering. Section 3 discusses related work.

Descent Theory [15] is a good tool for quantifying the interrelation of kernels on a common domain and it
turns out that its theoretical results unfold their power in categories which are ”essentially the same as sets” [22].
As one of the main contributions of the paper subsection 4.1 presents a full revision and adaption of the theory of
descent data in topoi for applications in diagrammatic specifications and, especially, in graph transformations. We
point out the two main facets of descent data: On the one hand, it describes algebraic structures, on the other hand,
it codes lifted equivalence relations in pullback squares. Because a careful investigation of the relation of these
algebraic structures and all possible pullbacks (even differentiating isomorphic pairs) is necessary, a well-known
result on effective decent morphisms [27] is slightly sharpened (Proposition 15).

In subsection 4.2 we investigate, in more detail, descent data in presheaves. We show that there is a bijective
correspondence between abstract objects of the category of descent data and families of bijections on the fibres
over related elements (Proposition 16). Moreover, we emphasize the role of descent data as information that codes
how to construct pullback complements in the spirit of [18].

In Section 5 we introduce the precise notions of amalgamability of pullback spans and of coherence of pairs of
algebraic structures. Algebraic structures are coherent if they are reducts of a uniquely determined larger algebraic
structure. Pullback spans are amalgamable, if they are simultaneous projections of an essentially unique ”larger”
pullback. We investigate the strong relationship between these two concepts.

We introduce several useful functorial relations on the level of pullbacks (where amalgamation is carried out)
as well as on the level of descent data (where the question of coherence arises) and interrelate them according to
the results of Section 4. The central technical result is Lemma 22 which is the precondition for the validity of
Propositions 25 and 27, one of the main contributions of this paper. In these propositions, we basically prove that
amalgamability is equivalent to coherence. Although still in an abstract context, this already provides and prepares
a more feasable answer to Question 2.

There is also an easy consequence of this result (Theorem 28) which provides a fibred amalgamation lemma
in terms of descent data. Theorem 28 gives us a nice (but still unpractical) equivalent characterization of Van

5

Kampen squares in terms of the limit (pullback) of certain categories (cf. (1)). However, the theorem provides the
prerequisite to gain a practical answer to Question 1 for presheaves.

Section 6 investigates amalgamation and coherence in presheaves. A general analysis in the context of the
results of subsection 4.2 is performed. It turns out that the aforemetioned border between failure of and successful
amalgamation can be characterized with the help of so-called domain cycles, i.e. conglomerates of elements in
carrier sets that let the kernels of morphisms interact too much. Based on this definition, Theorem 30 provides a
full answer to Question 2 whereas Proposition 32 yields the missing link to the total view.

It can be observed here that the answer for Question 2 indeed was a precondition to find a full answer to
Question 1 in Theorem 33 which is the desired equivalent characterization of Van Kampen squares in terms of the
interacting kernels of a and r. In order to show the effects of the results, the examples from section 2 are revisited.

Finally, section 7 discusses open problems and outlines interesting directions for applications and future re-
search. Moreover, minor auxiliary results and proofs can be found in an Appendix.

2 The Problem of Successful Amalgamation
In contrast to indexed amalgamation, there are intrinsic difficulties in the fibred setting, because the given rear
pullback span can be located over a non-Van Kampen square. In other words, a reasonable construction on the
instance level fails if and only if the pullback span is not amalgamable. This is demonstrated in

Example 2 In Figure 3, objects are denoted i : t, instances map objects to their types. a and r map according to
the letters. i :t, j :s ∈ I are connected via dashed lines if r′(i :t) = r′(j :s). Dotted lines depict the kernel of a′. It
can easily be computed that the two rear squares establish a pullback span in SET .

However, the span can not successfully be amalgamated: On the one hand, pullback complements for the right
and the front face with sets over S containing two elements will always yield a non-commutative top face. On the
other hand, the pushout on the top face creates a C ↓S-object (the mediator out of the pushout), whose domain is
a singleton set. But pulling back this instance along r and a does not yield τ and β, resp.

x

y

z

w

xz

wy

a

γ

yx zwr

xyzw

1:x

2:x

1:y

2:y

1:z

2:z

1:w

2:w12:xz
21:xz

1:wy
2:wy

τ

1:yx

2:yx

1:zw

2:zw
a'

r'

β

a

r

Figure 3: Amalgamation fails

These effects can not occur in the indexed setting because multiple typing was allowed. The transition from
indexed to fibred semantics, however, entails the production of copies. E.g. in the indexed setting, it would be
sufficient to let γ map each element of L to the set {1, 2}, whereas the transformation to the fibred setting produces
4 copies of this 2-element set (yielding the set I in Figure 3).

6

x

y

z

w

xz

wy

a

γ

yx zwr

xyzw

1:x

2:x

1:y

2:y

1:z

2:z

1:w

2:w1:xz
2:xz

1:wy
2:wy

τ

1:yx

2:yx

1:zw

2:zw
a'

r'

β

a

r

Figure 4: Amalgamation is successful

As pointed out before, we can consider specifications as categories and each interpretation becomes a functor
to CAT (probably only reaching discrete categories, i.e. sets). It is well-known that these indexed categories are
related to fibrations via the Grothendieck construction [1, 33]. However, since the image of this construction is the
category of split fibrations, all produced copies behave in a uniform way.

Example 3 In the pullback span in Figure 4 fibres are lifted in a uniform way. The pullback span can now be
amalgamated. The instance over S is σ : {1:xyzw, 2:xyzw} → S.

But if pullback spans are not results of the Grothendieck construction, we suffer from the enlarged degree of
freedom for defining the relationship between fibres, i.e. the equivalence relations of a′ and r′ may chaotically
be intertwined as in Example 2. Moreover, instances must no longer be fibrations. Intuitively the set of possible
instances for a specification is much larger than the set of interpretations. The problems immediately occur in
practical environments as demonstrated by the next example:

Example 4 In this example we consider a (parametric) specification with data types Person and Business Part-
ner, both of which shall possess two different kinds of contact information (abbreviated cInfo1/2) as in Figure
5. Specification morphism a replaces the formal parameters by strings, which is reasonable because both types
of information may be textual. Moreover, the architects of the system will simplify matters by identifying Person
and Business Partner (formalized by r : L → R). The combined entity type will be called ”Individual”. This is
reasonable, especially because Person and Business Partner possessed the same attributes.

The specification morphisms together with its pushout are shown in Figure 5. The pushout object is the result
of passing an actual parameter into the restructuring procedure r. The question arises whether each compatible
pair (τ, β) of instances of A and R, resp. can be amalgamated. We will give an answer in Section 6.

3 Related Work
To our best knowledge this is the first journal paper elucidating the close connection between Van Kampen squares
and fibred amalgamation. This connection was presented and discussed the first time by the first author at WADT
2008 and some results, based on descent data, have been presented at ACCAT 2012. The present paper extends
essentially the paper [20] published in the post-proceedings of ACCAT 2012 in two ways. First, the foundational
part on descent data, amalgamation, coherence, and Van Kampen is completely revised and essentially extended.
Second, the characterization of amalgamable pushout spans (and thus of Van Kampen squares) has been revised
and generalized to arbitrary presheaves instead of SET only.

The result, that “topoi are adhesive” [21] provides the equivalence of amalgamability and coherence for the
simple cases of pushouts with, at least, one monomorphism involved (see Lemma 26) and is integrated in the proof
of Proposition 27. [21] uses also some results of descent theory and some similar auxiliary results from topos
theory. Besides a full revision and adaption of descent theory the present paper exceeds [21] also by addressing
amalgamability for arbitrary pushouts.

[17] shows that being a Van Kampen square in a category C is equivalent to saying that its embedding into a
certain span category over C is a pushout. In contrast to this abstract reformulation of Van Kampen exactness by

7

Person
Business

Partner

T1 T2

cInfo1 cInfo2

Person
Business

Partner

String

cInfo

a

r
Individual

T1 T2

cInfo1 cInfo2

cInfo

Individual

String

cInfo
r

a

Figure 5: Software system reengineering with simultaneous parameter passing

means of higher level categorical structures, we are looking here for an elementary and feasable characterization
of Van Kampen squares locally within C .

Finally, we have to mention that the crucial technical observation about domain cycles and Van Kampen squares
goes back to Michael Löwe and has been elaborated in SET (without any references to descent data) in [23].

4 Descent Theory
In this section the underlying category C is a topos. We will use the following notations: ObC , MorC denote
objects and arrows of C , resp. x ∈ C means x ∈ ObC . The application of a functor F to an object or an arrow
x will usually be denoted without parenthesis: Fx. The composition of functors F : C → D and G : D → S is
denoted by G◦F. // // , // // , // // // denote monomorphism, epimorphism, isomorphism, resp in every
category.

For an arrow p : E → B of C we sometimes want pullbacks along p to be uniquely determined. Thus we
work with chosen pullbacks. It’s well-known that any fixed choice of pullbacks gives rise to a pullback functor
p∗ : C ↓ B → C ↓ E where (p∗α, π2(p, α)) denotes the chosen pullback of (α, p). The image p∗f of an arrow
f ∈ MorC↓B(α, α′) is given by the unique arrow p∗f := idE ×B f : E ×B A→ E ×B A′ of C such that

p∗α′ ◦ (idE ×B f) = p∗α and π2(p, α′) ◦ (idE ×B f) = f ◦ π2(p, α). (2)

E ×B A

p∗α

��

π2(p,α) //

p∗f
=idE×Bf
&&LLLLLLLLLL A

α

��

f����������

E ×B A′
p∗α′

xxqqqqqqqqqqq

π2(p,α′)// A′

α′

 @@@@@@@@

E
p // B

Whenever we use notations ”p∗α” or ”π2(p, α)” (or shortly ”π2” if p and α are fixed), we rely on a fixed choice
of pullbacks. Sometimes we use the analogical notation for the ”first projection” of the pullback: π1(p, α) := p∗α
(or shortly ”π1” if p and α are fixed).

It is an old observation that pullback functors establish adjoint situations:

8

Lemma 5 Let C be a category with pullbacks and E
p // B . Let p∗ : C ↓B → C ↓E be the pullback functor

for a fixed choice of pullbacks and p∗ : C ↓ E → C ↓ B be the post composing functor, which sends an arrow
h ∈ MorC↓E(γ, γ′) to h : p ◦ γ → p ◦ γ′, an arrow of MorC↓B . Then p∗ is left-adjoint to p∗, p∗ a p∗ in symbols,
with unit ηp : idC↓E ⇒ p∗ ◦ p∗ and co-unit εp : p∗ ◦ p∗ ⇒ idC↓B where

• εpα := π2(p, α) for each α ∈ C ↓B, and

• ηpγ := 〈γ, idC〉 for each γ ∈ C ↓E, i.e., ηpγ is the unique arrow such that

εpp∗γ ◦ η
p
γ = idC and p∗p∗γ ◦ ηpγ = γ. (3)

.

C

γ
##HHHHHHHHHH ηpγ

//

idC

**E ×B C

p∗p∗γ=π1

��

εpp∗γ=π2

// C

p∗γ:=p◦γ
��

E
p // B

A proof can be found in Section 8.1.
The monad arising from the adjunction p∗ a p∗ is denoted by (Tp, ηp, µp), i.e. Tp := p∗ ◦ p∗ : C ↓E → C ↓E

with natural transformations ηp : idC↓E ⇒ Tp and µp := p∗εp∗ : (Tp)2 ⇒ Tp (see [2] for a quite comprehensive
investigation on this subject).

4.1 Descent Data in Topoi
In this first subsection, monadic descent theory in the spirit of [15, 16] is introduced. The second subsection deals
with a more practical view on descent data in presheaves, i.e., in functor categories C = SETS .

Let p : E → B be an arrow in the topos C . Descent theory was originally invented by Grothendieck in order
to reason about structures in C ↓B (which may be difficult) by reasoning about monadic algebraic structures over
C ↓E, thus in a sense ”descending” along p.

This subsection revises, adapts and extends results in [18] to facilitate our intended characterization of amal-
gamation in terms of descent data. The main result will be Proposition 15 which extends a theorem on effective
descent in [18] in that it avoids a certain degree of freedom when passing from C ↓B to algebraic structures: By
exchanging C ↓B with the category of all possible pullbacks along p we obtain a more precise description of the
relationship between these algebraic structures and pullbacks.

Definition 6 (Descent Data) Let C
γ // E

p // B be given and (Tp, ηp, µp) be the monad on C ↓E arising
from the adjunction p∗ a p∗. Descent data for γ relative to p is an arrow

ξ : Tpγ → γ of C ↓E with ξ ◦ ηpγ = idC and ξ ◦ Tpξ = ξ ◦ µpγ . (4)

The situation is as in Figure 6. Besides the C ↓B-arrow π2 := π2(p, p ◦ γ), the right-hand side shows objects and
the arrow ξ after applying the left-adjoint p∗ only.

C

γ

��77777777777777 ηpγ

// E ×B C

Tpγ

��

ξ

zz
E ×B (E ×B C)

(Tp)2γ

||zzzzzzzzzzzzzzzzzz

Tpξ

uu

µpγ

oo C

p◦γ

��

E ×B C

p◦Tpγ

����������������

ξ

zz
π2

oo

E
p // B

Figure 6: Monadic Descent Data

According to the definition of the pullback monad and Lemma 5 we have

π2 ◦ ηpγ = idC and µpγ = p∗π2. (5)

9

Note that, for some γ and p, an arrow ξ as in Definition 6 may not exist or may be not unique, in case it exists. For
future reference, we note that ξ can be reconstructed from the E ×B C-endomorphism ξ := 〈γ ◦ π2, ξ〉, i.e. the
uniquely determined ξ for which

Tpγ ◦ ξ = γ ◦ π2 and π2 ◦ ξ = ξ. (6)

[18] gives a detailed investigation on that topic. It is also shown that

ξ ◦ ξ = idE×BC . (7)

Definition 7 (Category of Descent Data) The category des(p) of all descent data relative to an arrow p : E →
B in C has objects (γ, ξ) with the properties of Definition 6 and arrows h : (γ, ξ) → (γ′, ξ′) the morphisms
h : γ → γ′ of C ↓E with ξ′ ◦ Tph = h ◦ ξ.

Let | |p : des(p)→ C ↓E be the “carrier” functor, i.e. |(γ, ξ)|p = γ and |h|p = h.

E ×B C

Tph =idE×Bh

��

ξ // C

h

��

C
q //

γ

��

f1

 @@@@@@ A

α

��

f2

 @@@@@@

C ′
q′ //

γ′��~~~~~~
A′

α′��~~~~~~

E ×B C ′
ξ′ // C ′ E

p
// B

Figure 7: The categories des(p) and pb(p)

Now we consider not only chosen but arbitrary pullbacks along p.

Definition 8 (Category of Pullbacks) For any arrow p : E → B in C let pb(p) denote the category with objects
(γ, q, α) commutative diagrams of arbitrary pullbacks along p together with morphism pairs (f1, f2) ∈MorC↓E×
MorC↓B such that the rear square in the right diagram in Figure 7 commutes. Note that (by the decomposition
property of pullbacks) the rear face is a pullback, too.

Let Λp : pb(p)→ C ↓E be the (left) projection Λp(γ, q, α) = γ, Λp(f1, f2) = f1.

Our goal is now to establish the relationship between pb(p) and des(p) with the help of suitable functors in both
directions. Since the monoidal conditions (4) (neutrality and associativity) imply that des(p) is the Eilenberg-
Moore Category associated with the monad Tp, there is the comparison functor Φp : C ↓B → des(p) [2]. Because
pb(p) is equivalent to C ↓B via chosen pullbacks, the composition of this equivalence and the comparison functor
seems to be a good choice for the direction from pb(p) to des(p). For our purposes, however, we omit the stopover
C ↓B and construct directly a functor

Φp : pb(p)→ des(p) with |Φp|p = Λp (8)

(which, in fact, yields the above mentioned composed functor up to natural isomorphism, such that we still use the
name Φp for this functor).

For this let us consider an arbitrary pullback (γ, q, α) along p in C , i.e., an arbitrary pullback complement
(q, α) of (γ, p), cf. the square (pb) in Fig. 8. We denote by ξ(q,α) the unique arrow for which

q ◦ ξ(q,α) = q ◦ π2 and γ ◦ ξ(q,α) = Tpγ, (9)

(the dashed arrow in Fig. 8) which establishes, in such a way, also an arrow ξ(q,α) : Tpγ → γ. From (5), (9), and
the uniqueness of mediating morphisms for the original pullback one easily deduces

ξ(q,α) ◦ ηpγ = idC .

Moreover, mapping the commutative diagram (of C ↓B) q ◦ ξ(q,α) = q ◦ π2 by p∗ yields

ξ(q,α) ◦ Tpξ(q,α) = ξ(q,α) ◦ µpγ

10

by the second equation of (5) (cf. Fig. 8). Hence ξ(q,α) fulfills (4) such that the functor Φp : pb(p) → des(p) can
now be defined by

Φp(γ, q, α) := (γ, ξ(q,α))

on objects. Mapping the rear square in Fig. 7 (which also lives in C ↓B) by p∗ yields ξ(q′,α′) ◦ Tpf1 = f1 ◦ ξ(q,α)

for any (f1, f2) ∈ Morpb(p), hence Φp extends to arrows:

Φp(f1, f2) := f1.

This implies especially

Φp(γ, q′, α′) = Φp(γ, q, α) for all (id, f) : (γ, q, α)→ (γ, q′, α′) in pb(p). (10)

Moreover, we have |Φp|p = Λp.

E ×B (E ×B C)

(Tp)2γ

++

Tpξ(q,α)

��
µpγ

--

π2 // E ×B C

p◦Tpγ

uu

ξ(q,α)

		
π2

qqE ×B C

Tpγ

%%

ξ(q,α)

..

.
4

H
V [

π2 // C

p◦γ

{{

q

����������

C
q //

γ

��

ηpγ

jj

A

α

��
E

p // B

(pb)

Figure 8: The assignment (γ, q, α) 7→ (γ, ξ(q,α)) of Φp

Now we are looking for a functor in the opposite direction

Ψp : des(p)→ pb(p) with Λp ◦Ψp = | |p. (11)

For each (γ, ξ) ∈ Obdes(p) we have p◦γ ◦π2 = p◦Tpγ = p◦γ ◦ξ since ξ : Tpγ → γ is an arrow in C ↓E and due
to the definition of Tp (cf. the diagram in Lemma 5). Hence there is an assignment Ψp : Obdes(p) → Obcomm(p)

which maps (γ, ξ) to the commutative square (γ, cξ, αξ) along p where αξ is the unique arrow, which mediates
p ◦ γ and a (fixed choice of) coequalizer cξ of π2 and ξ (cf. Fig. 9). Ψp extends to a functor because any

E ×B C

Tpγ ..

ξ ::

π2

$$
C

cξ // //___

γ

��

A

αξ

���
�
�

E
p // B

Figure 9: The assignment (γ, ξ) 7→ (γ, cξ, αξ) of Ψp

h ∈ Mordes(p)((γ, ξ), (γ
′, ξ′)) not only results in a commutative square h ◦ ξ = ξ′ ◦ Tph but also yields by (2)

h ◦ π2(p, p ◦ γ) = π2(p, p ◦ γ′) ◦ Tph.

Thus there is a unique arrow ĥ which mediates cξ
′ ◦ h out of the coequalizer cξ . The uniqueness of mediating

morphisms out of cξ entails αξ
′ ◦ ĥ = αξ thus ĥ : αξ → αξ

′
establishes an arrow in C ↓ B. We define

Ψph := (h, ĥ).
It remains to show that (γ, cξ, αξ) is not only a commutative but a pullback square along p. Although this can

be deduced from considerations on discrete fibrations in topoi ([27], Remark VIII, 2.7.), we give here a short proof
introducing, along the way, some concepts and results we will need later on. We need an auxiliary result (cf. [27],
Chapter VIII):

11

Lemma 9 Let C be a topos and a commutative diagram be
given with an epimorphism as indicated. If (1) + (2) and (1)
are pullbacks, then (2) is a pullback, too. ut

· //

��
(1)

· //

��
(2)

·

��
· // // · // ·

By pullback decomposition the span (ξ(q,α), π2) in Figure 8 becomes a pullback of the cospan (q, q) which
means that 〈ξ(q,α), π2〉 is the kernel pair of q and thus an equivalence.

Definition 10 (Equivalence Relation) An equivalence relation on A ∈ ObC is a pair of arrows a, b : U → A,

such that U //
〈a,b〉// A×A is a monomorphism, and which is

1. reflexive: ∃r : A→ U : a ◦ r = b ◦ r = id,

2. symmetric: ∃s : U → U : a ◦ s = b, b ◦ s = a, and

3. transitive: If (p : P → U, q : P → U) is the pullback of (a, b) (especially b ◦ p = a ◦ q), there is t : P → U ,
such that a ◦ t = a ◦ p and b ◦ t = b ◦ q.

Not only “canonical” descent data ξ(q,α) but arbitrary descent data provide equivalences:

Lemma 11 E ×B C
〈ξ,π2〉 // C × C establishes an equivalence relation for any descent data ξ : Tpγ → γ.

Proof: Since for any pullback 〈Tpγ, π2〉 is monic, the equation γ ◦ ξ = Tpγ implies that 〈ξ, π2〉 is monic as well.
For reflexivity, let r := ηpγ and use (4) and (5). Symmetry follows with s := ξ, (6), and (7). Transitivity can
be established via t := µpγ using both commuting top squares in Fig. 8 (with ξ instead of ξ(q,α)), that are also
pullbacks by decomposition, and (4). ut
The crucial consequence of Lemma 11 is that 〈ξ, π2〉 is the kernel pair of its coequalizer, because in topoi, equiv-
alence relations are effective (see [19], A 2.4.1.). Consider now the above introduced coequalizer construction for
Ψp.

E ×B C

π2

��

ξ // C

cξ

��

γ // E

p

��
C

cξ
// // A

αξ
// B

(pb)

Figure 10: Coequalizer construction

Lemma 12 The right square in Figure 10 is a pullback.

Proof: By Lemma 11 and because equivalence relations are the kernel pair of their coequalizer, the left square in
Figure 10 is a pullback. Because γ ◦ ξ = Tpγ, by assumption ξ : Tpγ → γ, and αξ ◦ cξ = p ◦ γ, by definition of
αξ, the outer rectangle in Figure 10 is the chosen pullback of p ◦ γ and p. Since cξ is epic, the result follows from
Lemma 9. ut

After having proved that Ψp is indeed a functor with codomain pb(p) and Λp ◦Ψp = | |p we are going to show
now that both functors establish an adjunction Ψp a Φp between the categories des(p) and pb(p).

It is well-known [24] that two functors F : C → D , G : D → C are adjoint, F a G in symbols, iff there
exist natural transformations η : idC ⇒ G ◦ F , the unit of the adjunction, and ε : F ◦ G ⇒ idD , the co-unit,
such that the following two equations hold for the corresponding horizontal compositions of functors and natural
transformations:

Gε ◦ ηG = idG and εF ◦ Fη = idF . (12)

G
ηG +3 GFG

Gε +3 G F
Fη +3 FGF

εF +3 F

In our case of descent data and pullbacks the unit η : iddes(p) ⇒ Φp ◦Ψp is the identity:

Lemma 13 Φp ◦Ψp = iddes(p).

12

Proof: By the definition of Ψp and Φp, respectively, we have (Φp ◦Ψp)(γ, ξ) = (γ, ξ(cξ,αξ)) for all objects (γ, ξ)

in des(p). Both arrows ξ, ξ(cξ,αξ) : E ×B C → C satisfy the defining equations (9), with q = cξ the coequalizer
of ξ and π2, thus ξ = ξ(cξ,αξ) by uniqueness. For morphisms we have trivially (Φp ◦Ψp)(h) = Φp(h, ĥ) = h. ut

The co-unit ε : Ψp ◦ Φp ⇒ idpb(p) is provided by epi-mono-factorization. For this we need the following
Lemma, which is proven in Section 8.2.

Lemma 14 Let f : A→ B be an arrow in a topos C and let c be a coequalizer of the (chosen) kernel pair (p1, p2)
of f . Then the mediator m of f out of a coequalizer c is monic. This epi-mono-factorization f = m ◦ c is unique
up to a unique isomorphism, cf. Figure 11. ut

P

p1
))

p2

55 A

f ��????????
c // // C

��
m

��

E ×B C
π2

**

ξ(q,α)

44 C

q
��@@@@@@@@

cξ
(q,α)

// // A′
��

m(q,α)

��
B A

Figure 11: Epi-mono factorization

Given an object (γ, q, α) in pb(p) we consider a coequalizer cξ
(q,α)

of the kernel pair (π2, ξ
(q,α)) of q. The monic

mediator according to Lemma 14 is denoted by m(q,α) and will establish – for a fixed choice of coequalizer – the
co-unit for (γ, q, α), cf. Fig. 11:

ε(γ,q,α) := (idC ,m
(q,α)) : (γ, cξ

(q,α)

, αξ
(q,α)

)→ (γ, q, α). (13)

We assume q = idA ◦ q to be the epi-mono-factorization of epic q, i.e. ε(γ,q,α) = id(γ,q,α) whenever q is epic.
α ◦m(q,α) = αξ

(q,α)

and naturality for the co-unit ε(γ,q,α) is insured by the uniqueness of mediators out of the
coequalizers cξ

(q,α)

, cf. the definition of Ψp.
It remains to show adjointness. By Lemma 13 the two equations in (12) reduce, in our case, to the requirements

Φpε = idΦp and εΨp = idΨp . (14)

The first equation follows immediately from (10) and the definition of ε and Φp, respectively. The second equation
is an immediate consequence of Lemma 13. Since – in topoi – epimorphisms are preserved under pullbacks, we
have shown

Proposition 15 (Adjunction between Pullbacks and Descent Data) For any topos C and any fixed choice of
pullbacks and coequalizers in C , respectively, we have for any arrow p : E → B in C functors Ψp : des(p) →
pb(p) and Φp : pb(p)→ des(p) such that

a) Ψp a Φp with Φp ◦Ψp = iddes(p).

b) If p is an epimorphism, Ψp a Φp becomes an equivalence of categories. ut

Note that b) outlines the well-known fact that in topoi the class of epimorphisms is precisely the class of all
effective descent morphisms, i.e. those morphisms for which the comparison functor becomes an equivalence [18].
The novelty, however, is that we showed this result in terms of an equivalence involving the category of pullbacks
along p.

4.2 Descent Data in Presheaves
4.2.1 Diagrammatic Specifications and Presheaves

As pointed out in the introduction, the paper is devoted to investigate amalgamation for fibred semantics of
diagrammatic specifications as it has been defined, for instance, in the Diagram Predicate Framwork (DPF)
[7, 30, 29]. Thereby “diagrammatic” is not meant as a synonym for “visual” but rather for “graph-based”. DPF is
generic in the sense that it can be instantiated for a wide range of graph-based structures. A specification in DPF
is a generalized sketch in the sense of [25].

13

The kind of underlying graph-based structure, we use in a certain application area, can be described, in general,
by a “meta schema”, i.e. by a small (schema) category. As a simple meta schema we can consider, for instance,
the following schema category for multi graphs:

EidE 88
s //
t

// V idVff

Another example are attributed graphs [11]. They are based on so-called E-graphs which conform to the schema
category

E1

idE1

�� s1 //

t1
// V1

idV1

��
E2

idE2

tt
s2

oo

t2
xxppppppppppppp

E3

idE3

44

s3

OO

t3
// V2

idV2

RR

where edges (E1) connect complex vertices (V1) and attributes (E2) link complex and primitive vertices (V2).
Moreover edges may be annotated (E3) with primitive types (e.g. to specify list indices).

A third prominent example is the schema category for Petri-nets:

Pre

idPre

'' csd //

csr

''OOOOOOOOOOOOO P

idP

��
Post

idPost

��prdoo

prr

wwooooooooooooo

T

idT

ZZ

(pre- and postconditions specify places that are consumed/produced by a consumer/producer transition).
A structure which conforms to such a schema category S is a functor F : S → SET . Structure morphisms

are given by natural transformations between them. Hence presheaves, i.e. functor categories C = SETS with a
small schema category S are an appropriate level of abstraction for our intended applications. This is underlined
by the fact that the category of generalized multi sketches over a chosen category of underlying structures is
equivalent to a presheaf as long as the category of underlying structures is equivalent to a presheaf as well [25].

An object of S will sometimes be called a sort, an arrow of S will be called a (necessarily unary) operation
symbol. Accordingly, we also use the more intuitive spelling for the application of a functor F ∈ SETS to an
object/sort X:

FX := FX

and to an arrow op : X → Y :
opF := F (op) : FX → FY .

In natural transformations n : F ⇒ G, n = (nX)X∈ObS , we often omit the index X and write n : FX → GX if
there is no danger of confusion.

For any functor F : S → SET and X ∈ ObC we call the set FX the carrier set of sort X . E.g. for Petri-
nets there are four sorts Pre, Post, P, T and four non-identity operation symbols specifying the causal producer-
consumer relation.

Our previous theoretical results apply to presheaves since any presheaf SETS is a topos ([14], Section 9.3).
In fibred semantics, restriction of instances along some specification morphism is pullback. By Proposition 15

the cleavage kernels generated by the pullback procedure can precisely be described with descent data. Composi-
tionality problems (see the examples in Section 2) arise from uncoordinated kernel generation of two morphisms
on a common domain. The following subsections shall foster a better understanding of descent data in presheaves
in terms of its action on carrier sets and shall significantly support the understanding of these effects.

First, we analyse descent data in SET (Section 4.2.2). Since limits and colimits in a presheaf are constructed
componentwise by limits and colimits in SET , respectively, our analysis extends then smoothly to presheaves
SETS in Section 4.2.3.

14

4.2.2 Descent Data in SET

If C = SET , p : E → B, and γ : C → E, we choose as canonical pullbacks

E ×B C = {(e, c) ∈ E × C | p(e) = p(γ(c))} and
E ×B (E ×B C) = {(e′′, (e′, c)) ∈ E × (E × C) | p(e′′) = p(e′) = p(γ(c))}.

A purely set-oriented description of descent data (γ, ξ) emerges from the following observations: Because
products in comma categories are pullbacks in the underlying category, p◦Tpγ = p◦γ◦π2(p, p◦γ) : E×BC → B
in Definition 6 provides a product p×(p◦γ) in C ↓B with projections Tpγ and π2(p, p◦γ), respectively. Moreover,
any ξ : E×BC → C in C which is an arrow ξ : Tpγ → γ in C ↓E establishes also an arrow ξ : p×(p◦γ)→ p◦γ
in C ↓B. C ↓B, however, is also a topos by the fundamental theorem of Freyd [13] and thus, espcially cartesian
closed, such that

HomC↓B(p× (p ◦ γ), p ◦ γ) ∼= HomC↓B(p, (p ◦ γ)p◦γ).

From Lemma 37 in Section 8.3 we know that the exponent (p ◦ γ)p◦γ is defined on the set of all endomaps
{k : (p ◦ γ)−1(b) → (p ◦ γ)−1(b) | b ∈ B} and each k is mapped to its base point b. In such a way, ξ can be
regarded as a map that assigns to any element e′ ∈ E an endomap ξ(e′,) of the fibre of p ◦ γ over p(e′).

Let us make this intuition more precise: For any e′ ∈ E we have p−1(p(e′)) = [e′]ker(p).1 Thus the fibre of
p ◦ γ over p(e′) is the set γ−1([e′]ker(p)) and can be described, in such a way, as the union of all pairwise disjoint
fibres γ−1(e) with (e, e′) ∈ ker(p). We let ξe,e′ be the map ξ(e′,) restricted to γ−1(e). If c ∈ γ−1(e) we obtain
γ(ξ(e′, c)) = e′ since Tpγ = π1(p, p ◦ γ). Thus the codomain of ξe,e′ is γ−1(e′) and ξ represents a family

(ξe,e′ : γ−1(e)→ γ−1(e′))(e,e′)∈ker(p) (15)

for which by definition
ξ(e′, c) = ξe,e′(c) whenever γ(c) = e. (16)

Let us now investigate the influence of neutrality and associativity (4) to this family. From Lemma 5 and (2) we
obtain

ηpγ(c) = (γ(c), c), µpγ(e′′, (e′, c)) = (e′′, c), Tpξ(e′′, (e′, c)) = (e′′, ξ(e′, c)). (17)

Thus (4) and the first equation in (17) yield

ξe,e(c) = c for all c ∈ γ−1(e), i.e., ξe,e = idγ−1(e), (18)

whereas (4) (applied to a triple (e′′, (e′, c))) and the second and third equation of (17) imply

ξe′,e′′(ξe,e′(c)) = ξe,e′′(c) for all c ∈ γ−1(e), i.e., ξe′,e′′ ◦ ξe,e′ = ξe,e′′ (19)

for all (e, e′), (e′, e′′) ∈ ker(p). By choosing e′′ = e both properties force each ξe,e′ to be bijective.
By reversing the whole argumentation, it is easy to see that a familiy

(ξe,e′ : γ−1(e)→ γ−1(e′) | (e, e′) ∈ ker(p))

which satisfies (18) and (19) yields a descent data ξ : E ×B C → C of γ relative to p in C = SET by defining ξ
as in (16) for e := γ(c).

4.2.3 Descent Data in SETS

Pullbacks in SETS are constructed componentwise by pullbacks in SET . Applied to our situation, this means
that the pullback of two morphisms p : E → B and p ◦ γ : C → B in SETS is given by the functor E ×B C :
S → SET defined by

(E ×B C)X := EX ×BX CX on objects X ∈ ObS and (20)

opE×BC := opE ×opB opC on arrows op : X → Y (21)

1 []≡ denotes the canonical map from a set A to A/≡ for any equivalence relation ≡ on A.

15

(see Fig. 12) together with the natural transformation π1 : E ×B C → E, π2 : E ×B C → C defined by ordinary
set projections

(π1)X := π1 : (E ×B C)X → EX and (π2)X := π2 : (E ×B C)X → CX . (22)

EX ×BX CX

(π1)X

��

(π2)X //

opE×BC

((PPPPPPPPPPPP
CX

pX◦γX

��

opC}}{{{{{{{{

EY ×BY CY

(π1)Y

��

(π2)Y // CY

pY ◦γY
��

EY pY
// BY

EX pX
//

opE
66nnnnnnnnnnnnnnn

BX

opB

aaDDDDDDDD

Figure 12: Componentwise construction of pullbacks

We rely on the same canonical choice of pullbacks as in Section 4.2.2 pointwise for each X ∈ ObS . In such a
way, for each descent data ξ : E ×B C → C in C = SETS the component ξX : (E ×B C)X → CX is uniquely
described by a family ((ξX)e,e′)(e,e′)∈ker(pX) of bijections satisfying neutrality (18) and associativity (19).

It remains to show that compatibility with operation symbols, that is the naturality of ξ, can be expressed
equivalently on the level of pre-images of fibres: Given any op : X → Y ∈ MorS , naturality of γ ensures that
opC : CX → CY restricts to a map opCe : γ−1

X (e)→ γ−1
Y (opE(e)) for each e ∈ E.

Naturality of ξ means, according to (21) and our choice of pullbacks, that we have ξY (opE(e′), opC(c)) =
opC(ξX(e′, c)) for all e′ ∈ EX and c ∈ CX where pX(e′) = pX(γX(c)) (see Fig. 13). By (16) this is equivalent
to the requirement

(ξY)opE(e),opE(e′)(op
C
e (c)) = opCe′((ξX)e,e′(c))

for all (e, e′) ∈ ker(pX) and c ∈ γ−1
X (e).

EX ×BX CX

opE×opB op
C

��

ξX // CX

opC

��

γ−1
X (e)

(ξX)e,e′ //

opCe
��

γ−1
X (e′)

opC
e′

��
EY ×BY CY

ξY // CY γ−1
Y (opE(e))

(ξY)opE(e),opE(e′)// γ−1
Y (opE(e′))

Figure 13: Naturality of descent data in SETS

Altogether we obtain the following statement which subsumes the monoidal nature of descent data in SETS .

Proposition 16 (Descent Data in SETS) Let C = SETS , and p ∈ MorC . There is a bijective correspondence
between objects (γ, ξ) of des(p) and families

((ξX)e,e′ : γ−1
X (e)→ γ−1

X (e′))X∈ObS ,(e,e′)∈ker(pX)

of bijections which satisfy

(ξX)e,e = idγ−1
X (e) , (ξX)e,e′′ = (ξX)e′,e′′ ◦ (ξX)e,e′

for all X ∈ ObS , (e, e′), (e′, e′′) ∈ ker(pX), and

(ξY)opE(e),opE(e′) ◦ opCe = opCe′ ◦ (ξX)e,e′

for all op : X → Y ∈ MorS , (e, e′) ∈ ker(pX). ut

16

We want to close this section with descent data’s role as congruence relation (i.e. equivalence relation compat-
ible with operation symbols). Recall that the functor Ψp : des(p)→ pb(p) created a pullback with the help of the
coequalizer c of ξ and π2, cf. Figure 9, where (ξ, π2) is the kernel pair of c.

For X ∈ ObS any pair (x, x′) ∈ ker(cX) gives rise to the existence of a unique (e, x′′) ∈ EX ×BX CX
with π2(e, x′′) = x and ξX(e, x′′) = x′, because kernel pairs are pullbacks. Hence x′′ = x such that (x, x′) =
(x, ξX(e, x)) = (x, (ξX)γX(x),e(x)) with pX(e) = pX(γX(x)) by (16). Since we know that y := (ξX)γX(x),e(x)
is in the fibre over e, we obtain

ker(cX) = {(x, (ξX)γX(x),γX(y)(x)) | x, y ∈ CX , (γX(x), γX(y)) ∈ ker(pX)} (23)

for each X ∈ ObS . By Lemma 12 and Figure 10, the résumé can be stated as follows:

Each (γ, ξ) ∈ des(p) represents a congruence relation ≡ξ on C which highlights one pullback complement
C // // A = C/≡ξ

// B of γ and p.

5 Amalgamation, Van Kampen, and Coherence in Topoi
As pointed out in the introduction, amalgamation of instances provides the basis for compositionality. The goal of
this section is to characterize those pullback spans in arbitrary topoi that can be successfully amalgamated, cf. Fig.
14.

I

γ

��

s′? @
@

@
@

a′

����������
r′ // H

β

��

a′?~~}
}

}
}

J

τ

��

r′? //_______

(pb2)

K

σ ?

���
�
�
�
�
�
�

L
r

//

a

����������
s:=r◦a

@@@@

 @@@

R

a~~}}}}}}}}

A
r

//

(pb1)

S

Figure 14: Is amalgamation possible for the rear pullback span (pb1, pb2)?

We will demonstrate that the close relationship between descent data and pullbacks in Proposition 15 provides
such a theorem in terms of the degree of coherence of descent data of the two pullbacks. Surprisingly, this result
(Propositions 25 and 27) leads to an analogon of the classical amalgamation lemma for indexed semantics (see
Theorem 28). It will turn out in Section 6 that Theorem 28 prepares a more feasible and easily checkable criterion
for amalgamability in typical contexts of computer science, i.e. presheaves.

5.1 Amalgamation and Van Kampen Squares
To lift our following discussion of amalgamation to a more structural level we consider the coslice category L↓C .
Taking this abstract viewpoint, the assignments f 7→ pb(f) for morphisms f : L→ F in C define a map from the
objects in L ↓ C to the objects in CAT . We show now that these assignments can be extended to morphisms in
L↓C .

Let objects f : L→ F , g : L→ G and a morphism h : f → g in L ↓C be given, i.e. a morphism h : F → G
in C with h◦f = g, cf. Figure 15. We can decompose any pullback in pb(g) into a pulback in pb(f) and a pullback
along h:

17

I
f ′
//

γ

��

**M //

h∗σ
��

N

σ

��
L

f //
g

44F
h // G

Figure 15: Pullback decomposition along h : f → g

First, we calculate the chosen pullback h∗σ. Second, the pullback (γ, f ′, h∗σ) in pb(f) arises uniquely from
the mediator f ′ from the outer pullback into the right chosen pullback. The assignment of the outer pullback to the
left pullback extends to a functor ∆h : pb(g)→ pb(f) (the notation ∆ is meant to remind of “decomposition”).

Since chosen pullbacks do not necessarily compose to chosen pullbacks, we will, in general, not have ∆h2◦h1 =
∆h1 ◦∆h2 for arbitrary morphisms h1 : f1 → f2, h2 : f2 → f3 in L↓C but only that ∆h2◦h1 and ∆h1 ◦∆h2 are
natural isomorphic. In such a way, the assignments f 7→ pb(f) and h 7→ ∆h do not define, on the global level, a
functor but only a contravariant pullback decomposition pseudo functor

PDL : (L↓C)op → CAT. (24)

For a commuting square, as in the bottom of Figure 14, we consider the pairing

〈∆r,∆a〉 : pb(s)→ pb(a)×C↓L pb(r).

where pb(a)×C↓Lpb(r) is the category of all pullback spans over (a, r) together with morphism triples (m1,m2,m3),
i.e. pb(a)×C↓L pb(r) is given by a standard construction of pullbacks in CAT , cf. Figure 16 and the figure in Def-
inition 17. 2

J
m1

 @@@@@@

τ

��

I
q //

γ

��

m2

��??????
voo H

β

��

m3

!!BBBBBB

J ′

τ ′

~~~~~~~~
I ′

q′ //

γ′��������
v′oo H ′

β′}}||||||

A L
r

//
a

oo R

Figure 16: Objects and morphisms in the category pb(a)×C↓L pb(r)

Definition 17 (Amalgamability) A pullback span in pb(a)×C↓L pb(r) is amalgamable, if the span is in the image
of 〈∆r,∆a〉 up to a pb(a)×C↓L pb(r)-isomorphism of the form (m1, idγ ,m3).

pb(a)

Λa

##GGGGGGGGG

pb(s)

∆r

//

∆a

//

〈∆r,∆a〉 // pb(a)×C↓L pb(r)

Π1

77ppppppppppp

Π2 ''NNNNNNNNNNN
C ↓L

pb(r)

Λr

;;wwwwwwwww

That is, we require that the pairing of the decomposition procedure (based on chosen pullbacks) ”almost reaches”
the given pullback span: The instances τ and β may isomorphically be distorted while γ is reached exactly. We
have to work with “reachable up to isomorphism” since we decided to consider pb as a functorial construction,
based on chosen pullbacks, and not just as a relation.

For future reference, we note that any arrow (m1,m2,m3) between two amalgamable spans has a preimage
under the pairing functor:

〈∆r,∆a〉(m2, m̂) = (m1,m2,m3) (25)
2A similar construction with pb(s) replaced by (the equivalent category) C ↓S has been considered in different investigations on adhesive

categories, cf. [31, 21].

18



where m̂ is the mediator between the two resulting top pushouts during amalgamation (recall that pushouts are
stable under pullbacks in topoi).

Finally, we mention that universal amalgamability is equivalent to the Van Kampen property [31]:

Proposition 18 A pushout square, as in the bottom face of Figure 14, is a Van Kampen square if and only if each
rear pullback span over this square is amalgamable. ut

5.2 Coherence in Topoi
We now investigate conditions for amalgamability in terms of the descent data of the two back face pullbacks in
Figure 14 by applying the methodology of Section 4. Again, a more structured view is achieved by extending the
assignment f 7→ des(f) to a functor from L↓C into CAT .

Let f : L → F , g : L → G and h : f → g in L ↓ C be given as in Section 5.1. We consider the pullbacks
f∗(f ◦ γ) and g∗(g ◦ γ) as in Figure 6 (with C := I , E := L, and p : E → B replaced by f : L→ F , g : L→ G,
resp.), cf. Figure 17.

L×G I

Tgγ

**

π2(g,g◦γ)

��

L×F I
S3

uhγ

eeK K K K K

Tfγ

%%

π2(f,f◦γ)

��
I

γ

��

I

f◦γ
��

I

g◦γ
��

L
f //

g

77F
h // G

Figure 17: Monad embedding

Because g = h ◦ f , we obtain g ◦ γ ◦ π2(f, f ◦ γ) = g ◦ Tfγ. Hence there is a unique uhγ : L×F I → L×G I
such that

π2(g, g ◦ γ) ◦ uhγ = π2(f, f ◦ γ) and Tgγ ◦ uhγ = Tfγ. (26)

Note, that in SETS , Tfγ, π2(f, f ◦ γ) and Tgγ, π2(g, g ◦ γ) are componentwise first and second projections
(of sets), which actually makes uhγ invariant under projections: Indeed L ×F I = {(l, i) | f(γ(i)) = f(l)} ⊆
{(l, i) | g(γ(i)) = g(l)} = L×G I for each carrier, where the inclusion is uhγ . This justifies the use of the hooked
arrow in Figure 17.

The uniqueness of mediators ensures that the uhγ establish a natural transformation uh : Tf ⇒ Tg . Moreover,
this natural transformation provides a perfect embedding of a ”small” into a ”larger” monad: The proof of the
following lemma consists of a collection of routine calculations. It can be found in Section 8.4 in the Appendix.

Lemma 19 For any morphism h : f → g in L↓C the natural transformation uh : Tf ⇒ Tg is monic and defines
a monad morphism from (Tf , ηf , µf ) to (Tg, ηg, µg), i.e. the following laws are satisfied

uh ◦ ηf = ηg and uh ◦ µf = µg ◦ (uh)2

where (uh)2 : (Tf )2 → (Tg)2 is the horizontal composition of uh with itself. ut

Monad morphisms give rise, by simple pre-composition, to “forgetful functors” between the corresponding
categories of descent data:

Lemma 20 For any morphism h : f → g in L↓C we can define a functor Uh : des(g)→ des(f) by

Uh(γ, ξ) := (γ, ξ ◦ uhγ)

19



on objects and on arrows by

Uh( (γ1, ξ1)
m // (γ2, ξ2) ) := ( (γ1, ξ1 ◦ uhγ1)

m // (γ2, ξ2 ◦ uhγ2) ).

L×F I1 � �
uhγ1 //______

Tfm
��

L×G I1
ξ1 //

Tgm

��

I1

m

��
γ1

&&MMMMMMMMMMMMM

L×F I2 � �
uhγ2 //______ L×G I2

ξ2 // I2 γ2
// L

Proof: Since des(p) is the category of Eilenberg-Moore-Algebras associated with Tp for p ∈ {f, g}, the result
follows from Lemma 19 and the proof of a theorem of Barr and Wells ([2], Theorem 6.3 in Chapter 3). ut

The intutition that descent data abstract from the monic part of a morphism can be grasped, in a formal way,
by the statement that each monic h establishes an isomorphism between categories of descent data.

Corollary 21 The functor Uh : des(g) → des(f) is an isomorphism for all morphisms h : f → g in L ↓C with
h monic in C .

Proof: In case h monic, the right square in Figure 17 is already a pullback, such that its composition with the
pullback of f and f ◦ γ already yields the outer pullback (of g and g ◦ γ) up to a canonical isomorphism. By (26)
this isomorphism must be uhγ . We denote the inverse of uhγ by vhγ .

The vhγ establish a natural transformation (isomorphism) vh : Tg ⇒ Tf with vh◦uh = idTf and uh◦vh = idTg .
In such a way, uh ◦ ηf = ηg and uh ◦µf = µg ◦ (uh)2 entail ηf = vh ◦ ηg and µf ◦ (vh)2 = vh ◦µg , respectively,
thus vh defines a monad morphism from (Tg, ηg, µg) to (Tf , ηf , µf ). By the same construction as in Lemma 20
we obtain, finally, the required functor V h : des(f)→ des(g) with V h ◦ Uh = iddes(g) and Uh ◦ V h = iddes(f).

ut
By uniqueness of mediators we have uidf = idTf and uh2◦h1 = uh2 ◦ uh1 . According to the construction

of our forgetful functors this entails U idf = iddes(f) and Uh2◦h1 = Uh1 ◦ Uh2 . In such a way, the assignments
f 7→ des(f) and h 7→ Uh define, on the global level, for any object L in C a contravariant descent data functor

DDL : (L↓C )op → CAT. (27)

We are now able to settle a close interrelation between the assignments DDLh = Uh and PDLh = ∆h which will
allow us to replace pseudoriality (of PDL) by compositionality “on the nose” (of DDL):

Lemma 22 For any morphism h : f → g in L↓C we have

Uh ◦ Φg = Φf ◦∆h : pb(g)→ des(f).

Proof: Take any pullback (γ, g′, β) ∈ pb(g) and decompose it by ∆h:

I
f ′
//

γ

��

g′

''
I ′

h′
//

β′

��

I ′′

β

��
L

f //

g

77F
h // G

Due to the definition of Uh, Φg , Φf , and ∆h we have to show that ξ(g′,β) ◦ uhγ = ξ(f ′,β′): We obtain

h′ ◦ f ′ ◦ ξ(g′,β) ◦ uhγ = h′ ◦ f ′ ◦ π2(g, g ◦ γ) ◦ uhγ By (9)

= h′ ◦ f ′ ◦ π2(f, f ◦ γ) By (26)

20



and

β′ ◦ f ′ ◦ ξ(g′,β) ◦ uhγ = f ◦ γ ◦ ξ(g′,β) ◦ uhγ Left square commutes

= f ◦ Tgγ ◦ uhγ ξ(g′,β) : Thγ → γ

= f ◦ Tfγ By (26)

= f ◦ γ ◦ π2(f, f ◦ γ) Definition of Tfγ

= β′ ◦ f ′ ◦ π2(f, f ◦ γ) Left square commutes

Since h′ and β′ are jointly monic, we obtain f ′ ◦ ξ(g′,β) ◦ uhγ = f ′ ◦ π2(f, f ◦ γ). By ξ(g′,β) : Thγ → γ and (26)
we have, moreover, γ ◦ ξ(g′,β) ◦ uhγ = Tfγ thus the desired equality follows from the fact that ξ(f ′,β′) is unique
with these two properties (cf. (9)). ut

A commutative square as in the bottom of Figure 14 can be seen, equivalently, as a commutative square of
morphims a : r → s, r : a → s, a : idL → a, r : idL → r in L ↓C giving rise, in such a way, to a commutative
diagram of forgetful functors as in the top of Figure 18. des(idL) represents the ”common parts” of objects in the
categories des(a) and des(r), respectively. des(idL) is isomorphic to C ↓ L and if we assume pullbacks to be
chosen such that id∗Lγ = γ, π2(idL, idL ◦ γ) = idγ , we have by (4) and (5)

ObdesidL = ((γ, idγ))γ∈C↓L.

Now we can define coherence by adapting the same methodology used to define amalgamability. First, we construct
the pullback of Ua and Ur (see the diagram in Definition 23) which yields the category des(a) ×des(idL) des(r).
It has objects pairs ((γ, ξ1), (γ, ξ2)) of descent data and morphisms are given by those morphisms h : γ → γ′ in
C ↓ L providing a morphism h : (γ, ξ1) → (γ′, ξ′1) in des(a) as well as a morphism h : (γ, ξ2) → (γ′, ξ′2) in
des(r). Second, we consider the pairing

〈Ur, Ua〉 : des(s)→ des(a)×des(idL) des(r)

which gives rise to

Definition 23 (Coherence) Descent data (γ, ξ1) ∈ des(a) and (γ, ξ2) ∈ des(r) are called coherent, if the pair
((γ, ξ1), (γ, ξ2)) is in the image of 〈Ur, Ua〉, i.e. there exists (γ, ξ) ∈ des(s) such that Ur(γ, ξ) = (γ, ξ1) and
Ua(γ, ξ) = (γ, ξ2). Any (γ, ξ) ∈ des(s) with this property will be called a coherence witness (for (γ, ξ1) and
(γ, ξ2)).

des(a)

Ua

%%JJJJJJJJJJ

des(s)

Ur
//

Ua //

〈Ur,Ua〉 // des(a)×des(idL) des(r)

Π1

66mmmmmmmmmmmmm

Π2 ((QQQQQQQQQQQQQ
des(idL)

des(r)

Ur

99tttttttttt

This means that two algebraic structures (γ, ξ1) and (γ, ξ2) are coherent if they can be combined faithfully into a
single algebraic structure over γ relative to s. In other words, (γ, ξ1) and (γ, ξ2) are “independent/orthogonal” in
the sense that an interaction of both algebraic effects does not distort any of the two structures.

In accordance with the fact that “topoi are adhesive” [21], coherence is trivially satisfied for pushouts with at
least one monomorphism involved (compare Theorem 28).

Corollary 24 (Pushout along mono implies Coherence) For any pushout square as in the bottom of Figure 14
with a or r monic 〈Ur, Ua〉 becomes an isomorphism between categories.

Proof: In case a (or r) monic, we have also a (or r) monic since pushouts preserve monomorphisms. According
to Corollary 21 this means that Ua and Ua (or Ur and Ur) are isomorphisms thus the outer diamond in the figure
in Definition 23 becomes a pullback. Thus 〈Ur, Ua〉 is the canonical isomorphism. ut

21



5.3 Amalgamation vs. Coherence in Topoi
The complete picture so far is depicted in Figure 18, in which all squares commute except front and left face
involving Ψ. According to Proposition 15 these squares commute only up to the co-unit of the adjunction Ψa a Φa

and Ψr a Φr, respectively.

des(a)
Ua //

aΨa

��

des(idL)

des(s)
Ua //

Ur
::uuuuuuuuu

aΨs

��

des(r)

Ur

99ttttttttt

aΨr

��

pb(a)
Λa //

Φa

OO

C ↓L

pb(s)
∆a

//

∆r
::uuuuuuuuu

Φs

OO

pb(r)

Λr

99tttttttttt

Φr

OO

Figure 18: Amalgamation and Coherence

We fix the rear pullback span ((γ, a′, τ), (γ, r′, β)) in Figure 14 and consider the associated descent data:

(γ, ξ(a′,τ)) = Φa(γ, a′, τ) and (γ, ξ(r′,β)) = Φr(γ, r′, β).

First, we show that amalgamability entails coherence for arbitrary commutative squares.

Proposition 25 (Amalgamation entails Coherence) Let in a topos C a diagram be given like the solid arrows in
Figure 14 where the bottom square is commutative. If a span ((γ, a′, τ), (γ, r′, β)) of pullbacks is amalgamable
then (γ, ξ(a′,τ)) and (γ, ξ(r′,β)) are coherent.

Proof: By assumption there exists a pullback (γ, s′, σ) ∈ pb(s) with

〈∆r,∆a〉(γ, s′, σ) ∼= ((γ, a′, τ), (γ, r′, β))

(this is Figure 14 without question marks). The isomorphism from ∆r(γ, s′, σ) to (γ, a′, τ) has the form (idγ , i)
such that Φa(γ, a′, τ) = (Φa◦∆r)(γ, s′, σ) by (10) and the definition of Φa. Analogously, we obtain Φr(γ, r′, β) =
(Φr ◦∆a)(γ, s′, σ). Hence, by Lemma 22 with a : r → s and r : a→ s

((γ, ξ(a′,τ)), (γ, ξ(r′,β))) = 〈Ur, Ua〉Φs(γ, s′, σ) = 〈Ur, Ua〉(γ, ξ(s′,σ))

which is coherence with witness (γ, ξ(s′,σ)). ut
To ensure that – vice versa – coherence entails amalgamation we have to require not only a commutative but a
pushout square. Descent data represent (up to isomorphism) only the epi-part of a morphism and due to Corollary
24 coherence concerns only the interaction between the epi-parts of two morphisms. To put this observation into
work and to take advantage of the fact that “topoi are adhesive” [21], we first state an auxiliary result which allows
us to decompose any pushout square into epi-mono tiles.

Lemma 26 Let C be a topos. Let a = am ◦ ae and r = rm ◦ re be epi-mono-factorized (cf. Lemma 14). Any
pushout of a and r can be divided into pushout quarters, as shown in Figure 19. In this way each involved arrow
of the original pushout is factorized. Moreover, the diagonal arrows sm and se are an epi-mono-factorization of
s = a ◦ r = r ◦ a.

22



L
r //

a

��

R

a

��

L
re // //

ae
����

se
AAAA

    AAA

R′ //
rm //

a′e����

R

����
A

r
// S A′

r′e

// //
��

am

��

S′
��

��

// //
  
sm

AAA

  AAAA

N
��
m

��
A // // M // // S

Figure 19: Division into epi-mono tiles

Proof: One starts with the pushout of ae and r together with the mediator m : N → S from this inner square
into the outer pushout. m is then part of a second rectangle which is a pushout by the decomposition property of
pushouts. The two resulting rectangles can both be split up in the same way yielding four squares, in which each
newly created arrow opposite to an epimorphism / a monomorphism is an epimorphism / a monomorphism again,
because pushouts preserve epis and monos. Hence, s = sm ◦ se is an epi-mono-factorization of s. ut

Proposition 27 (Coherence entails Amalgamation) Let in a topos C a diagram be given as the solid arrows in
Figure 14 where the bottom square is a pushout. Then any pullback span ((γ, a′, τ), (γ, r′, β)) is amalgamable if
(γ, ξ(a′,τ)) = Φa(γ, a′, τ) and (γ, ξ(r′,β)) = Φr(γ, r′, β) are coherent.

Moreover, the coherence witness for (γ, ξ(a′,τ)) and (γ, ξ(r′,β)) is unique.

Proof: Let (γ, ξ) ∈ des(s) be a coherence witness. Assume first, we already knew the result for arbitrary pushouts
of epimorphisms. We consider then the decomposition of the pushout into tiles according to Lemma 26, and de-
compose both pullbacks (γ, a′, τ) and (γ, r′, β). We obtain two “inner” pullbacks ∆am(γ, a′, τ) and ∆rm(γ, r′, β)
along ae and re, respectively, and for the corresponding descent data Φae(∆am(γ, a′, τ)) and Φre(∆rm(γ, r′, β))
we have

(Φae(∆am(γ, a′, τ)),Φre(∆rm(γ, r′, β)))

= ((Uam ◦ Φa)(γ, a′, τ), (Urm ◦ Φr)(γ, r′, β)) Lemma 22

= (Uam(γ, ξ(a′,τ)), Urm(γ, ξ(r′,β))) Definition of Φp

= ((Uam ◦ Ur)(γ, ξ), (Urm ◦ Ua)(γ, ξ)) Coherence assumption

= (Ur◦am(γ, ξ), Ua◦rm(γ, ξ)) (27)

= (Usm◦r
′
e(γ, ξ), Usm◦a

′
e(γ, ξ)) Lemma 26

= 〈Ur
′
e , Ua

′
e〉(Usm(γ, ξ)) (27)

thus the descent data of these “inner” pullbacks are also coherent with coherence witness Usm(γ, ξ). By assump-
tion, the inner pullback span (∆am(γ, a′, τ),∆rm(γ, r′, β)) is amalgamable. Since topoi are adhesive [21], this
amalgamation can be continued along the other pairs of bottom arrows (of which either one or both are now monic)
by constructing top face pushouts each time. All side face pullbacks compose to 4 side pullbacks of the whole cube,
which amalgamates the original pullback span.

Now, we assume that r and a are epic. For the coherence witness (γ, ξ) ∈ des(s) we can construct the
pullback span 〈∆r,∆a〉(Ψs(γ, ξ)) and we only need to show that this pullback span is related to the original one
by an isomorphism of the form (m1, idγ ,m3) (cf. Definition 17): By coherence assumption, we have (γ, ξ(a′,τ)) =
Ur(γ, ξ) thus the definition of Φa, Proposition 15 (a) and Lemma 22 give us

Φa(γ, a′, τ) = Ur(γ, ξ) = (Ur ◦ Φs ◦Ψs)(γ, ξ) = (Φa ◦∆r ◦Ψs)(γ, ξ). (28)

Since a is epic, the co-unit of the adjunction Ψa a Φa is a natural isomorphism by Proposition 15 (b). Applying
Ψa to (28) yields a composite isomorphism of the required form from ∆r(Ψs(γ, ξ)) to (γ, a′, τ):

(idγ ,m1) := ε(γ,a′,τ) ◦ ε−1
∆r(Ψs(γ,ξ))

.

The isomorphism (idγ ,m3) from ∆a(Ψs(γ, ξ)) to (γ, r′, β) is obtained analogously.

23



Uniqueness of witness: Assume there are two coherence witnesses (γ, ξ), (γ, ξ′). As shown above, Usm(γ, ξ)
and Usm(γ, ξ′) are then coherence witnesses for the pullback span reduced to the epi-parts ae and re. Usm is,
according to Corollary 21, an isomorphism thus it suffices to restrict again to the case where a and r are both epic.

From the construction above, we obtain two cubes each of which possess 4 pullbacks as side faces with diagonal
pullbacks Ψs(γ, ξ) and Ψs(γ, ξ′). The cubes possess the same arrows except for a′, r′, and σ, cf. Figure 14. But
the two variants of the arrows a′, r′ both form a top pushout of a′ and r′ because, in topoi, pullbacks (along
σ) preserve colimits. Moreover, the two variants of σ are mediators out of these pushouts with the appropriate
universal property. The mediating isomorphism between the two pushouts can then be shown to mediate between
the two variants of σ. Hence

Ψs(γ, ξ) ∼= Ψs(γ, ξ′)

with an isomorphism of the form (idγ , i), such that (γ, ξ) = (Φs ◦ Ψs)(γ, ξ) = (Φs ◦ Ψs)(γ, ξ′) = (γ, ξ′) by
Proposition 15 (a) and (10). ut

This proposition is a significant step towards an answer to Question 2. It characterizes, in terms of local data,
those situations where instances can be amalgamated. It is, however, still too abstract in the sense that it does not
provide an algorithm which tests for amalgamability. In the slightly more special setting of presheaves, however,
we can provide such a procedure, see Section 6, where we will also recall the introductory examples from Section
2 to elucidate the practical importance of the theoretical results gained so far.

Question 1 addresses the global universal view on amalgamation. An answer to it could have been given in
terms of the involved categories of pullbacks: Amalgamation is always possible and hence the bottom square in
Figure 14 is Van Kampen iff the functor 〈∆r,∆a〉 establishes an equivalence between the categories pb(s) and
pb(a)×C↓L pb(r). Although the inner diamond in the figure in Definition 17 is a pullback in CAT , this still does
not mean that the outer diamond, which is also the bottom square in Figure 18, is a pullback. It is only a kind of a
”pullback up to equivalence”. Hence, in order to obtain a global view on amalgamation in terms of these pullback
categories one would have to define such a concept formally which seems to be inappropriate or even impossible.

Considering, however, descent data instead of pullbacks, we get astonishingly ”compositionality on the nose”
as we know it from and use it intensively in traditional specification formalisms with indexed semantics [9, 10, 12].
Thus the following theorem provides a better answer to Question 1.

Theorem 28 (Descent Version of Fibred Amalgamation Lemma) Let C be a topos. In Figure 20, the pushout
(1) is a Van Kampen square if and only if (2) is a pullback in CAT .

L
r //

a

��

R

a

��

des(idL)

(2)

des(r)
Uroo

A
r // S

(1)

des(a)

Ua

OO

des(s)

Ua

OO

Uroo

Figure 20: Amalgamation Lemma (Fibred setting)

Proof: Square (2) commutes by (27). Thus it is a pullback iff the functor 〈Ur, Ua〉 : des(s) → des(a) ×des(idL)

des(r) is an isomorphism, cf. the figure in Definition 23.
“⇒”: Bijectivity of 〈Ur, Ua〉 on objects follows from coherence (by Propositions 18, 25), which is surjectivity,
and uniqueness of coherence witness (Proposition 27), which is injectivity.

The definition of U induces injectivity on arrows (cf. Lemma 20) and it induces surjectivity, if we can show
that any arrow h of des(a)×des(idL) des(r) is also an arrow of des(s). But this follows from the fact that the arrow
(Ψah, h,Ψrh) between two amalgamable pullback spans yields the existence of an arrow (h, ĥ) in pb(s) by (25).
Thus h = Φs(h, ĥ) ∈ Mordes(s).
“⇐” 〈Ur, Ua〉 an isomorphism means that all the pairs in des(a)×des(idL) des(r) are coherent thus this direction
follows directly from Propositions 27 and 18. ut

24



6 Amalgamation and Van Kampen Squares in Presheaves
This section illustrates the use of Propositions 25/27 and develops a simply checkable characterization of amal-
gamable pullback spans as well as a new characterization of Van Kampen squares in presheaves. In the se-
quel C = SETS and, again, we use the more intuitive notations FX and opF for the application of a functor
F : S → SET to an object X and an operation symbol op, resp.

6.1 General analysis
In SETS the monad embeddings ua : Tr → Ts and ur : Ta → Ts are componentwise inclusions, as discussed in
Section 5.2. Hence coherence (cf. Definition 23) means the existence of descent data ξ relative to s = a◦ r = r ◦a
with

∀(x, x′) ∈ ker(rX) : ξx,x′ = ξβx,x′ and ∀(y, y′) ∈ ker(aX) : ξy,y′ = ξτy,y′ (29)

for all X ∈ ObS , where all mappings are understood as the components of the families of bijections from Propo-
sition 16. Note, that we use throughout this section ξβ instead of ξ(r′,β) and ξτ instead of ξ(a′,τ), respectively.

We observe Propositions 25 and 27 at work: Recall the situation in Figure 3 (here S = 1). By Proposition
16, the associated descent data ξβ and ξτ map within I along the dashed and dotted lines, resp. E.g. ξτx,z(1:x) =
2 : z, ξτx,z(2 : x) = 1 : z. Amalgamation is possible, if we can determine an equivalence relation 〈ξ, π2(s, s ◦ γ)〉
in which the restriction of ξ to the kernels of a′ and r′ coincide with ξτ and ξβ , resp., and which is monadic.
However, associativity can not be fulfilled since

ξx,z = ξτx,z 6= ξβw,z ◦ ξτy,w ◦ ξβx,y = ξw,z ◦ ξy,w ◦ ξx,y

on the fibre over x, see Figure 3. This shows that Proposition 25 provides indeed an a priori test for the failure of
amalgamability.

Obviously, in the example, the kernels of r and a, are intertwined through the cycle (x, z),(z, w), (w, y),
(y, x) ∈ ker(s) and are thus not enough “separated”.

Definition 29 (Separated Kernels) LetX ∈ ObS and a and r be given as in Figure 14. A sequence (xi)i∈{0,1,...,2k+1}
of elements in LX is called an X-domain cycle of aX and rX (or just domain cycle of a and r, if the carrier is
fixed), if k ∈ N and the following conditions hold:

1. ∀j ∈ {0, 1, . . . , 2k + 1} : xj 6= xj+1

2. ∀i ∈ {0, . . . , k} : (x2i, x2i+1) ∈ ker(aX)

3. ∀i ∈ {0, . . . , k} : (x2i+1, x2i+2) ∈ ker(rX)

where the sums are understood modulo 2k + 2 (i.e. x2k+2 = x0). We call 2k + 2 the length of the domain cycle.
Moreover, a domain cycle is proper if we have for all i, j ∈ {0, 1, . . . , 2k + 1} that xi 6= xj if i 6= j.

The pair a and r is said to have separated kernels, if it has no domain cycle.

We draw attention to the fact that ”having separated kernels” is not sufficient but only necessary for ”being jointly
monic”. Indeed, being jointly monic induces a domain cycle of length 2. But longer domain cycles occur for
jointly monic a and r (see Figure 3).

Domain cycles are connected to coherence as follows:

Theorem 30 Let a commutative square be given like the bottom square in Figure 14 and let the two rear faces be
pullbacks with associated descent data ξτ and ξβ , resp.

ξτ and ξβ are coherent iff for all proper domain cycles (xi)i∈{0,1,...,2k+1} of a and r we have

ξβx2k+1,x0
◦ ξτx2k,x2k+1

◦ · · · ◦ ξτx2,x3
◦ ξβx1,x2

◦ ξτx0,x1
= idγ−1(x0) (30)

The statement is illustrated in Example 3, where coherence is now achieved by harmonizing the equivalences of
a′ and r′ in the two copies of L that make up the domain of γ. Alternatively, we can use Proposition 27 to check
amalgamability: A coherence witness can be constructed by taking the transitive closure of the union of the two
equivalence relations arising from ξτ and ξβ (cf. (23)).

Based on this observation, Theorem 30 provides a feasible criterion to check amalgamability without com-
puting explicitly a coherence witness or trying to complete the cube with pullbacks and thus it is an answer to
Question 2. Although the proof is a bit technical, we include it here, because it sheds light on the set-theoretical
correlations of descent theory. We first need:

25



Definition 31 (Alternating Sequence) Let X ∈ ObS . We call a sequence (yi)i∈{0,1,...,m} of elements in LX an
(X-)alternating sequence (of a and r), if m ∈ N and the following conditions hold:

a) for all even i ∈ {0, . . . ,m− 1} : (yi, yi+1) ∈ ker(pX)

b) for all odd i ∈ {0, . . . ,m− 1} : (yi, yi+1) ∈ ker(−pX)

where p ∈ {a, r} and −a = r and −r = a. A sequence is called proper if yi 6= yj for all i ∈ {0, 1, · · · ,m} and
j ∈ {1, 2, · · · ,m− 1} with i 6= j.3

Proof of Theorem 30: (⇒) follows immediately from (29) and Proposition 16 applied to the coherence witness ξ.
(⇐): By Proposition 16 the desired coherence witness ξ is given by a family

((ξX)x,x′ : γ−1(x)→ γ−1(x′))(x,x′)∈ker(s)

of bijections on fibres in each carrier set IX . It is well-known that pushouts in SETS are constructed componen-
twise by pushouts in SET . Thus (x, x′) ∈ ker(sX) iff there exists an alternating sequence σ = (yi)i∈{0,1,...,m}
with y0 = x and ym = x′. Since ξ must obey the restriction property (29), we must define ξx,x′ := ξσ : γ−1(x)→
γ−1(x′) by

ξσ := ξ !
ym−1,ym ◦ · · · ◦ ξ

−p!
y1,y2 ◦ ξ

p!
y0,y1 (31)

(where a! = τ and r! = β). For m = 0 this reduces to ξσ = idγ−1(y0).
Note, that any domain cycle c = (xi)i∈{0,1,...,2k+1} gives rise to two alternating sequences connecting x0 with

x0, namely σc = (x0, x1, . . . , x2k+1, x0) and σ′c = (x0), thus condition (30) in Theorem 30 can be rewritten as
ξσc = ξσ′c .

In generalizing this observation, it can be shown by assumption and induction that condition (30) is equivalent
to the requirement that ξσ = ξσ′ for arbitrary x and x′ and any two alternating sequences σ and σ′ connecting x
and x′ , see Lemma 39 in the appendix. This makes definition (31) independent of the choice of sequence.

It remains to show validity of neutrality, associativity as well as compatibility with operation symbols (cf.
Proposition 16). Neutrality follows from (31) for m = 0. To show associativity we define the composition of two
alternating sequences by

• σ′ ◦σ := (y0, . . . , ym = z0, . . . , zn) if mn = 0 or m,n ≥ 1 and (ym−1, ym) ∈ ker(p), (z0, z1) ∈ ker(−p)

• σ′ ◦ σ := (y0, . . . , ym−1, z1, . . . , zn) if m,n ≥ 1 and (ym−1, ym) ∈ ker(p), (z0, z1) ∈ ker(p)

By independence of representative we obtain for each pair (x, x′), (x′, x′′) ∈ ker(sX) (with representing alternat-
ing sequences σ, σ′): ξσ′ ◦ ξσ = ξσ′◦σ , hence associativity.

In order to show compatibility with operation symbols, let op : X → Y be any arrow of S . Let (x, x′) ∈
ker(sX) and σ = (yi)i∈{0,1,...,m} with y0 = x and ym = x′ be an associated alternating sequence. Clearly,
opL(σ) := (opL(yi))i∈{0,1,...,m} is an alternating sequence for (opL(x), opL(x′)) ∈ ker(sY ). Then from the
definitions of ((ξX)x,x′)(x,x′)∈ker(sX) and ((ξY )y,y′)(y,y′)∈ker(sY ) in (31) as well as the compatibility of ξτ and
ξβ (cf. Proposition 16) we have

(ξY )opL(x),opL(x′) ◦ opIx
= (ξY )opL(σ) ◦ opIx
= (ξ !

Y )opL(ym−1),opL(ym) ◦ · · · ◦ (ξ−p!Y )opL(y1),opL(y2) ◦ (ξp!Y )opL(y0),opL(y1) ◦ opIx
= opIx′ ◦ (ξ !

X)ym−1,ym ◦ · · · ◦ (ξ−p!X )y1,y2 ◦ (ξp!X)y0,y1

= opIx′ ◦ (ξX)x,x′ ut

Theorem 30 also tells us that the descent data of all pullback spans are coherent, if there are no domain cycles,
i.e. if a and r have separated kernels. If the bottom square is a pushout, this means that having separated kernels
implies successful amalgamation by Proposition 27. In the rest of this section we show that the converse also
holds.

Proposition 32 Let C = SETS and a commutative square be given like the bottom square in Figure 14. If all
pullback spans in the rear are amalgamable, then a and r have separated kernels.

3 Thus, the only allowed equality is y0 = ym.

26



Proof: Assume to the contrary that a and r possess an X-domain cycle (xi)i∈{0,1,...,2k+1} for some k ∈ N. By
Lemma 38 in the appendix, we may assume that the cycle is already proper. We can define then a pullback span
where amalgamation fails by defining instances τ : IA → A, γ : IL → L, and β : IR → R as follows: For
M ∈ {A,L,R} let

IMY =

{
MY if Y 6= X
M1
X +M2

X +M3
X if Y = X

where (M i
X = {(x, i) | x ∈MX})i∈{1,2,3} are three copies of MX . For each arrow op : Z → Z ′ in S , we define

opI
M

: IMZ → IMZ′ by

opI
M

= opM if Z 6= X and Z ′ 6= X,

opI
M

:

{
MZ → M1

X +M2
X +M3

X

x 7→ (opM (x), 3)
if Z 6= X and Z ′ = X,

opI
M

:

{
M1
X +M2

X +M3
X → MZ′

(x, i) 7→ opM (x)
if Z = X and Z ′ 6= X,

opI
M

:

{
M1
X +M2

X +M3
X → M1

X +M2
X +M3

X

(x, i) 7→ (opM (x), 3)
if Z = X and Z ′ = X.

Then we let τY := idIAY , if Y 6= X and τX(a, i) := a for each i ∈ {1, 2, 3}. In the same way we define γ : IL → L

and β : IR → R, i.e. they are identical on the carriers of sort Y 6= X and forget indices on the carrier of X . A
straightforward calculation shows that τ, γ, β are natural transformations.

Elementary arguments (using pointwise pullback construction as mentioned in Section 4.2.3) show that defin-
ing r′ : IL → IR by r′Y = rY if Y 6= X and r′X(x, i) = (rX(x), i) defines a natural transformation establishing
a pullback square over r. The definition of r′ furthermore yields

r′X(x, i) = r′X(y, j) ⇐⇒ (i = j and (x, y) ∈ ker(rX)). (32)

To establish the left rear square, we have to define a′ : IL → IA. As before, a′Y := aY for Y 6= X , but in
order to create a situation where amalgamation fails, the definition introduces a “twist” in ILX as follows: Recall
that there was a domain cycle in LX which occurs threefold in ILX . Because k ≥ 0 and the cycle is proper, there
are at least x0 6= x1 in the cycle for which aX(x0) = aX(x1). Let a′X : L1

X + L2
X + L3

X → A1
X + A2

X + A3
X be

defined by

a′X(x, i) =

 (aX(x), i) if x 6∈ {x0, x1} or i = 3
(aX(x), i) if i 6= 3 and x = x0

(aX(x), 3− i) if i 6= 3 and x = x1

(33)

This means that a′ maps according to a on the fibres but interchanges the positions of the images of x1 in the first
two copies:

a′X(x0, 1) = a′X(x1, 2) and a′X(x0, 2) = a′X(x1, 1) (34)

whereas a′X(x, i) = a′X(y, j) ⇐⇒ (i = j and (x, y) ∈ ker(rX)) whenever x 6∈ {x0, x1} or y 6∈ {x0, x1} or
i = 3. We give a detailed proof in Section 8.6, why this special definition of a′ still yields a pullback square over
a.

By assumption, the constructed pullback span is amalgamable, hence by Proposition 25, the associated descent
datas ξτ and ξβ are coherent such that by Theorem 30

ξβx2k+1,x0
◦ ξτx2k,x2k+1

◦ · · · ◦ ξτx2,x3
◦ ξβx1,x2

◦ ξτx0,x1
= idγ−1(x0). (35)

(34), (23), and the definition of γ, however, yield

ξτx0,x1
(x0, 1) = (x1, 2)

and
ξτx,x′(x, i) = (x′, i)

whenever (x, x′) ∈ ker(a) and x 6∈ {x0, x1} or x′ 6∈ {x0, x1}. Similarly ξβx,x′(x, i) = (x′, i) for all (x, x′) ∈
ker(r) by (32). Thus

(ξβx2k+1,x0
◦ ξτx2k,x2k+1

◦ · · · ◦ ξτx2,x3
◦ ξβx1,x2

◦ ξτx0,x1
)(x0, 1) = (x0, 2)

27



which contradicts (35). ut
While Theorem 30 was a statement to check successful amalgamation individually for one given pullback span,

we can summarize the other results with the following total statement, which simultaneously provides an answer
to Question 1, i.e. a practical criterion to check the Van Kampen property.

Theorem 33 Let C = SETS and the bottom square in Figure 14 be a pushout. The following conditions are
equivalent:

1. The square is a Van Kampen square.

2. a and r do have separated kernels.

3. Each pullback span is amalgamable.

Proof: 1 and 3 are equivalent by Proposition 18. 2⇒3 follows from Theorem 30 and 27. 3⇒2 is guaranteed by
Proposition 32 ut

A computer scientist reasoning about the ability to merge instances of specifications along a common part may
wish to encounter a Van Kampen square, because in this case, amalgamation is always possible. With the theorem
above he can check this property in an algorithmic manner.

6.2 Examples (revisited)
Recall Example 4. The class diagram can simply be coded as a diagram of graphs:

x

ef

���
�
� y

gh~~|
|

|
| a

oo x

e

���
�
�
f

  @
@

@
y

g

~~~
~

~
h

���
�
� r

// xy

eg

���
�
�

fh

!!B
B

B
B

zw z w z w

There is the domain cycle a(e) = a(f), r(f) = r(h), a(h) = a(g), r(g) = r(e) hence amalgamation may fail by
Theorem 33. The proof of Proposition 32 gives a hint how to find an instance constellation where this happens:
We just have to provide one object for each node and each time a three element set as fibre over an edge. In this
example, in fact, two elements in each fibre over the edges are enough. The instance γ : I → L has domain

x1

e1

��

�
�

$

e2

��

$

�

�

f1

9
;

$$

>
A

D
G

I

f2

I

��

D
A

>
;

9

y1

g1

u
w

��

z
}

�
�

�

g2

�
�

zz

�
}

z
w

u

h1

��

�
�

$
h2

��

$

�

�

z1 w1

and a′ may be defined to interchange edges: a′(e1) = a′(f2), a′(e2) = a′(f1). If all other assignments respect
indices, amalgamation fails.

Assume finally, identification of elements would be slightly different in Example 4. If (private) persons would
possess only one type of contact info, i.e. if the specification is as in Fig. 21, the morphisms are still both non-
injective with complicated entanglement, but it follows immediately from Theorem 33 that amalgamation is suc-
cessful for each pullback span and that the square is a Van Kampen square.

28

Person
Business

Partner

T1 T2

cInfo1 cInfo2

Person
Business

Partner

String

cInfo

a

r
Individual

T1 T2

cInfo1 cInfo2

cInfo

Individual

String

cInfo
r

a

Figure 21: Compositionality holds

7 Outlook
The paper presents major outcomes of a comprehensive collaborative project based on [7, 23, 33] and addressing
”compositionality of fibred semantics in topoi”. There are several open problems and interesting topics for future
research.

Categorical characterization of domain cycles In the light of Theorem 33 we can consider the Van Kampen
property as a categorical characterization of separateness, i.e., of the absence of domain cycles. An open question
is if there is a simpler and more feasable categorical characterization of domain cycles in terms of the span (a, r)
only. We had a closer look at the following candidate for such a characterization: The pushout (a, r) of (a, r)
is a Van Kampen square if for all factorizations a = a2 ◦ a1 and r = r2 ◦ r1 with a1 and r1 epic the following
implicaton holds:

If (a ◦ r2, r ◦ a2) is pushout of a1 and r1, then r2, a2 are isomorphisms.

r2
��

L

r1

==
{{{{{{{{

r
//

a1

�����������
a

��

R

a
��

a2
// A

r
// S

The idea is that the square does not possess the VK property if the kernels of a and r are too much intertwined in L.
So one tries to postpone a portion of the identification potential of both a and r in such a way that the intertwining
is broken but still the pushout can be produced. One can show that this characterization works indeed for sets. But
already for graphs it does not work since one has to be careful with identifications in the environment of domain
cycles.

29

Example 34 The pushout

x
a //___

b

���
�
� y

d

���
�
�

z
c //___ w

r // x
a ,,e _ Y

b

22Y _ e yz
cd //___ w

a

��
a

��

x
ab //___ yz

c ++e _ Y

d

33Y _ e w
r // x

ab //___ yz
cd //___ w

in the category GRAPH is not a Van Kampen square (because nodes y and z constitute a domain cycle), but
neither a nor r can be factorized as in the conjecture, because edge identification takes place in the vicinity of this
cycle.

Conditional Van Kampen If we are not able to characterize the absence of domain cycles, in a feasable way, it
may be worth to see if we can, instead, localize domain cycles categorically in arbitrary topoi.

A closer look at our results shows that Theorem 30 gives us actually for presheaves a kind of ”conditional amal-
gamation”: We consider the smallest subobject C of L containing all proper domain cycles and the corresponding
inclusion morphism i : C → L. Let (rC , aC) be the pushout of (aC , rC), with aC = a ◦ i and rC = r ◦ i, and
(r, a) be the pushout of (a, r) (see Fig. 22). By pulling back along i any pullback span over (a, r) reduces to a
pullback span over (aC , rC) and Theorem 30 can be transformed into the statement: A pullback span over (a, r)
is amalgamable, if the reduced pullback span over (aC , rC) is amalgamable. In case this implication is true for all
pullback spans over (a, r), we say that the span (a, r) is “Van Kampen relative to C”.

If there are no cycles, i.e., C is the (componentwise) empty set ∅ in C = SETS , the reduced pullback span
is always amalgamable, since C = SETS is extensive. That is, “Van Kampen relative to ∅” coincides with
the traditional Van Kampen property. Any span (a, r) is trivially “Van Kampen relative to L” and the essence of
Theorem 30 is that there exists for any span (a, r) in a presheaf a minimal object C of L such that (a, r) is “Van
Kampen relative to C”.

Our conjecture is that also in arbitrary topoi such a minimal condition C can be constructed for any span (a, r).

R r

��

rC

 AAAAAAAA

C
i //

rC
//

aC //

L

r

??��������

a
��????????

rC◦r
((

aC◦a

66 SC
k // S

A a

AA

aC

>>}}}}}}}}

Figure 22: Conditional amalgamability

Full local compositionality As a matter of fact we can not assume “global identities” for our entities in pro-
gramming and software engineering. This obstacle is reflected by the insight, presented in this paper, that compo-
sitionality of fibred semantics is only a local property relative to an arbitrary but fixed “context/base” L.

To reflect locality even better, we could describe the descent data functor DDL as a functor from (L ↓ C)op

into CAT ↓ (C ↓L). Taking such a viewpoint, Theorem 28 states that sums in L ↓ C are mapped by the descent
data functor into products in CAT ↓ (C ↓L). With the machinery, developed in the paper, it should be possible to
prove corresponding statements for arbitrary (finite) colimits in L↓C . We let this as a topic of future work.

30

Change of base To get a more complete picture of compositionality of fibred semantics we have to consider also
the change of context/base. The situation for those changes should be the following: Any morphism l : L′ → L
induces, by pre-composition, a functor l̂ : L ↓ C → L′ ↓ C . Pulling back along l provides for each object
f : L → F in L ↓ C a functor from des(f) into des(l̂(f)) = des(f ◦ l), And, the collection of these functors
constitutes a natural transformation from DDL to DDL′ ◦ l̂. In case, l monic, this natural transformation has
local left-adjoints. We presume that these local left-adjoints will be useful to prove our conjecture concerning
conditional Van Kampen in arbitrary topoi.

Sketches Finally, an interesting topic for future research are more general categories. We could, for example,
extend our ”meta-schema” categories to finite product sketches, to cover algebraic operations and equations, or
even to finite limit sketches, to cover conditional equations.

References
[1] M. Barr & C. Wells (1990): Category Theory for Computing Sciences. Prentice Hall International Series. 1,

2

[2] M. Barr & C. Wells (2005): Toposes, Triples and Theories. Reprints in Theory and Applications of Categories
12, pp. 1–287. Available at http://www.case.edu/artsci/math/wells/pub/pdf/ttt.pdf.
4, 4.1, 5.2

[3] I. Claßen, M. Große-Rhode & U. Wolter (1995): Categorical concepts for parameterized partial specifica-
tions. Math. Struct. in Comp. Science 5(2), pp. 153–188, doi:10.1017/S0960129500000700. 1

[4] Z. Diskin (1996): Databases as diagram algebras: Specifying queries and views via the graph-
based logic of skethes. Technical Report 9602, Frame Inform Systems/LDBD, Riga, Latvia.
http://citeseer.ist.psu.edu/116057.html. 1

[5] Z. Diskin (1997): Towards algebraic graph-based model theory for computer science. Bulletin of Symbolic
Logic 3, pp. 144–145. Presented (by title) at Logic Colloquium’95. 1

[6] Z. Diskin & B. Kadish (1997): A graphical yet formalized framework for specifying view systems. In: Ad-
vances in Databases and Information Systems, pp. 123–132. ACM SIGMOD Digital Anthology: vol.2(5),
ADBIS’97. 1

[7] Z. Diskin & U. Wolter (2008): A Diagrammatic Logic for Object-Oriented Visual Modeling. ENTCS 203/6,
pp. 19–41, doi:10.1016/j.entcs.2008.10.041. 1, 4.2.1, 7

[8] H. Ehrig, K. Ehrig, U. Prange & G. Taentzer (2006): Fundamentals of Algebraic Graph Transformations.
Springer. 1

[9] H. Ehrig & B. Mahr (1985): Fundamentals of Algebraic Specification 1: Equations and Initial Semantics.
Springer-Verlag Berlin, Heidelberg. 1, 5.3

[10] H. Ehrig & B. Mahr (1990): Fundamentals of Algebraic Specification 2: Module specifications and con-
straints, EATCS Monographs on Theoretical Computer Science. Springer, Berlin Heidelberg New York. 1,
5.3

[11] H. Ehrig, U. Prange & G. Taentzer (2004): Fundamental Theory for Typed Attributed Graph Transformation.
LNCS 3256, pp. 161–177, doi:10.1007/978-3-540-30203-2 13. 4.2.1

[12] Hartmut Ehrig, M. Grosse-Rhode & U. Wolter (1998): Applications of Category Theory to the Area of Alge-
braic Specification in Computer Science. Applied Categorical Structures 6, pp. 1–35. 1, 5.3

[13] Peter Freyd (1972): Aspects of Topoi. Bull. Austral. Math. Soc. 7, pp. 1–76,
doi:10.1017/S0004972700044828. 4.2.2, 8.1

[14] Robert Goldblatt (1984): Topoi: The Categorial Analysis of Logic. Dover Publications. 1, 2, 3, 4, 5, 6, 4.2.1,
8.2

31

http://www.case.edu/artsci/math/wells/pub/pdf/ttt.pdf
http://dx.doi.org/10.1017/S0960129500000700
http://dx.doi.org/10.1016/j.entcs.2008.10.041
http://dx.doi.org/10.1007/978-3-540-30203-2_13
http://dx.doi.org/10.1017/S0004972700044828

[15] A. Grothendieck (1959): Techniques de descente et théoremes d’existence en géometrie algébraique, I.
Géneralités. Séminaire Bourbaki 190. 1, 4.1

[16] A. Grothendieck (1971): Catégories fibrées et descente, Exposé VI, in: Revêtements Etales et Groupe Fun-
damental (SGA1). Lecture Notes in Mathematics 224, pp. 145–194. 4.1

[17] T. Heindel & P. Sobocinski (2009): Van Kampen Colimits as Bicolimits in Span. In A. Kurz, M. Lenisa &
A. Tarlecki, editors: Algebra and Coalgebra in Computer Science, Lecture Notes in Computer Science 5728,
Springer Berlin / Heidelberg, pp. 335–349, doi:10.1007/978-3-642-03741-2 23. 3

[18] G Janelidze & W. Tholen (1994): Facets of Descent I. Applied Categorical Structures 2, pp. 245–281,
doi:10.1007/BF00878100. 1, 4.1

[19] Peter Johnstone (2002): Sketches of an Elephant A Topos Theory Compendium, Volume 1. Oxford Science
Publication. 4.1

[20] Harald König, Uwe Wolter & Michael Löwe (2012): Characterizing Van Kampen Squares via De-
scent Data. In U. Golas & T. Soboll, editors: Proceedings of ACCAT 2012, EPTCS, pp. 61 – 81,
doi:doi:10.4204/EPTCS.93.4. 3

[21] S. Lack & P. Sobociński (2006): Toposes are Adhesive. LNCS 4178, pp. 184–198, doi:10.1007/11841883 14.
1, 3, 2, 5.2, 5.3

[22] F.W. Lawvere (1964): An elementary theory of the category of sets. In: Proceeding of the National Academy
of Sciences of the U.S.A., 51, pp. 1506–1510. 1

[23] Michael Löwe (2010): Van-Kampen Pushouts for Sets and Graphs. Technical Report, University of Applied
Sciences, FHDW Hannover. 3, 7

[24] Saunders Mac Lane (1998): Categories for the Working Mathematician, Second edition. Springer. 4.1, 8.1

[25] M. Makkai (1997): Generalized sketches as a framework for completeness theorems. Journal of Pure and
Applied Algebra 115, pp. 49–79, 179–212, 214–274. 1, 4.2.1

[26] Colin McLarty (1995): Elementary Categories, Elementary Toposes. Clarendon Press. 7

[27] M.C. Pedicchio & W. Tholen (2004): Categorical Foundations: Topics in Order, Topology, Algebra, and
Sheaf Theory. Cambridge University Press. 1, 4.1

[28] H. Reichel (1987): Initial Computability, Algebraic Specifications, and Partial Algebras. Oxford University
Press. 1

[29] Alessandro Rossini, Adrian Rutle, Yngve Lamo & Uwe Wolter (2010): A formalisation of the copy-modify-
merge approach to version control in MDE. Journal of Logic and Algebraic Programming 79(7), pp. 636–658,
doi:10.1016/j.jlap.2009.10.003. 1, 4.2.1

[30] Adrian Rutle, Alessandro Rossini, Yngve Lamo & Uwe Wolter (2012): A formal approach to the specification
and transformation of constraints in MDE. Journal of Logic and Algebraic Programming 81/4, pp. 422–457,
doi:10.1016/j.jlap.2012.03.006. 1, 4.2.1

[31] P. Soboczińsky (2004): Deriving Process Congruences from Reaction Rules. Technical Report DS-04-6,
BRICS Dissertation Series. 1, 2, 5.1

[32] U. Wolter (1990): An Algebraic Approach to Deduction in Equational Partial Horn Theories. J. Inf. Process.
Cybern. EIK 27(2), pp. 85–128. 1

[33] U. Wolter & Z. Diskin (2007): From Indexed to Fibred Semantics – The Generalized Sketch File –. Reports
in Informatics 361, Dep. of Informatics, University of Bergen. 1, 2, 7

32

http://dx.doi.org/10.1007/978-3-642-03741-2_23
http://dx.doi.org/10.1007/BF00878100
http://dx.doi.org/doi:10.4204/EPTCS.93.4
http://dx.doi.org/10.1007/11841883_14
http://dx.doi.org/10.1016/j.jlap.2009.10.003
http://dx.doi.org/10.1016/j.jlap.2012.03.006

8 Appendix
This section lists additional technical calculations and proofs. They are either well-known (and are integrated due
to completeness) or necessary routine calculations to ensure correctness of the results in the main part.

8.1 Adjointness of Pullback Functor
For the purpose of self-containedness, we include here a proof of Lemma 5 (one of the main results used throughout
this report). Again, we use the adjointness characterization of [24] as in Section 4, i.e. p∗ a p∗, iff there exist natural
transformations η : idC↓E ⇒ p∗ ◦ p∗ (unit) and ε : p∗ ◦ p∗ ⇒ idC↓B (co-unit), such that

p∗ε ◦ ηp∗ = idp∗ and εp∗ ◦ p∗η = idp∗ . (36)

Proof of Lemma 5 (cf. [13], p. 16): If h : (C
γ // E) → (C ′

γ′ // E) ∈ MorC↓E , we have p∗p∗h =
idE ×B h by (2). Thus naturality of (ηγ)γ∈C↓E follows from

(idE ×B h) ◦ 〈γ, idC〉 = 〈γ′, idC′〉 ◦ h

(by uniqueness of mediators). Naturality of (εα)α∈C↓B is a consequence of

π2(p, α′) ◦ (idE ×B f) = f ◦ π2(p, α)

for any f ∈ MorC↓B(α, α′) (by (2)) and the fact that also idE ×B f = p∗p
∗f .

The second statement in (36) follows directly from the definition of ηγ as unique mediator, whereas the first
statement is true because

p∗εα ◦ ηp∗α = (idE ×B π2(p, α)) ◦ 〈p∗α, idE×BA〉 By (2) and the def. of η and ε
= (idE ×B π2(p, α)) ◦ 〈π1(p, α), idE×BA〉 Remarks before Lemma 5
= 〈π1(p, α), π2(p, α)〉 = idE×BA

ut

8.2 Epi-Mono-Factorizations
Altough the following result is well-known in topos theory we give a proof here because we need some further
details in the context of the result (a similar proof using dual arguments can be found in [14]). It is based on
a property, which we mentioned in the introduction: In topoi epimorphisms are regular, i.e. each epimorphism
coequalizes some parallel pair.

Lemma 35 Let C be a topos and f : A → B. The coequalizer c of the kernel pair (p1, p2) of f is the largest
quotient that factors through f , i.e. if m is the mediator of f out of the coequalizer and f = u ◦ e with epic e, then
there is a unique (necessarily epic) t, such that t ◦ e = c and m ◦ t = u, cf. Figure 23.

E

u

 @@@@@@@@

�
�
�

t

���
�
�P

p1
))

p2

55 A

e
?? ??~~~~~~~~ f //

c �� ��@@@@@@@@ B

C

m

??~~~~~~~~

Figure 23: Towards epi-mono factorization

33

Proof: Let the epimorphism e coequalize the parallel pair (q1, q2). Hence we obtain f ◦ q1 = f ◦ q2. Because the
kernel pair diagram for f is a pullback there is a unique h such that p1 ◦ h = q1 and p2 ◦ h = q2. But then

c ◦ q1 = c ◦ q2

which yields the required t out of the coequalizer e with t ◦ e = c. Moreover, m ◦ t ◦ e = m ◦ c = f = u ◦ e such
that m ◦ t = u because e is epic. ut

Lemma 36 If p1 = p2 in Figure 23, then f is monic.

Proof: If f ◦ x = f ◦ y, then there is a unique m such that x = p1 ◦m = p2 ◦m = y. ut
Proof of Lemma 14: Let k1, k2 be the kernel pair ofm. Then the coequalizer c′ of this pair yields a factorization

of m = v ◦ c′ with epic c′ as in Lemma 35. But then f = m ◦ c = v ◦ (c′ ◦ c) is a factorization of f for which, by
Lemma 35, there is a unique t such that t ◦ (c′ ◦ c) = c, thus

t ◦ c′ = id. (37)

Hence we obtain k1 = t ◦ c′ ◦ k1 = t ◦ c′ ◦ k2 because c′ was the coequalizer of k1 and k2. Using (37) again yields
k1 = k2, hence m is monic by Lemma 36.

Given any epi-mono-factorization f = u ◦ e the mediator t from Lemma 35 is monic because m ◦ t = u.
In topoi, it is then an isomorphism [14]. Then uniqueness up to unique iso follows from the composition of two
mediators t1 and t2 out of two epi-mono-factorizations. ut

8.3 Towards a transition from monadic descent to families of fibre assignments
In this section we investigate exponents in SET ↓ I for some fixed set I . Let f : A → I and g : B → I be two
objects in SET ↓ I . For i ∈ I define Ai = f−1({i}),

Di = {k : Ai → B | g ◦ k = i}

where i is also the constant function from Ai to I mapping everything to i. Furthermore let

D :=
⊎
i∈I

Di

and p : D → I defined by p(k : Ai → B) = i. We claim that p is the exponent of g and f , i.e. p = gf .
A sketch of the proof of that claim is as follows: The diagonal arrow in the pullback of p and f is

p× f : {(k, a) | k : Ai → B, f(a) = i} → I

for which e.g. (p × f)(k, a) = f(a). Since eval(k, a) := k(a) is defined on the domain of p × f , this yields
g ◦ eval = p × f such that eval : p × f → g is an arrow of SET ↓ I . It remains to show that for each
ϕ : h× f → g, there is a unique ϕ : h→ p such that the diagram

p× f eval // g

h× f
ϕ

77ppppppppppppp
ϕ×id

OO

commutes. But this is analogue to ”currying” in SET : If h : C → I and c ∈ C, let k : Ah(c) → B be defined by

k(a) = ϕ(c, a).

The assignment c 7→ k induces a map ϕ : h→ p because, by definition, p ◦ ϕ(c) = h(c). Moreover the definition
of eval easily yields that ϕ is the unique arrow making the above diagram commute.

We can summarize these considerations by saying that the domain of gf is the set of all maps k defined on a
fibre of f over some i for which g ◦ k is the constant i. gf maps any such k : Ai → B to its base point i. Taking
g = f , we obtain

Lemma 37 For any f ∈ SET ↓ I , the exponent ff is defined on the set of all endomaps k : f−1({i}) →
f−1({i}). Each k is mapped to its base point i by ff . ut

34

8.4 The Monad Embedding
In this section we give the proof details of Lemma 19. For simplicity we write u instead of uh. There are several
statements to prove:

1. Each uγ is a monomorphism.

2. u : Tf ⇒ Tg is a natural transformation.

3. u is compatible with units, i.e. u ◦ ηf = ηg .

4. u is compatible with co-units, i.e. µg ◦ u2 = u ◦ µf where u2 is the horizontal composition of u with itself.

1. To show that uγ is monic for each γ, let x, y : X → L ×B I with uγ ◦ x = uγ ◦ y be given. By (26), one
computes Tfγ ◦ x = Tfγ ◦ y and π2(f, f ◦ γ) ◦ x = π2(f, f ◦ γ) ◦ y. Because Tfγ and π2(f, f ◦ γ) are jointly
monic (being a limit cone in a pullback square), we obtain x = y. In the sequel, the property of a pullback cone to
be jointly monic will be used several times. We will do this without further reference.

2. Let γ, γ̂ ∈ C ↓L and
ϕ : γ → γ̂

be a C ↓L-morphism. We let π2 := π2(f, f ◦γ), π′2 := π2(g, g ◦γ), π̂2 := π2(f, f ◦ γ̂), π̂′2 := π2(g, g ◦ γ̂) denote
the second projections in the pullbacks involving γ and γ̂.

Pulling back ϕ (as an arrow in C ↓F and as an arrow in C ↓G) yields

ϕ ◦ π2 = π̂2 ◦ Tfϕ (38)

and
ϕ ◦ π′2 = π̂′2 ◦ Tgϕ. (39)

Let now d1 = Tgϕ ◦ uγ and d2 = uγ̂ ◦ Tfϕ, which are both arrows from Tfγ to Tgγ̂. d1 = d2 (and thus the
desired result) follows from

Tgγ̂ ◦ d1 = Tg(γ̂ ◦ ϕ) ◦ uγ Definition of d1

= Tgγ ◦ uγ Because ϕ : γ → γ̂

= Tfγ By (26)

= Tf γ̂ ◦ Tfϕ See two lines above

= Tgγ̂ ◦ uγ̂ ◦ Tfϕ By (26)
= Tgγ̂ ◦ d2 Definition of d2

and

π̂′2 ◦ d1 = π̂′2 ◦ Tgϕ ◦ uγ Definition of d1

= ϕ ◦ π′2 ◦ uγ By (39)
= ϕ ◦ π2 By (26)

= π̂2 ◦ Tfϕ By (38)

= π̂′2 ◦ uγ̂ ◦ Tfϕ By (26)
= π̂′2 ◦ d2 Definition of d2.

3. Compatibility with the units follows from π′2 ◦ uγ ◦ ηfγ = π2 ◦ ηfγ = id = π′2 ◦ ηgγ (apply (26) and (5) twice)
and Tgγ ◦ uγ ◦ ηfγ = Tfγ ◦ ηfγ = γ = Tgγ ◦ ηgγ (again using (26) and the fact, that ηpγ : Tpγ → γ for p ∈ {f, g}).

4. Let u2 := u ∗ u be the horizontal composition. By the definition of u2 we have for each γ ∈ C ↓L:

u2
γ = uTgγ ◦ Tfuγ = Tguγ ◦ uTfγ . (40)

From Fig. 8, we get
π2 ◦ π2 = π2 ◦ µpγ (41)

35

where µpγ = p∗π2. In the sequel, we use this for p := f and p := g. The diagrams

L×G (L×G I)

µgγ=g∗π′2 ((RRRRRRRRRRRRR
L×G (L×F I)

Tguγ

oo

g∗π2

��

π̃2 // L×F I

π2

��
L×G I

π′2

// I

Figure 24: Compatibility with co-unit, part 1

and

L×F (L×F I)

(Tf)2γ

))

π2

''

� u

u
Tf γ ((QQQQQQ

L×G (L×F I)
π̃2

//

TgTfγ

��

L×F I

g◦Tfγ
��

L
g

// G

Figure 25: Compatibility with co-unit, part 2

commute: In the first diagram, the triangle commutes by applying g∗ to (26) interpreted as diagram in C ↓G. The
square is just the pullback which arises from pulling back π2 : g ◦ Tfγ → g ◦ γ along g. We denote with π̃2 the
second projection in this case.

The second diagram is just Figure 17 taken at Tfγ instead of γ where the same π̃2 occurs again. Thus

π′2 ◦ µgγ ◦ u2
γ = π′2 ◦ µgγ ◦ Tguγ ◦ uTfγ By (40)

= π2 ◦ π̃2 ◦ uTfγ Figure 24
= π2 ◦ π2 Figure 25

= π2 ◦ µfγ By (41)

= π′2 ◦ uγ ◦ µfγ By (26)

On the other hand, by (26) and the fact that µf and µg are natural transformations from (Tf)2γ to (Tf)γ and
(Tg)2γ to (Tg)γ, resp., we obtain

Tgγ ◦ uγ ◦ µfγ = Tfγ ◦ µfγ = (Tf)2γ.

Since u2 is a γ-indexed family of arrows from (Tf)2γ to (Tg)2γ, we also have

Tgγ ◦ µgγ ◦ u2
γ = (Tg)2γ ◦ u2

γ = (Tf)2γ.

Because Tgγ = π′1 and π′2 are jointly monic, the proof is complete. ut

8.5 Domain cycles and alternating sequences
In this section we show (1) that the existence of domain cycles entails the existence of proper cycles and (2) that the
coherence condition (30) is inherited from proper cycles to all cycles (Lemma 38). The second part is restated in
Lemma 39 and proven equivalent to the independence of the choice of alternating sequences from x to x′ whenever
(x, x′) ∈ ker(s) for the bottom diagonal s.

In the following lemmas we use the fact that a domain cycle (x0, x1, . . . , x2k+1) where the roles of a and r are
interchanged also yields a domain cycle as in the original definition by shifting the numbering by 2 positions.

36

Lemma 38 (On proper cycles)

• If a and r possess a domain cycle (xi)i∈{0,...,2k+1} they also possess a proper subcycle (yi)i∈{0,...,2k′+1}
where yj ∈ {x0, . . . , x2k+1} and k′ ≤ k.

• ξσc = idγ−1(x0) for all proper domain cycles implies ξσc = idγ−1(x0) for all domain cycles.

Proof: The proof of both statements is by simultaneous induction over k. For k = 0 the pair (x0, x1) can only be
a cycle if x0 6= x1 and is proper. Hence the second statement also follows.

Let k > 0 and assume that the statement is true for each cycle of length smaller or equal 2k. If it is not already
proper, there are indices 0 ≤ i < j ≤ 2k + 1 such that xi = xj . By condition 1 in Definition 29 we even have
1 < j − i < 2k + 1. We have p(xi) = p(xi+1) for either p = a or p = r.

If p(xj−1) = p(xj) we have j − i ≡ 1mod 2, hence j − i ≥ 3, and we can delete (xi+1, · · · , xj−1) (i.e. at
least two positions) from the cycle. Because p(xi) = p(xj), this yields a cycle of length less or equal 2k.

For the second statement, observe that the deleted part is a cycle because p(xj−1) = p(xj) = p(xi) = p(xi+1)
such that

ξp!xj ,xi+1
◦ ξp!xj−1,xj ◦ · · · ◦ ξ

−p!
xi+1,xi+2

= idγ−1(xi+1)

by induction hypothesis. Hence the composition in the defintion of ξσ becomes

· · · ◦ ξ−p!xj ,xj+1
◦ (ξp!xj ,xi+1

)−1 ◦ ξp!xi,xi+1
◦ ξ−p!xi−1,xi · · ·

in which the two middle factors reduce to id since xi = xj . This yields the definition of ξσ′c = idγ−1(x0) along the
reduced cycle c′.

If −p(xj−1) = −p(xj), we delete (xi+1, · · · , xj) (again at least two positions) from the cycle. This time
p(xi) = p(xj) = p(xj+1) (where j + 1 = 0 mod 2k + 2 is possible), such that the reduced sequence is a domain
cycle of length smaller or equal 2k. In both cases, by induction hypotheses the remaining cycle contains a proper
subcycle.

For the second statement, observe that (xi, · · · , xj−1) is a domain cycle (because −p(xj−1) = −p(xj) =
−p(xi)). Thus the factors

ξ−p!xj−1,xj ◦ · · · ◦ ξ
p!
xi,xi+1

are identical by induction hypothesis. They can be removed from the definition of ξσc , the remaining term yields
the definition of ξσ′c (the remaining cycle). ut

Lemma 39 (Domain Cycles and Alternating Sequences) The following conditions are equivalent:

1. ξσc = idγ−1(x0) for all proper domain cycles c = (xi)i∈{0,1,...,2k+1}.

2. ξσc = idγ−1(x0) for all domain cycles c = (xi)i∈{0,1,...,2k+1}.

3. ξσ = ξσ′ for all alternating sequences σ = (yi)i∈{0,1,...,m} and σ′ = (zi)i∈{0,1,...,n} with σ proper and
y0 = z0, ym = zn.

4. ξσ = ξσ′ for all alternating sequences σ = (yi)i∈{0,1,...,m} and σ′ = (zi)i∈{0,1,...,n} with y0 = z0 and
ym = zn.

Proof: We will use in this proof neutrality and associativity of descent data (cf. Proposition 16) often without
explicit references.

(1) ⇐⇒ (2) follows from Lemma 38. (3) implies (4) because it is easy to see that from any alternating
sequence from y0 to ym a proper sequence σ0 can always be extracted. Given arbitrary σ and σ′, the assumption
yields ξσ = ξσ0 and ξ′σ = ξσ0 , hence ξσ = ξσ′ .

(2) is a special case of (4) with m = 2k + 2 for k ∈ N, p = a, and n = 0.
To close the circle, it remains to show that (2) implies (3). We prove this by induction over n. For the induction

basis n = 0 we have y0 = z0 = ym and ξσ′ = idγ−1(z0). For m = 0 and m = 1 we have ξσ = idγ−1(y0) =
idγ−1(ym) = idγ−1(z0) = ξσ′ thus we remain with four cases

1. m = 2k+ 2, k ∈ N, p = a: In this case, σ represents a domain cycle thus we have ξσ = idγ−1(y0) = ξσ′ by
assumption.

37

2. m = 2k + 2, k ∈ N, p = r: The reverse sequence σ− = (ym, ym−1, . . . , y0) falls into case 1 thus this case
is ensured by the fact that ξσ = ξ−1

σ− .

3. m = 2k + 3, k ∈ N, p = a: ym−1 6= y1, since σ is proper, thus the alternating sequence σ′′ =
(ym−1, y1, . . . , ym−1) represents a domain cycle and we have ξσ′′ = idγ−1(ym−1) by assumption. We have
ξσ = ξτym−1,ym ◦ ξσ′′ ◦ ξ

τ
y0,ym−1

by construction and since y0 = ym, we get ξσ = ξτym−1,ym ◦ idγ−1(ym−1) ◦
ξτy0,ym−1

= ξτy0,ym = idγ−1(z0) = ξσ′ , as required.

4. m = 2k + 3, k ∈ N, p = r: In this case, σ′′ = (y1, . . . , ym−1, y1) represents a domain cycle and the proof
is along the lines of case 3.

Now we show the induction step to n ≥ 1 under the hypothesis that the assertion is true for all pairs (m,n′) with
n′ < n.

1. z1 = y0: This means z1 = y0 = z0 and thus ξσ′ = ξσ′1 for the sequence σ′1 = (z1, . . . , zn). ξσ = ξσ′1 ,
however, holds by induction hypothesis.

2. z1 = yk for some 1 ≤ k ≤ m: By induction hypothesis we have ξσ1 = ξσ′1 and ξσ2 = ξσ′2 for the
subsequences σ1 = (y0, . . . , yk), σ2 = (yk, . . . , ym), σ′1 = (z0, z1), σ′2 = (z1, . . . , zn) thus we also obtain
ξσ = ξσ2

◦ ξσ1
= ξσ′2 ◦ ξσ′1 = ξσ′ .

3. z1 6= yk for all 0 ≤ k ≤ m:

(a) (y0, y1) ∈ ker(p), (z0, z1) ∈ ker(p): Then σ1 = (z1, y1, . . . , ym) is a proper alternating sequence.
By induction hypothesis we have ξσ1 = ξσ′1 for the alternating sequence σ′1 = (z1, . . . , zn). Thus
ξσ = ξσ1

◦ ξp!y0,z1 = ξσ′1 ◦ ξ
p!
z0,z1 = ξσ′ .

(b) (y0, y1) ∈ ker(p), (z0, z1) ∈ ker(−p): Then σ1 = (z1, z0 = y0, y1, . . . , ym) is a proper alternating
sequence. By induction hypothesis we have ξσ1 = ξσ′1 for the alternating sequence σ′1 = (z1, . . . , zn),
thus we obtain, finally, ξσ = ξσ1

◦ ξ−p!z0,z1 = ξσ′1 ◦ ξ
−p!
z0,z1 = ξσ′ . ut

8.6 Twisting
In this section we show that the definition of a′ in (33) yields a natural transformation a′ : IL → IA and together
with τ : IA → A and γ : IL → L a pullback square over a.

Naturality: This is easy to see for the case of an operation symbol op : Z ′ → Z with Z ′ 6= X . Let therefore
op : X → Z.

Case 1: Z 6= X . Then by the definitions of a′Z and opI
L

, we obtain for (x, i) ∈ ILX = L1
X + L2

X + L3
X

a′Z(opI
L

(x, i)) = opA(aX(x))

from naturality of a. Then the definition of opI
A

yields opI
A

(aX(x), j) = opA(aX(x)) with j = i if x 6= x1 or
i = 3 and j = 3− i if x = x1 and i 6= 3. Then (33) yields

a′Z(opI
L

(x, i)) = opI
A

(a′X(x, i)).

Case 2: Z = X . In this case the definitions of a′X and opI
A

yield

a′X(opI
L

(x, i)) = (opA(aX(x)), 3)

by naturality of a for each (x, i) ∈ ILX . The right hand side equals opI
A

(aX(x), j) with the same choice of j as in
Case 1. Thus

a′X(opI
L

(x, i)) = opI
A

(a′X(x, i))

by (33).

38

Commutativity of the square: On carriers ILY for Y 6= X this is again a consequence of the fact that τY , γY are
identities and a′Y = aY . And on ILX , one gets

τX(a′X(x, i)) = aX(x)

because τ projects out i and a′ respects the identifications of a. Since γ also deletes i, we also have

aX(γX(x, i)) = aX(x)

such that the square commutes.

Pullback property: By (21) the construction can be carried out pointwise and the consequence is clear for
carriers of sort Y 6= X . For the carrier X the twist has to be considered: Given a pair (x, (y, i)) ∈ LX × IAX with
aX(x) = τX(y, i) the element (x, j) ∈ ILX with j = i, if x 6= x1 or i = 3, and j = 3− i otherwise, can easily be
shown to be unique with a′X(x, j) = (y, i) and γX(x, j) = x.

39

	Introduction
	The Problem of Successful Amalgamation
	Related Work
	Descent Theory
	Descent Data in Topoi
	Descent Data in Presheaves
	Diagrammatic Specifications and Presheaves
	Descent Data in SET
	Descent Data in SETS
	Amalgamation, Van Kampen, and Coherence in Topoi
	Amalgamation and Van Kampen Squares
	Coherence in Topoi
	Amalgamation vs. Coherence in Topoi
	Amalgamation and Van Kampen Squares in Presheaves
	General analysis
	Examples (revisited)

	Outlook

	Appendix
	Adjointness of Pullback Functor
	Epi-Mono-Factorizations
	Towards a transition from monadic descent to families of fibre assignments
	The Monad Embedding
	Domain cycles and alternating sequences
	Twisting

