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Abstract

This paper describes the application of edge-local complementation (ELC),
defined for a simple bipartite graph, to a Tanner graph associated with a bi-
nary linear code, C. From a code perspective, various properties of ELC are
described and discussed, mainly the special case of isomorphic ELC operations
and the relationship to the automorphism group of the code, Aut(C), as well
as the generalization of ELC to weight-bounding ELC (WB-ELC) operations
under which the number of edges remains upper-bounded. The main moti-
vation is the use of ELC to improve iterative soft-input soft-output decoding
of high-density parity-check (HDPC) codes using the sum-product algorithm
(SPA). By updating the edges of the Tanner graph using ELC additional
diversity is achieved, while maintaining control on the weight of the Tan-
ner graph (which also influences the number of short cycles) via WB-ELC.
One motivation of ELC-based SPA decoding is the locality argument; that
diversity is achieved by local graph action, and so is well-suited to the local
actions that constitute the SPA and allows a parallel implementation. Fur-
ther applications of WB-ELC are described, including a heuristic to search
for a systematic parity-check matrix (i.e., a Tanner graph) of reduced weight
– a problem which has not received much focus in the literature. Extensive
simulation data is shown for a range of HDPC codes, both in terms of matrix
weight reduction, and error-rate performance of a proposed SPA-WBELC it-
erative decoding algorithm. A gain is reported over SPA decoding, and over
a state-of-the-art algorithm to decode HDPC codes using permutations from
Aut(C).

1 Introduction

Iterative soft decision decoding algorithms, applied to properly designed codes, have
been shown to give results which, asymptotically, closely approach the theoretical
limits established by Shannon [31]. The advent of turbo codes in 1993 [3] and the
rediscovery of low-density parity-check (LDPC) codes at around the same time [29]
(although LDPC codes were actually invented in 1962 [12] and re-discovered once
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already, in 1981 [33]) caused much attention to be focused on iterative decoding of
large, random or pseudo-random, sparse block codes. The sum-product algorithm
(SPA) is the standard soft decision iterative algorithm for decoding of LDPC codes
on Tanner graphs [33]. The sparse, random nature of these codes make them well-
suited for graph-based implementations, for which the SPA approximates optimum
decoding at a complexity linear in blocklength. However, the large size and ran-
dom nature of turbo and LDPC codes have negative implications when they are
to be used in practice. This inspired researchers to adapt SPA decoding to small-
size linear block codes, with blocklengths in the hundreds of bits or below. Small
LDPC codes suffer a performance degradation due to finite-length effects and topo-
logical problems with the Tanner graph. At small blocklengths, however, one has
the benefit of using strong, nonrandom codes – i.e., “classical codes” – for which
useful properties are known, such as large minimum distance, dmin, and nontrivial
automorphism group. Today, these codes remain important components in techno-
logical devices, such as compact disc players and satellite communications, in which
computational efficiency is still of vital importance (e.g., in low-power battery or so-
lar powered circuitry). Important legacy codes are Bose-Chaudhuri-Hocquenghem
(BCH), Reed-Solomon (RS), and quadratic residue (QR) codes. However, a large
dmin or nontrivial automorphism group are not obviously applicable to soft deci-
sion SPA decoding. For instance, as a parity-check matrix, H, can at best consist
of n − k linearly independent rows (codewords of the dual code, C⊥) of minimum
weight, obviously the weight of H must increase with dmin(C⊥). It is known that
many families of codes – specifically BCH and RS codes – do not have Tanner
graphs without cycles of length 4 [15]. Furthermore, these codes do typically not
have sparse duals [34], so, when such codes are revisited from the context of iterative
soft decoding, these are commonly referred to as high-density parity-check (HDPC)
codes.

This has resulted in numerous creative approaches to adapting suboptimal soft
decision decoding to HDPC codes. These approaches can roughly be grouped into
two categories, where one is characterized by an adaptive decoding based on the
decoder state (the received noisy channel vector and the current codeword estimate)
[10, 27]. The main idea is based on producing an error-free information set, which
can, then, be re-encoded to produce a codeword. Such a most reliable basis (MRB)
process can also be iterative, as in order statistic decoding (OSD) using different
MRBs, either in terms of increased-order OSD (i.e., involving also some less reliable
positions), or by simply using SPA iterations to update the codeword estimate and
change the MRB [21, 22]. This way, a list of candidate codewords may be produced,
from which an output is selected typically in terms of Euclidean distance from the
received vector.

The other category is characterized by pseudorandom processes, involving code-
preserving row operations or column permutations on the parity-check matrix,
mainly to achieve increased diversity (i.e., different parity-check equations) during
SPA decoding. Our work focuses on such random diversity-based algorithms. The
aim of increased diversity is to decrease the effect of topological problems with the
Tanner graph of the code, so that structural errors can be suppressed, e.g., by us-
ing randomized cyclic shifts on a cyclic code (stochastic shifting iterative decoding,
SSID) [20]. One state-of-the-art decoder for HDPC codes, the iterative permuta-
tion decoder (SPA-PD) [14], generalizes SSID to applying random permutations
from the automorphism group of the code and performs very well on BCH codes,
as well as on QR codes [9, 14, 25], over the additive white Gaussian noise (AWGN)
channel. Also, alternatively or in conjunction [9, 24], multiple bases (matrices)
for the same dual code may be used to gain diversity. These matrices are usually
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preprocessed and typically optimized on weight [17], but can also be produced in
real-time [18, 25].

This paper describes the pseudorandom use of a simple graph operation known as
edge-local complementation (ELC) [4, 7] to improve the performance of iterative
decoding [23, 26]. One advantage of ELC-based SPA decoding is the locality argu-
ment; that diversity is achieved by local graph action, and so is well-suited to the
local actions that constitute the SPA. Diversity stems from the change in Tanner
graph due to the complementation of edges in a local subgraph, corresponding to
row-additions on the associated parity-check matrix. The locality property, which
allows for parallel implementation of the SPA, also has beneficial effects on the over-
all complexity of an ELC-based decoding algorithm in many contexts. The effect
of ELC on a graph is explored, and we define a subset of ELC operations under
which the weight of the graph is upper-bounded (to within some threshold value).
We identify and describe all possible occurrences of single and double application
of ELC which is weight-bounding ELC (WB-ELC). We also present a further spe-
cialization of WB-ELC to isomorphic ELC (iso-ELC), under which the structure of
the graph is invariant. These properties (weight and structure) are important from
a coding perspective (where the graph is a Tanner graph), and are used to improve
the error-rate performance of a soft-input soft-output (SISO) HDPC decoder based
on interleaving SPA iterations with random ELC operations; giving a novel SPA-
ELC and a SPA-WBELC decoding algorithm. A one-to-one relationship between
iso-ELC operations and permutations from the automorphism group of the code is
presented, such that the SPA-PD algorithm may be used as a relevant benchmark in
terms of performance, simulated for various HDPC codes. We also propose a related
application of WB-ELC to reduce (or even minimize) the weight of a graph, i.e.,
finding a reduced-weight systematic parity-check matrix for the code – an instance
of weight reduction which has not received much focus in the literature.

1.1 Outline

This paper is organized as follows. The ELC operation, which is defined for a simple
graph, is described in Section 2. A discussion on the action of ELC, in terms of
the resulting graphs, focuses, firstly, on structurally distinct graphs, and, secondly,
on isomorphic graphs with a link to Aut(C). Section 3 presents a generalization
of iso-ELC to WB-ELC, i.e., the action of ELC is discussed in terms of a maxi-
mum permitted weight of the resulting graphs. We identify the specific subgraphs
on which one or a sequence of two (depth-1 or 2) ELC operations are WB-ELC,
and go on to prove how these cases cover all possible subgraphs within depth-2.
Adhering to the locality argument, we also prove how the search space for depth-2
WB-ELC is limited to neighboring pairs of edges (distance 1 or 2 edges apart), such
that the impact of WB-ELC is confined to a local subgraph of maximum diameter
4. Section 4 describes an algorithm to enumerate all WB-ELC operations (within
depth-2) on a given graph, and to within some threshold. A bound on the com-
plexity of this algorithm is derived, and is verified using simulations on graphs of
different sizes. Several applications of this algorithm are described, centered around
the use of WB-ELC in a iterative decoding setting. As a preprocessing stage, the
algorithm can be used to minimize the weight of a graph (i.e., a systematic H), and
also to find such a graph from which many other distinct reduced-weight graphs
can be reached using WB-ELC. Finally, in Section 5, the use of ELC as a source
of diversity during SPA decoding is described. Two proposed decoding algorithms
– SPA-ELC and SPA-WBELC – are described, simulated, and compared against
other relevant decoding algorithms on a range of HDPC codes. To facilitate fair
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comparisons, a common framework for iterative SISO HDPC decoding is presented,
within which all decoding algorithms are implemented. Empirical data is presented
on both choices of decoder parameters, resulting error-rate performance, and de-
coding complexity. Certain implementational remarks (for WB-ELC) are presented
in an appendix.

1.2 Preliminaries

We begin by introducing some notation used in the following sections. We use
uppercase italics and square brackets for matrices; script notation and curly brackets
for sets; and boldface notation for vectors. A binary linear code C of length n,
dimension k, and minimum distance dmin is denoted by [n, k, dmin], where dmin is
defined as the minimum Hamming weight of any nonzero codeword. The weight
enumerator of C is a vector, a, for which ai contains the number of codewords of
weight i. Necessarily, ai = 0, i < dmin. If ai = 0, i 6= 0 mod 2 (odd weights),
then C is even. If this also holds for mod 4, C is doubly even. The column indices
0, 1, . . . , n− 1 are referred to as the coordinates of the code. The dual code is C⊥,
containing the codewords orthogonal to C, and if C = C⊥ we say the code is self-
dual. Permutations are written in cycle notation, where we only specify the indices
of the affected positions. For example, given a length-6 vector v and a permutation
π = (0, 1, 2)(3, 4), then u = π(v) means v0 → u1, v1 → u2, v2 → u0, v3 → u4, and
v4 → u3, while v5 → u5. Similarily, π(H) permutes the columns of a matrix, H. The
identity permutation, affecting no positions, is, then, π = ∅. The automorphism
group of the code, Aut(C), is the group of permutations which preserve the code,
Aut(C) = {σ : σ(C) = C}. It is well known that Aut(C) = Aut(C⊥) [19], and
permutations are typically applied to H (which generates C⊥) during decoding, or
to the soft-input vector containing the a posteriori probability (APP) values [14].
If Aut(C) consists of the identity permutation alone, we say that Aut(C) is trivial.

Let Ik be the identity matrix of size k, where we use the shorthand notation I when
the dimension is obvious. The generator matrix, G, generates C (contains k linearly
independent codewords forming a basis for the code), and the parity-check matrix,
H, generates C⊥. This gives GHT = 0, where ( · )T denotes the transpose of its
argument. In the context of iterative graph-based decoding of C, the focus is on H
rather than G. H is said to be systematic if its columns can be reordered into the
standard form

π(H) = [ In−k | P ] (1)

by some column permutation, π. In turn, a standard form generator matrix is
π(G) = [PT | Ik ]. This permutation, π, does not in general preserve the code. An
information set, I, of the code corresponds to a set of k columns in G which can
be reduced to an identity submatrix by means of Gaussian elimination (GE). The
n−k columns at positions P := {0, 1, . . . , n−1}\I form a parity set. Note that an
information set corresponds to a parity set of the dual code, such that I refers to
the P -part of H. In a systematic parity-check matrix, the columns indexed by P are
referred to as systematic (weight-1) columns, while the remaining columns (weight
greater than one) are nonsystematic. The (row) index of the single nonzero entry
of a systematic column hi, i ∈ P, is denoted by row(i) ∈ [0, n − k). In standard
form, row(i) = i, 0 ≤ i < n − k. In systematic form, the (Hamming) weight of
H, denoted by |H|, is the number of nonzero entries in H, and the weight of H is
lower-bounded by

max
(
k(dmin(C) − 1) + n − k, (n − k)dmin(C⊥)

)
. (2)

4



Figure 1: ELC on edge (u, v) of a bipartite simple graph. Curved links indicate
arbitrary edges. Bold links mean that the edges connecting the two sets have been
complemented; edges are replaced by nonedges, and vice versa. This graph may be
a subgraph of a larger graph, in which case the rest of the graph remains unchanged.

The Tanner graph, TG(H), associated with H is a (2n − k)-node bipartite graph
with adjacency matrix TG(H) =

[
0 H

HT 0

]
. (At some abuse of notation, we denote

both the graph and its adjacency matrix by, in this case, TG(H).) In the remain-
der of this paper, we will assume that H is systematic. The n variable nodes,
corresponding to the columns of H, are partitioned into |P| = n − k systematic
and |I| = k nonsystematic nodes, where the former have degree one (disregarding
the Forney style “half-edge” containing the channel input to each variable node).
The n − k check nodes of TG(H), corresponding to the rows of H, each have an
associated (adjacent) systematic variable node. By grouping each check node with
its associated systematic (variable) node, an n-node, (n − k, k)-bipartite, simple
(i.e., undirected, with no double edges or loops) graph is produced, with adjacency
matrix

G = (U ∪ V, E) = π-1
[

0 P
P T 0

]
(3)

where π-1 undoes the reordering in (1). The bipartition (U , V) contains the n − k
grouped check/systematic variable nodes and the nonsystematic variable nodes,
respectively. Furthermore, a permutation (here, π−1) acts on both columns and
rows of G. By keeping a record of the bipartition, (U , V), at all times, this amounts
to a one-to-one mapping between a Tanner graph (i.e., a code) and a simple bipartite
graph. In summary, given a code represented by TG(H), we construct a simple
graph by ignoring the systematic variable nodes – see Example 1. The number of
edges in G is

|G| = |E| = |H| − (n − k) (4)

which we refer to as the weight of G. If nodes in U and V have average degree
ρ̄ and γ̄, respectively, we have that |G| = kγ̄ = (n − k)ρ̄. The local neighborhood
of a node v is the set of nodes adjacent to v, and is denoted by Nv, while N u

v is
shorthand notation for Nv\{u}. Let EA,B denote the subgraph induced by the nodes
in A ∪ B – i.e., it is a set of |EA,B | edges. Furthermore, Eu,v is shorthand notation
for ENv

u
,Nu

v
, the local neighborhood of the edge (u, v). We use the compact notation

{(u, v), . . . , (u′, v′)} for an ordered list of edges. Define the distance between edges
(or nonedges) (u, v) and (u′, v′) as the shortest path between the sets of endpoints
(nodes), {u, v} and {u′, v′}.

2 Edge-Local Complementation

ELC is defined on an edge of a simple graph, (u, v) ∈ G [4]. We consider only
bipartite graphs in this work, which simplifies the description. ELC on an edge
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Figure 2: Example of ELC on a small [9, 4, 4] code, showing also the corresponding
Tanner graphs. White and grey nodes correspond to V and U , respectively.

(u, v) will complement the edges of Eu,v, replacing edges with nonedges and vice
versa, followed by swapping the nodes u and v – see Fig. 1. In this sense, we say
that ELC is a local operation as it only affects edges within a distance of one from
the ELC edge, (u, v). The resulting graph, after ELC, is denoted by G(u,v). ELC is
a self-invertible operation as two ELC operations on the same edge is the identity
operation, G(u,v),(u,v) = G. The number of edges affected (inserted or removed) by
the complementation of ELC is, on average,

|N v
u ||N

u
v | ≈ (γ̄ − 1)(ρ̄ − 1). (5)

Assuming k = n − k and γ̄ = ρ̄,1 we may express the complexity of ELC in terms
of number of edge-operations performed, by using the average node degree, γ̄. The
complementation has the effect of inverting a local neighborhood, which may in-
crease or decrease the weight, depending on the particular graph on which we per-
form an ELC operation. The effect of repeated ELC (on random edges) is seen in
Section 5 to stabilize the weight of |G| at around 50%, i.e.

|G| ≈ k2/2 (6)

or, equivalently, |H| ≈ k(n−k)
2 +(n−k) = k(k+2)/2. The complexity of ELC at this

expected weight is important to identify. Taking γ̄ = k/2, (5) gives (k/2 − 1)2 =
k2/4 − k + 1.

From the matrix perspective, it is easily seen that one ELC operation implements
the reduction stage of GE on a single column, as shown in the following example.

1This is a fairly realistic assumption for rate-1/2 HDPC codes.
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Example 1 Consider the optimal (in terms of maximum dmin for blocklength 9 and
dimension 4) [9, 4, 4] code, with parity-check matrix

H =

[
1 0 0 0 0 1 1 1 1
0 1 0 0 1 1 0 1 1
0 0 1 0 1 1 0 0 0
0 0 0 1 1 1 1 1 0

]

and the corresponding Tanner graph as shown in Fig. 2(a). Fig. 2(b) shows the
corresponding simple bipartite graph, while Fig. 2(d) shows an example of ELC on
the edge (0, 5), with the resulting Tanner graph, TG(H ′), in Fig. 2(c).

Note that it may be convenient to implement ELC directly on TG(H), at the cost
of minor modifications to the implementation; for instance, the inverse of ELC on
(f0, v5) is (f0, v0), due to the swap. By considering the resulting H ′, it can be seen
that ELC is, in fact, a graph implementation of a single stage (column) of GE;
adding row 0 to rows 1, 2, and 3 to get

H ′ =

[
1 0 0 0 0 1 1 1 1
1 1 0 0 1 0 1 0 0
1 0 1 0 1 0 1 1 1
1 0 0 1 1 0 0 0 1

]

.

Now, column 5 has been reduced to systematic form, and the row additions have
effectively swapped columns 0 and 5 between I and P, giving a new information
(and parity) set of the code.

The link to GE emphasizes that ELC will always preserve the code (i.e., the null
space of H). Implemented on the Tanner graph, the inverse operation must reflect
the changed information set, as shown in Fig. 2. In this work, we refer to ELC
on G and on TG(H) interchangeably, using the simple graph definition mainly to
simplify descriptions and proofs on ELC, while using the Tanner graph version for
practical implementations.

2.1 Minimum-Length ELC Sequence Between two Structures

The set of structurally distinct graphs which arise by iteratively doing ELC on
all edges of a bipartite simple graph G, pruning the recursion tree on repeated
structures, is known as the orbit, orbit(G), of the graph. This orbit is the same for
all graphs corresponding to the same code, C, so we may refer to it as the orbit of
the code, orbit(C). Structural distinctness is in terms of graph isomorphism. By
using the software package Nauty [30], we obtain a canonical form of a simple graph,

denoted by N(G). Thus, for two simple graphs G and G′, we have that G
iso
= G′ ⇔

N(G) = N(G′). The one-to-one relationship between a graph and a parity-check
matrix means that we may also speak of the orbit as a set of parity-check matrices,
orbit(H). We will use these references interchangeably in the following.

If a code has only one structure in its orbit, we say that it is an ELC-preserved
code (or, equivalently, since this graph is unique, we may say that the graph is
ELC-preserved) [8].

Theorem 1 (ELC sequence) A minimum-length ELC sequence

e = {(u0, v0), (u1, v1), . . . , (ul−1, vl−1)}

can be found to convert a systematic matrix H into another systematic matrix H ′,
where H and H ′ span the same space (they are in the same orbit), by comparing the
corresponding bipartitions as represented by the parity sets P and P ′. The length, l,
of e is 0 ≤ l ≤ min(n− k, k). Depending on H, the sequence e may not be unique,
so equivalent sequences may be derived from P and P ′.
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Algorithm 1 MIN ELC(H, H ′)

1: L := P \ P ′

2: S := P ′ \ P
3: e := ∅
4: while S 6= ∅ do
5: choose and remove any s∈S
6: choose and remove any r∈L s.t. (row(r), s)∈ TG(H)
7: ELC on (row(r), s) on TG(H)
8: e := e ∪ (row(r), s)
9: end while

Proof: ELC generates the entire orbit [7], and in particular all systematic parity-
check matrices for the corresponding code, so such a sequence e must exist. Since a
systematic basis for a (dual) code is uniquely defined (up to row permutations) by
its parity set, the information set (i.e., the P -part of H) is a function of the parity
set. Thus, by comparing P and P ′, we determine which coordinates are in opposite
partitions, and shall be swapped. Each ELC operation preserves the (dual) code,
and has the effect of swapping a pair of columns in H from I to P, along with
some “residual” modifications to H resulting from the row-additions. To modify
H into H ′, we may thus focus on swapping the corresponding pairs of columns
from P into P ′, thus giving the I-part of H ′, and the residual modifications must
“resolve” into the required P -part (since the P -part is unique given the I-part).
Then, the submatrices I and I ′ are equal, from which it follows that P = P ′, such
that H = H ′ (up to row-equivalence). Alg. 1 is a constructive proof of this theorem,
showing how P and P ′ are used to determine a corresponding ELC sequence. Due
to the possible row-equivalence, several equivalent ELC sequences (of equal length)
may exist [5]. ELC has the effect of swapping exactly one pair of positions between
I and P, so the length of e must be exactly l = |P \ P ′|, which is upper-bounded
by min(n − k, k). �

The difference (coordinates to swap) corresponds to the sets L = P \ P ′ and S =
P ′ \ P. As each position in the identity (sub) matrix is unique, r ∈ L can be
viewed as a row-index, where r is chosen such that (row(r), s) ∈ TG(H). When
several valid choices of r exist for a coordinate s ∈ S, a branch point arises in the
algorithm leading to an equivalent ELC sequence. The resulting Tanner graphs are
exactly the same (although the matrices may be different, but only in terms of row
permutations).

Example 2 Consider the [14, 7, 3] doubly circulant QR code, represented by a parity-
check matrix

H =






1 0 0 0 1 0 0 1 0 1 0 0 1 1
1 1 0 0 1 0 0 1 1 0 1 0 0 1
1 0 1 0 0 0 0 1 1 0 1 0 0 1
0 0 0 1 1 0 0 1 1 0 1 0 0 1
0 0 0 0 1 0 0 0 1 0 0 1 1 1
1 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 0 1 0 0 1




 .

The orbit of this code consists of 11 graphs. Choosing two distinct graphs, G and G′,
from the orbit of the code we must have that N(G) 6= N(G′). Let H be a parity-check
matrix corresponding to G, and let H ′ correspond to G′, where

H ′ =






0 1 0 0 0 0 0 0 1 1 1 0 1 0
1 1 0 0 1 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 1 1 0 0 1 1 1 0
0 1 0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 0 1 0 0 1




 .

8



It is easily seen that G and G′ are indeed nonisomorphic, simply by verifying that
|H| 6= |H ′|. The parity sets are P = {1, 2, 3, 5, 6, 9, 11} and P ′ = {0, 2, 3, 5, 9, 11, 13}.
Now, Alg. 1 computes L = {1, 6} and S = {0, 13}. Choosing, say, s = 13, we find
that r = 1 gives (row(1), 13) = (1, 13) ∈ TG(H). ELC on edge (1, 13) of H gives
the following matrix

H(1,13) =






0 1 0 0 0 0 0 0 1 1 1 0 1 0
1 1 0 0 1 0 0 1 1 0 1 0 0 1
0 1 1 0 1 0 0 0 0 0 0 0 0 0
1 1 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 1 0 0 1 1 1 0
1 0 0 0 1 1 0 0 0 0 0 0 0 0
1 1 0 0 1 0 1 0 0 0 0 0 0 0




 .

Then, the remaining choice of s = 0 gives r = 6, where (row(6), 0) = (6, 0) ∈
TG(H) and, after ELC on (6, 0) on H(1,13), we get

H{(1,13),(6,0)} =






0 1 0 0 0 0 0 0 1 1 1 0 1 0
0 0 0 0 0 0 1 1 1 0 1 0 0 1
0 1 1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 1 1 0 0 1 1 1 0
0 1 0 0 0 1 1 0 0 0 0 0 0 0
1 1 0 0 1 0 1 0 0 0 0 0 0 0






which gives the same Tanner graph as TG(H ′) (by swapping rows 1 and 6). That
the ELC sequence e = {(1, 13), (6, 0)} is not unique is reflected by Alg. 1. Different
choices would result in the sequences {(1, 0), (6, 13)} and {(6, 13), (1, 0)}, which both
give the “target” matrix, H ′. The sequence {(6, 0), (1, 13)} is not possible, since the
edge (6, 0) /∈ H.2

2.2 Tanner Graph Invariants

In the context of graph-based, iterative decoding, we are interested in discerning
distinct Tanner graphs, when these may correspond to isomorphic simple bipartite
graphs. A code is preserved under elementary row operations (i.e., row additions
and permutations) on the associated basis (parity-check matrix), so we define two
parity-check matrices, H and H ′, as isomorphic if and only if the rows of H ′ can
be permuted to give the exact same matrix H (or vice versa). A parity-check
matrix, H, can be put in canonical form, denoted by R(H), by sorting its rows in
lexicographical order, TG(H) = TG(H ′) ⇔ R(H) = R(H ′).

A sequence of ELC operations, e, connecting two parity-check matrices for the same
code, H 6= H ′, with the same canonical form, i.e., N(G) = N(G′), has previously
been defined as an iso-ELC sequence [24].

Definition 1 A permutation θ ∈ Aut(C) is called trivial if and only if TG(H) =
TG(θ(H)).

Theorem 2 (ELC finds entire Aut(C)) Each nontrivial permutation in Aut(C),
for a given H, is associated with an iso-ELC sequence, e, of length l, for 1 ≤ l ≤
min(n − k, k) = min(dim(C⊥), dim(C)). The particular sequence depends on the
parity set, P, (i.e., on H), and is not unique.

Proof: For each nontrivial permutation σ ∈ Aut(C), H and σ(H) are two (noni-
somorphic) systematic parity-check matrices for C, i.e., they both span the same
space, and the result follows from Theorem 1. �

2These equivalent ELC sequences also follow from [5].
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Proposition 1 (Trivial permutation) A permutation θ ∈ Aut(C) is trivial if
and only if it permutes no positions between I and P for the given H. Furthermore,
the set of trivial permutations forms a subgroup DH � Aut(C).

Proof: If a permutation θ is trivial for a given parity-check matrix H, then (by
definition) H and θ(H) are row-equivalent. Since H and θ(H) are row-equivalent,
θ is constrained to permute the columns from P (i.e., the I-part of H) to indices
from P (and thus permute the columns from I (i.e., the P -part of H) to indices
from I, and the result follows.

Conversely, if a permutation θ permutes no positions between I and P for the given
H, then the resulting matrix θ(H) will have weight-1 columns in exactly the same
positions as H, i.e., in the positions in P. Permuting the rows of θ(H) such that
the I-parts of H and θ(H) become identical will also make the P -parts identical
(the P -part is a function of the I-part), from which it follows that H and θ(H) are
row-equivalent, and the permutation θ is (by definition) trivial.

Finally, we need to prove that the set of trivial permutations forms a subgroup of
Aut(C). This follows directly from the first result (i.e., that a permutation θ ∈
Aut(C) is trivial if and only if it permutes no positions between I and P), since the
composition of two such permutations obviously permutes no positions between I
and P. �

In the following, we may denote the subgroup DH simply by D when the matrix is
obvious from the context. The subgroup D is not a code property, but a property
of H. Furthermore, since D is a subgroup, we can decompose Aut(C) into a union
of cosets of D; Aut(C) = {D ◦ σ0} ∪ {D ◦ σ1} ∪ · · · ∪ {D ◦ σ|Aut(C)|/|D|−1}, where
KH = {σ0, . . . , σ|Aut(C)|/|D|−1} is a set of coset leaders, given H, which we may
denote simply by K (as we do for the subgroup D) when the matrix is obvious from
the context, and σ0 is the identity permutation.

Alg. 1 can be used to convert any σ ∈ Aut(C) into an equivalent iso-ELC sequence,
e, by taking as input H and H ′ = σ(H). The corresponding iso-ELC sequence
depends on both σ and H, and we may emphasize this by the notation, eσ,H . Then
we have that R(σ(H)) = R(eσ,H(H)).

Proposition 2 Given a parity-check matrix H, eσ,H is an iso-ELC sequence rep-
resentation of all permutations in the coset D ◦ σ, σ ∈ Aut(C).

Proof: The coset decomposition is in terms of row equivalence, i.e., R(σ(H) =
R(σ′(H)) for any σ′ ∈ D ◦ σ, and the result follows. �

The set KH \{σ0} contains permutations from Aut(C) which give a distinct (i.e., not
row-equivalent) parity-check matrix σ(H), where σ ∈ KH \ {σ0}. Each coset leader
σ corresponds to a matrix R(σ(H)), representing the |D| row-equivalent matrices
θ(σ(H)), ∀ θ ∈ D. In other words, these all correspond to the same Tanner graph
for C. In this sense, the set of coset leaders is not unique (any σ′ ∈ D ◦ σ, where
σ 6= σ0, could be used as a coset leader), which means that KH is not unique even
for a given H. Since σ0 is the identity mapping, KH can be a group.

The set of (distinct) Tanner graphs resulting from the permutations in KH com-
prise the iso-orbit of H,3 {σ0(H), . . . , σ|K|−1(H)}. These Tanner graphs are all dis-
tinct, but correspond to isomorphic simple graphs, R(H) 6= R(σ(H)), but N(G) =
N(σ(G)), ∀ σ ∈ KH \ {σ0}. The iso-orbit can be partitioned into disjoint subsets

3The iso-orbit of H, containing Tanner graphs, should not be confused with the orbit of C,
which contains simple graphs.
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according to the (minimal) length, 0 ≤ l ≤ min(n − k, k), of the corresponding
ELC sequences, Kl

H = {σ ∈ KH : |P \ σ(P)| = l}. In particular, K0 = {σ0}. Thus,
for l > 0, Kl is not a group since it does not contain the identity permutation, σ0.

Proposition 3 For any permutation α, not necessarily in Aut(C), the trivial sub-
group Dα(H) = α ◦ DH ◦ α−1, for a given H. Furthermore, Kα(H) = α ◦ KH ◦ α−1

and Kl
α(H) = α ◦ Kl

H ◦ α−1, for all l, 0 ≤ l ≤ min(n − k, k).

Proof: Let σ = α ◦ θ ◦α−1 where θ ∈ DH . After applying α−1 to α(H), the original
matrix H is reconstructed. Then, the effect of applying θ to H is to permute the
rows of H. Finally, the columns are permuted according to α, and the resulting
matrix will be row-equivalent to α(H). Thus, σ is trivial with respect to α(H),
from which it follows that α ◦DH ◦α−1 is a subset of Dα(H). To prove equality, we
use this result with H ′ = α(H), from which it follows that κ ◦ DH′ ◦ κ−1 ⊆ Dκ(H′),
where κ is any permutation. Choosing κ = α−1, we get α−1 ◦ Dα(H) ◦ α ⊆ DH ,
from which it follows that Dα(H) ⊆ α ◦DH ◦α−1. Since Dα(H) is both a subset and
a super-set of α ◦ DH ◦ α−1, we have equality.

To prove the second part, i.e., to show that Kα(H) = α◦KH◦α−1, we use the fact that
for any two permutations σ1 = θ1◦σ ∈ Dα(H)◦σ and σ2 = θ2◦σ ∈ Dα(H)◦σ from the
same coset (based on Dα(H)), where σ denotes the coset leader and θ1, θ2 ∈ Dα(H),

σ1 ◦ σ−1
2 = θ1 ◦ σ ◦ σ−1 ◦ θ−1

2 = θ1 ◦ θ−1
2 ∈ Dα(H).

Thus, if for any two permutations σ1 and σ2 from a given set, the composition
σ1 ◦ σ−1

2 /∈ Dα(H), then σ1 and σ2 belong to two different cosets (based on Dα(H)).
Now, let σ1 = α ◦ κ1 ◦ α−1 and σ2 = α ◦ κ2 ◦ α−1, where κ1, κ2 ∈ KH , from which
it follows that

σ1 ◦ σ−1
2 = α ◦ κ1 ◦ α−1 ◦ α ◦ κ−1

2 ◦ α−1 = α ◦ (κ1 ◦ κ−1
2 ) ◦ α−1.

Since κ1 ◦ κ−1
2 /∈ DH (κ1 and κ2 are from different cosets based on DH), σ1 ◦ σ−1

2 /∈
Dα(H), and it follows that σ1 and σ2 are from two different cosets based on Dα(H),
and the result follows since |KH | = |Aut(C)|/|DH | = |Aut(C)|/|Dα(H)| = |Kα(H)|.

To prove the third part, i.e., to show that Kl
α(H) = α◦Kl

H ◦α−1 for all l, we use the
fact that the depth of σ, i.e., the length of the corresponding ELC sequence, based
on H, is the same as the depth of α ◦ σ ◦ α−1 based on α(H) for any σ in Aut(C).
To show this, we write the depth of α ◦ σ ◦ α−1 based on α(H) as

|{α ◦ σ ◦ α−1(Pα(H)) ∩ Iα(H)}|

= |{α ◦ σ ◦ α−1(α(PH)) ∩ α(IH)}|

= |{α ◦ σ(PH) ∩ α(IH)}|

= |{α(σ(PH) ∩ IH)}|

= |{σ(PH) ∩ IH}|.

Now, we can conclude that the depth of all coset leaders in Kl
α(H) (based on Dα(H))

is the same and equal to the depth of the coset leaders from Kl
H (based on DH),

from which the result follows. �

As discussed above, D depends on H, so the iso-orbit is not a code property. The
partitioning of permutations in KH into disjoint subsets according to the length of
the corresponding iso-ELC sequence may vary for each H ′ = σ(H), σ ∈ Aut(C).
Still, from Proposition 3, |Kl

H | = |Kl
σ(H)|, 0 ≤ l ≤ min(n − k, k) and σ ∈ Aut(C),
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Table 1: Pairs of permutations from Aut(C) which generate K for the [8, 4, 4] ex-
tended Hamming code, as represented by (7). These 8 groups are all isomorphic to
one group, which is unique.

〈(0,4,2,7,6,3,1), (0,6,7,4,5,2,3)〉 〈(0,1,3,6,5,7,2), (0,6,1,7,4,5,2)〉
〈(0,6,4,5,1,2,3), (0,7,5,2,1,4,3)〉 〈(0,6,7,4,2,3,1), (0,4,5,2,7,6,3)〉
〈(0,2,1,6,4,5,3), (0,6,7,5,4,2,1)〉 〈(0,6,2,1,5,7,3), (0,7,5,3,4,2,1)〉
〈(0,5,7,2,4,3,1), (0,2,6,4,7,5,3)〉 〈(0,4,5,1,2,7,3), (0,6,7,5,2,1,3)〉

and we call the set {|Kl
H |}, 0 ≤ l ≤ min(n− k, k), the profile of the iso-orbit of H.

This profile varies with H, but is invariant over the iso-orbit of H.

Since the profile varies with H ∈ orbit(C), it may be desirable to search the orbit
for a graph that has certain properties with respect to the profile. We will illustrate
this with some examples.

Example 3 For the [8, 4, 4] extended Hamming code, which is ELC-preserved, the
parity-check matrix

H =

[
1 0 0 0 1 1 0 1
0 1 0 0 0 1 1 1
0 0 1 0 1 1 1 0
0 0 0 1 1 0 1 1

]

(7)

has the profile listed in Table 2. For this code, there exists only one conjugacy class
of subgroups of Aut(C) of size |K| = |Aut(C)|/|D| = 1344/24 = 56. K can be any
of the eight distinct (but isomorphic) subgroups in this class. The eight subgroups
may all be generated by two permutations, as listed in Table 1. This shows that K
can be a group, and the minimum number of generators is 2 (K can not be a cyclic
subgroup). Generators for D are 〈(0, 2)(6, 7), (1, 3)(4, 5), (2, 3)(5, 7)〉.

Example 4 The [15, 5, 7] BCH code is a rare example of a code with only two
graphs in the orbit. The corresponding systematic parity-check matrices, of weight
42 and 40, are

H0 =








1 0 0 0 0 0 0 0 0 0 1 0 1 0 1
0 1 0 0 0 0 0 0 0 0 1 1 1 1 1
0 0 1 0 0 0 0 0 0 0 1 1 0 1 0
0 0 0 1 0 0 0 0 0 0 0 1 1 0 1
0 0 0 0 1 0 0 0 0 0 1 0 0 1 1
0 0 0 0 0 1 0 0 0 0 1 1 1 0 0
0 0 0 0 0 0 1 0 0 0 0 1 1 1 0
0 0 0 0 0 0 0 1 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 1 0 1 0 1 1 0
0 0 0 0 0 0 0 0 0 1 0 1 0 1 1








and H1 =








1 0 0 0 0 0 0 0 0 0 1 0 1 0 1
0 1 0 0 0 0 1 0 0 0 1 0 0 0 1
0 0 1 0 0 0 1 0 0 0 1 0 1 0 0
0 0 0 1 0 0 1 0 0 0 0 0 0 1 1
0 0 0 0 1 0 0 0 0 0 1 0 0 1 1
0 0 0 0 0 1 1 0 0 0 1 0 0 1 0
0 0 0 0 0 0 1 0 0 1 0 0 1 0 1
0 0 0 0 0 0 1 0 0 0 0 1 1 1 0
0 0 0 0 0 0 0 1 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 1 0 1 0 1 1 0








respectively. The corresponding trivial subgroups of Aut(C) are of size |D| = 12 and
|D| = 120, where |Aut(C)| = 20 160. For the first structure, there are no subgroups
of Aut(C) of size |K| = |Aut(C)|/|D| = 1680. For the second structure there are 5
conjugacy classes of subgroups of size |K| = 168 (two of which are nonisomorphic),
but none of these represent K (they all contain trivial permutations). Thus, for this
code, K can not be a group. The two profiles for K are listed in Table 2.

Example 5 The [24, 12, 8] extended Golay code, where |Aut(C)| = 244 823 040 is
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Table 2: Profiles of K as split into subsets according to the length of the corre-
sponding ELC sequence. “E.H.” and “E.G.” are the extended Hamming and Golay
codes.

Code |H| 0 1 2 3 4 5 6 7 8 9 10 11 12

E.H. 16 1 12 30 12 1 - - - - - - - -
“BCH15” 42 1 29 246 678 585 141 - - - - - - -
” 40 1 0 30 60 65 12 - - - - - - -

E.G. 100 1 22 616 6 490 33 935 85 712 117 392 85 712 33 935 6 490 616 22 1
” 96 1 60 1 650 18 140 92 655 236 520 322 044 236 520 92 655 18 140 1 650 60 1

“BCH31” 120 1 0 0 0 0 0 10 10 10 - - - -
” 140 1 0 0 0 0 0 10 10 10 - - - -

” K = 〈(0, 7, 14, 21, 28, 4, 11, 18, 25, 1, 8, 15, 22, 29, 5, 12, 19, 26, 2, 9, 16, 23, 30, 6, 13, 20, 27, 3, 10, 17, 24)〉

another rare code with only two structures in the orbit

H0 =










1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 1 1
0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 0 0 1 0
0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 1 0 1 0 1 1
0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 1 1 0
0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1 0 0 1
0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1 0 1
0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1 1
0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 1 1 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 1 1 1 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 1 1 1 0
0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 1 1 0 1
0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 1 1 1










H1 =










1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 0 0 0
1 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 1 0 1 0 1
1 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 1 1 1 0
1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 1 1 0 1 0 1 0 0
1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1
1 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 1 0 1 1 1 1 1
1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 1 1
0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 0 0 1 0
0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1 0 0 1
0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 1 1 1 0
0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 1 1 0 1
0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 1 1 1










.

These are of weight 96 and 100, and |D| = 240 and 660, respectively. The two
profiles for K are listed in Table 2. As for the first structure of the BCH code in
Example 4, no subgroups of Aut(C) exist of size |K| for neither of the two structures
for the extended Golay code. Thus, K can not be a group.

Example 6 The [31, 21, 5] BCH code has 118 208 graphs in its orbit. Among these
there is a total of 8 structures for which |D| > 1, such that K may be a true subgroup
(we disregard the case when K = Aut(C)). One of these is

H =








1 0 1 0 1 0 1 0 0 1 1 0 0 0 1 0 1 0 0 0 0 0 0 1 0 1 0 0 1 0 1
1 0 0 1 1 1 0 0 0 0 1 0 0 1 1 0 1 1 0 0 1 0 0 0 1 0 0 0 1 0 0
1 0 0 0 1 1 0 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0 0 1 1 1 0 1
1 0 0 0 0 1 1 1 0 0 1 1 0 0 0 1 1 0 0 1 0 1 0 1 0 1 0 0 0 0 0
1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 1 1 1 1 0 1 0 1
1 0 0 0 0 0 1 0 1 0 1 0 0 0 1 1 1 1 0 1 0 0 0 0 1 0 1 0 0 0 1
1 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 1 1 1 1 0 0 1 0 0 1 0 1 0 0
0 1 1 0 0 1 1 0 0 0 0 0 0 1 1 1 1 1 0 1 0 0 0 1 0 0 0 0 1 0 0
0 0 1 0 1 1 1 1 0 0 0 1 0 0 0 0 0 1 0 1 1 0 0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 0 0 1 1 0 1 0 0 1 1 0 1 0 0 1 0 1 1 1 0 0 0 0








.

These are all of weight 120 (with one exception, at weight 140) and all have |D| = 5,
and K is indeed a group, with the profile and generator (the group is cyclic) listed in
Table 2. This group is unique as there is only one subgroup (in the single conjugacy
class) of Aut(C) of the required size, |K| = 31. The size of Aut(C) is 155.

Example 7 For the [48, 24, 12] extended QR (EQR) code, the possible sizes of D
are {1, 2, 3, 4, 6, 8, 12, 23, 24}. Only for |D| = 1 (the trivial case) can K be a group.
In the orbit of the code, we may determine the number of distinct structures corre-
sponding to the different values of |D| to be {−, 43 838, 128, 120, 13, 5, 2, 1, 1}. We
omit counting for |D| = 1, which would entail enumerating the entire orbit of the
code.
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Example 8 For the [63, 51, 5] BCH code and the [63, 39, 9] BCH code (used in
[14]), the possible sizes of D are {1, 2, 3, 6}. For the first code, the correspond-
ing number of structures is {−, 7 398, 222, 14}, and for the second code, we find
{−, > 500 000, 3 675, 38}. For all these structures (and both codes), K can be a
group.

As ELC complements edges in the local subgraph, i.e., at distance 1 from the ELC
edge, we may alternatively say that ELC has the effect of complementing 4-cycles
(cycles of length 4) in the graph. This perspective leads to some observations on
the relationship between iso-ELC and the girth of the graph. Specific requirements
must be satisfied for a graph operation to be an isomorphism; most importantly,
that the number of edges in the graph remains invariant. In other words, for any
e to be an isomorphism, the most basic requirement is that the number of edges
inserted is matched by (equals) the number of edges removed. For this to be possible
using a single ELC operation, the girth (length of the smallest cycle in G) must be
4.

Example 9 For the [8, 4, 4] extended Hamming code, again, we have that |K1| =
|G| = 12, which is to say that the code is ELC-preserved. As such, the coset leaders
in K form telescoping sequences. Given H in standard form, the single iso-ELC
sequence in K4 contains shorter iso-ELC sequences as subsets, as follows

{

∈ K3

︷ ︸︸ ︷

∈ K2

︷ ︸︸ ︷

∈ K1

︷ ︸︸ ︷

(0, 6), (1, 7), (2, 4), (3, 5)} = K4.

This is due to the perfect symmetry of G, in which all local neighborhoods are iden-
tical, forming a cube – see Fig. 3(a).

ELC on any edge of an ELC-preserved graph (corresponding to an ELC-preserved
code) is an iso-ELC operation, yet, according to the definition of ELC, a pair of
columns are indeed swapped between I and P. This proves that Aut(C) for an
ELC-preserved code can not be trivial. On the other hand, for a large random code
we expect that Aut(C) is trivial, but that the orbit is vast (e.g. for LDPC codes).

Example 10 For the “bow-tie” graph, consisting of a single 6-cycle, an isomor-
phism is found in the application of ELC to any of the three pairs of diametri-
cally opposite edges, inserting and removing a chord (i.e., a 4-cycle), as shown in
Fig. 3(b). As expected, the iso-orbit of the corresponding [6, 3] code gives |K0| = 1
and |K2| = 3.

3 Weight-Bounding ELC

In the discussion on isomorphic ELC operations, a requirement is that the number
of edges in the graph must be preserved [24]. We will generalize this, and introduce
a notion of weight-bounding ELC (WB-ELC) operations, in which the weight of
H after ELC, denoted by |H ′|, is upper-bounded by some threshold, T , such that
|H ′| ≤ |H|+T . So, the depth-i iso-ELC sequences described previously are depth-i
WB-ELC for T = 0. In this work, we will restrict our focus to single and double
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(a) The identical local
neighborhoods of the
“Hamming cube.”

(b) The “bow-tie” graph, consisting of one
6-cycle.

Figure 3: Relationships between an isomorphism and the girth of the underlying
graph.

ELC operations (depth-1 or 2), in order to facilitate the locality argument of the
ELC operation. However, the concept of WB-ELC extends to an arbitrary length
sequence of ELC operations. In this section, we only allow an ELC sequence on a
certain edge in the graph if |H| ≤ |H0| + T , where H0 is the initial graph and T
is the weight-bounding threshold. We give necessary and sufficient conditions to
achieve this bound, both for single ELC and for two consecutive ELCs.

Let A ∼ B be a shorthand notation for the edges in the subgraph EA,B , i.e., those
connecting nodes in A to nodes in B. Also, EC

A,B denotes the subgraph after com-
plementing A ∼ B. The net difference in edges before and after complementation
is ∆EA,B , |EC

A,B | − |EA,B |.

Lemma 1 The number of edges complemented between sets A and B can be ex-
pressed as ∆EA,B , |EC

A,B | − |EA,B | = |A||B| − 2|EA,B |.

Proof: The complete bipartite graph between A and B has |A||B| edges. This
means that, for any graph between A and B, |EA,B |+ |EC

A,B | = |A||B|, so ∆EA,B =

|EC
A,B | − |EA,B | = |A||B| − |EA,B | − |EA,B |. �

3.1 Depth-1, Single Edge WB-ELC

If the weight change due to the action of a single ELC is upper-bounded, then the
weight of the entire graph is upper-bounded, and since ELC is a local operation,
we say that the ELC is WB-ELC.

Theorem 3 The weight change of G under ELC on (u, v) is upper-bounded by a
threshold T iff

∆Eu,v = |N v
u ||N

u
v | − 2|Eu,v| ≤ T. (8)

Proof: ELC on (u, v) complements the edges between N v
u and N u

v , where (8) follows
from Lemma 1. The weight change of G under ELC on (u, v) is therefore ∆Eu,v. �

3.2 Depth-2, Double Edge WB-ELC

For many graphs, it is difficult (or even impossible) to bound the weight change by
any reasonable threshold (i.e., small T ), using only a single ELC. We now determine
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Figure 4: Proof of Lemma 2. ELC on adjacent edges, e.g. (u, v) and (v, v′), will
always result in the exact same graph as a single ELC on the second edge, (u, v′).
Note that, due to the swap of nodes u and v in the first ELC, the second ELC edge
is labeled (v, v′) – however, this is the same edge as (u, v′) in the initial graph.

the WB-ELC operations which exist for double application of ELC on a graph.
Given a graph, G, and a theshold, T , the definition of a depth-2 WB-ELC operation
is an ordered sequence of two ELC operations, where the first ELC operation must
change the weight of G by more than T to a graph G⋆, whereas the second ELC
must compensate, by reducing the weight of G⋆ by at least |G⋆| − |G| − T . (Note
that this amount is always positive, as |G⋆| > T + |G|; otherwise the first ELC would
change the weight by less or equal than T .) This follows from the fact that, if the
first ELC did not exceed the weight-bounding threshold, then it would, in itself, be
a depth-1 WB-ELC operation.

A very important first observation is that the search space for depth-2 WB-ELC
can be significantly reduced from that of checking all pairs of edges in G. First,
ELC on two adjacent edges, i.e., at distance 0, reduces to a single ELC operation.

Lemma 2 (Adjacent edges [2]) ELC on {(u, v), (v, v′)}, where v′ ∈ N v
u , gives

the same graph as ELC on (u, v′).

Proof: See Fig. 4. The full proof is found in Appendix A. �

From Lemma 2, we see that ELC on adjacent edges reduces to a single ELC, which
has already been covered by the discussion of depth-1 WB-ELC. So, in order to find
additional WB-ELC instances at depth-2, we need not consider adjacent pairs of
edges. We now present an important result regarding depth-2 WB-ELC; that the
distance between a pair of edges can not be greater than two, for T ≥ -1.4

Lemma 3 (Disjoint edges) Let T ≥ -1. Any depth-2 WB-ELC where the pair of
edges are at a distance greater than two will always reduce to either one instance,
or two separate instances, of depth-1 WB-ELC.

4A special case exists for T < -1, which is accounted for in Proposition 4.
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(a) Distance 2 (Theorem 5) (b) Distance 1 (Theorem 6)

Figure 5: Depth-2 WB-ELC. Potential connections between sets in the (bipartite)
subgraphs are not shown.

Proof: Consider two disjoint subgraphs, Eu,v and Eu′,v′ , of the same graph. In this
case, ELC on {(u, v), (u′, v′)} gives the same graph as ELC on {(u′, v′), (u, v)}, since
the neighborhoods do not interact. Consider first the case where T ≥ 0. The only
possibilities for WB-ELC are: Both ELC operations preserve weight, in which case
they both classify as depth-1 WB-ELC operations, or one ELC operation increases
weight by ∆Eu,v > T , while the other ELC reduces the weight by at least ∆Eu,v−T .
Since they commute, we can assume without loss of generality that ELC on (u, v)
is the operation which reduces the weight, but then this classifies as a depth-1
WB-ELC.

For the case where T = -1, again we have two possibilities; that both ELC operations
are depth-1 WB-ELC, or that one of them does not decrease the weight, while the
other reduces the weight. Again, and since they commute, we can assume without
loss of generality that ELC on (u, v) is the operation which reduces the weight, but
then this classifies as a depth-1 WB-ELC. �

Theorem 4 (Reduced search space) Let T ≥ -1. All depth-2 WB-ELC can be
found by considering pairs of edges at distance one or two.

Proof: The proof follows from Lemmas 2 and 3. �

In this sense, we define WB-ELC (both depth-1 and depth-2) as a local graph
operation, in that its effect is confined to a subgraph of diameter at most 4. The
corresponding subgraphs are shown in Fig. 5. We have restricted the search space
considerably, and shall now cover all the possible cases for depth-2 WB-ELC, for
T ≥ -1.

Let us first consider the case where the pair of edges are at a distance of exactly
two edges apart, Fig. 5(a). Given an edge (u, v), let u′, v′ /∈ Nu ∪ Nv be such that
(u′, v′) ∈ G, Q = N v

u ∩N v′

u′ 6= ∅, and, similarily, Q′ = N u′

v′ ∩N u
v 6= ∅.

Theorem 5 (Distance 2) The weight change of G under ELC on {(u, v), (u′, v′)}
is upper-bounded by a threshold T iff

∆Eu,v + ∆Eu′,v′ − 2∆EQ′,Q ≤ T. (9)

This case covers all instances of depth-2 WB-ELC where the edges are at a distance
two apart.

Proof: The edges (u, v) and (u′, v′) comprise a special case of independence since
Q and Q′ are adjacent to both edges – see Fig. 5(a). As such, the sequence
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Figure 6: Proof of Theorem 5. A special case of independence gives the equiva-
lent sequence, (u′, v′), (u, v); although the local subgraphs Eu,v and Eu′,v′ are not
independent, the overlap is confined to Q and Q′ (which is complemented twice)
[5].
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{(u′, v′), (u, v)} gives the same graph as the sequence {(u, v), (u′, v′)} [5]. In ad-
dition to the case where Q and Q′ are both nonempty, there are two other cases
at distance 2. We consider first the case where either Q or Q′ is empty (note that
if both are empty the distance is greater than 2). In this case, the two ELC oper-
ations are independent and this case reduces to Theorem 3 (one or two instances
of depth-1 WB-ELC). The second of these cases is where (u′, v′) /∈ G. As u′ and
v′ are not in the common neighbourhood of (u, v), we cannot obtain this edge by
ELC on (u, v), and thus the second ELC (on (u′, v′)) is not possible. We have
now seen that, for depth 2 at distance 2, we only need to consider the sequence
{(u, v), (u′, v′)} where Q and Q′ are both nonempty. Since the distance is not
greater than two, this case is not covered by Theorem 3. The net effect of ELC
on {(u, v), (u′, v′)} is ∆EM ′,M + ∆EQ′,M + ∆EQ′,N + ∆EN ′,Q + ∆EM ′,Q + ∆EN ′,N .
Fig. 6 illustrates that we have ∆Eu,v = ∆EM ′,M +∆EM ′,Q +∆EM,Q′ +∆EQ′,Q, and
∆Eu′,v′ = ∆EN ′,N + ∆EN ′,Q + ∆EN,Q′ + ∆EQ′,Q. This is the same as the result of
ELC on (u, v) summed to the result of ELC on (u′, v′) independently, except for
the double complementation of EQ′,Q, which gives the desired formula. �

Fig. 3(b) shows an example, where the weight-bounding is implicit from the iso-
morphism.

We now consider distance one. Given an edge (u, v) and two nodes u′ and v′, we

denote by B = N u,u′

v ∩N u,u′

v′ , A = N u,u′

v \ B, C = N u,u′

v′ \ B, E = N v,v′

u ∩N v,v′

u′ ,

D = N v,v′

u \ E, and F = N v,v′

u′ \ E, see Fig. 5(b). We now consider the case where
both u′ and v′ are in the neighborhood of (u, v), and where (u′, v′) /∈ G is created
by the first ELC.

Theorem 6 (Distance 1) The weight change of G under ELC on {(u, v), (u′, v′)}
is upper-bounded by a threshold T iff

∆EA,E∪F + ∆EB,D∪E + ∆EC,D∪F + |C| + |F | − |B| − |E| ≤ T. (10)

This case covers all instances of depth-2 WB-ELC where the edges are at distance
one apart.

Proof: As in the case for distance 2, we will begin by defining the search space.
There are four possible choices of two edges at a distance of one apart; these are
shown in Fig. 7, where the upper edge is referred to as the first edge (for ELC).
The case in Fig. 7(d) is a degenerate case, in that the second egde is removed by
the first ELC, so this case is not possible. We show in Fig. 8 that the three possible
cases of double ELC within distance 1 reduce to the case in Fig. 7(a). Note that,
in this case, the second edge results from the first ELC.

Consider the case in Fig. 7(a). We denote the first edge (u, v) and the second (u′, v′),
giving the sequence {(u, v), (u′, v′)}. This illustrates therefore the case where u′ and
v′ belong to N v

u ∪N u
v , and where (u′, v′) /∈ G. This case is shown in the left column

of Fig. 8.

Since ELC on {(u, v), (u′, v′)} gives the same graph as ELC on {(u′, v), (u, v′)} [5],
this covers the case illustrated in Fig. 7(b). This case is shown in the middle column
of Fig. 8, and the equivalence is shown in the upper and lower rows.

In the same way, as ELC on {(u, v), (u′, v′)} gives the same graph as ELC on
{(u, v′), (u′, v)} [5], this covers the case illustrated in Fig. 7(c). This case is shown
in the right column of Fig. 8, and the equivalence is shown in the upper and lower
rows.
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(a) (b) (c) (d)

Figure 7: Figs. 7(a) - 7(c) represent special cases of ELC equivalences [5], where
the first ELC is on the upper edge and the second ELC is on the bottom edge. In
Fig. 7(a), this edge results from the first ELC. In the same way, Fig. 7(d) shows
where double ELC is not possible (the second edge is removed by the first ELC).

= =

= =

Figure 8: Proof of Theorem 6.
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Thus, without loss of generality, we may focus on the case in the left column of
Fig. 8. The effect of ELC on {(u, v), (u′, v′)}, as illustrated in the leftmost column
of Fig. 8, is to complement (u, v), (u′, v′), A ∼ E, A ∼ F , B ∼ D, B ∼ E, C ∼ D,
and C ∼ F . In addition, node u (node v in the initial graph, before the swap) is
now connected to C instead of A, v (i.e., u) is connected to F instead of D. In the
same way, v′ (i.e., u′) is connected to D instead of E, and u′ (v′) to A instead of
B. This all amounts to

∆E = 1−1+∆EA,E∪F + ∆EB,D∪E + ∆EC,D∪F + |C|−|A|+|F |−|D|+|D|−|E|+|A|−|B|
(11)

where 1 − 1 is included to emphasize that the edge (u, v) is removed and the edge
(u′, v′) is created, for a zero contribution to the weight difference. Note that all sets
are pairwise disjoint. This gives the desired formula. �

We have shown that, for T ≥ -1, the depth-2 WB-ELC cases must occur on pairs of
edges spaced by distance at most two. Let us now, for completeness, consider the
case where T < -1.

Proposition 4 Let T < -1. In this case a pair of edges at a distance of more
than two may give depth-2 WB-ELC that does not reduce to (neither a single nor a
double instance of) depth-1 WB-ELC.

Proof: Let T < -1. Consider again the disjoint edges, {(u, v), (u′, v′)}, i.e., at
distance greater than two. Say ELC on (u, v) reduces the weight by ∆Eu,v, while
ELC on (u′, v′) gives a further reduction of ∆Eu′,v′ . Since we have T < -1, it can
happen that ∆Eu,v and ∆Eu′,v′ are both greater than T , while ∆Eu,v +∆Eu′,v′ ≤ T .
In this case, the individual ELC operations would not be found as depth-1 WB-
ELC, so this is a special case of depth-2 WB-ELC which can not be restricted to a
local subgraph. �

4 Complexity and Enumeration of WB-ELC

The main results discussed in this work are those on the generalization of isomorphic
ELC operations to WB-ELC operations. Most importantly, the locality argument
of ELC is maintained as the search space of (depth-1 and 2) WB-ELC is restricted
to edges spaced by at most distance 2; that we need only consider single edges, and
pairs of edges no more than two edges apart, in order to enumerate all WB-ELC
operations for a given graph and threshold, T ≥ -1. We now discuss a selection of
applications based on WB-ELC operations, based on an enumeration algorithm.

For this work, we consider various strong classical codes of practical blocklengths,
which all qualify as HDPC codes. The [15, 5, 7] BCH code and the [24, 12, 8] EQR
code (commonly referred to as the extended Golay code) serve a special purpose
due to their extremely small orbit (see Examples 4 and 5). Correspondingly, as
discussed for ELC-preserved codes, Aut(C) is large for these small codes; |Aut(C)|
is 20 160 and 244 823 040, respectively. At a slightly larger blocklength, we have
chosen two extremal (in terms of minimum distance) self-dual [36, 18, 8] (called
“R2”) and [38, 19, 8] (“C38,2”) codes from [16], and an extremal double circulant
self-dual [68, 34, 12] code (“C68,1”) from [13]. For these codes, Aut(C) is small
(|Aut(C)| ≈ n); 32, 1 (trivial), and 68, respectively. We also consider the [48, 24, 12]
EQR code, as a next step from the extended Golay code, but for which the orbit size
is large. Correspondingly, Aut(C) is small compared to the extended Golay code,
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Figure 9: Illustration of Alg. 2, where X := N u
v , Y := N v

u , and W := N v
u′ . Note

that the edge (u′, v′) will result from the first ELC on (u, v). The curved line
indicates the possibility of an edge (u′, v′′).

containing “only” 51 888 permutations. These codes (except BCH15) are all even or
doubly even; all codewords have Hamming weight divisible by 2 or 4, respectively.

4.1 Enumeration Algorithm

As Theorems 3 - 6 cover all possible single and double applications of ELC where
the weight change is upper-bounded by some threshold T ≥ -1, we propose an
enumeration algorithm to identify all (depth-1 and 2) WB-ELC operations on G.
The search space defined by Theorem 4 suggests an implementation. For each edge
(u, v) ∈ G, after checking Theorem 3 (depth-1), we want to check Theorem 6 on
every (u′, v′) ∈ Eu,v. Then, for each such choice of u′ and v′, we check Theorem 5 on
every (u′′, v′′) ∈ Eu′,v′ , see Fig. 9. The commutativity and isomorphisms discussed
in Section 3 require additional measures to be taken in order to avoid duplicate
WB-ELC sequences (giving the exact same Tanner graph). This corresponds to
pruning of the search space, giving a complexity benefit. For Theorem 5, it suf-
fices to ensure that the edges of the search space are considered in one direction
only. For Theorem 6, it is possible to handle both cases (isomorphisms) by slight
modifications to the sets of nodes from which the candidate edges are picked. Since
(u′, v′) ∈ Eu,v, we automatically avoid the two isomorphic cases described in the
proof of Theorem 6. Furthermore, by restricting u′ ∈ A = N u

v \ N u
v′ we avoid the

degenerate case where {(u, v), (u′, v′)} forms a 4-cycle since v′ is not adjacent to
A (by definition). Further details on a practical and efficient implementation are
given in Appendix B.

The most straight-forward implementation is to enumerate the search space, apply
ELC to all candidate edges of G (as identified by Theorems 3 - 6), and check
the weight of the resulting graphs, G′. If the weight is upper-bounded by T , i.e.,
|G′| ≤ |G| + T , then the corresponding ELC sequence is a (depth-1 or 2) WB-ELC
operation. In order to enumerate all WB-ELC operations, such an implementation
may apply ELC to the next candidate edge after undoing (i.e., repeating) the most
recent ELC operation. For some purposes, however, it may be desirable to avoid
unnecessary modifications of the graph, so an alternative implementation is to use
the counting formulas (8) - (10) of the WB-ELC theorems to determine whether
a set of (one or two) candidate edges is indeed a WB-ELC operation, without
explicitly performing any ELC operations. The complexity of computing the sets
and set operations required by the counting formulas is proportional to that of doing
(and undoing) the corresponding ELC operations, so the preferred approach may
be decided according to application requirements other than complexity.
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Algorithm 2 WB ELC(a)(G, T ), to enumerate all WB-ELC sequences given G and
threshold T .
1: κ := 0 // complexity counter (#edges)
2: for ∀u ∈ U , v ∈ V : (u, v) ∈ G do
3: X := N u

v , Y := N v
u , S := ∅

4: if |X||Y | − 2|EX,Y | − T ≤ 0 then
5: ELC(u, v) is T WB-ELC // Theorem 3
6: end if
7: κ++

8: for ∀ v′ ∈ Y do
9: Z := N u

v′ , B := X ∩ Z, A := X \ B, C := Z \ B
10: for ∀u′ ∈ A do
11: W := N v

u′ , E := Y ∩ W , D := Y \ E, F := W \ E
12: if ∆EA,E∪F + ∆EB,D∪E + ∆EC,D∪F + 2|C| + 2|F | − T ≤ 0 then
13: ELC{(u, v), (u′, v′)} is T WB-ELC // Theorem 6
14: end if
15: κ++

16: end for
17: for ∀u′′ ∈ C : u′′ > u do
18: W ′ := Nu′′

19: for ∀ v′′ ∈ W ′ \ Y : (u′′, v′′) /∈ S do
20: S := S ∪ {(u′′, v′′)}
21: X ′ := N u′′

v′′ , Q := W ′ ∩ Y , Q′ := X ∩ X ′

22: if Q,Q′ 6= ∅ then
23: if ∆Eu,v + ∆EX′,W ′ − 2∆EQ,Q′ + |X ′| − T ≤ 0 then
24: ELC{(u, v), (u′′, v′′)} is T WB-ELC // Theorem 5
25: end if
26: end if
27: κ++

28: end for
29: end for
30: end for
31: end for
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Figure 10: Complexity simulations for WB ELC(a) compared against the bound
of (13) (dashed lines). Each code is simulated over its entire weight range, from
the minimum weight to the maximum weight encountered by ELC (which is around
50% weight), so the complexity of WB ELC(a) is completely described.

For the following discussions, we assume the approach using counting formulas, with
an implementation given in Alg. 2. This algorithm, referred to as WB ELC(a), will

serve as the framework for other algorithms discussed in this work. Let L(G, T )
denote the set of WB-ELC sequences for G, given T . As described, the search is
rooted in the depth-1 candidate edge, (u, v), and works its way out to distance 1
and 2 (depth-2). As such, there will be a large overlap of the sets of nodes and
edges required by the WB-ELC theorems. An intuitive approach is to reuse as
many of these sets as possible by carefully nesting the theorems. To facilitate this,
the counting formulas of Theorems 5 and 6 are modified as detailed in Appendix B.
Recall from (3) that G = (U ∪ V, E) is an (n − k, k)-bipartite simple graph, with
average column and row weights γ̄ and ρ̄, respectively.

Defining complexity, χ, in terms of the number of candidate edges checked to enu-
merate WB-ELC sequences, an analysis of the loop structure of WB ELC(a) gives

χ = |G|

(

1 + |Y ||A| + min

{

|Y |
|C|

2
|W ′ \ Y |, |G| − |Ω|

})

(12)

where we assume that, on average, half of the elements in C satisfy u′′ > u in
line 17, and note that each edge of the graph can only satisfy (u′′, v′′) 6∈ S in
line 19 once, and further that edges with endpoints in Nu or Nv, which we denote
Ω = {(a, b) ∈ G | a ∈ Nu∪Nv}, will never be considered as candidate edges (u′′, v′′)
for checking Theorem 5 in line 24. Hence |G|− |Ω|, the number of edges at distance
≥ 2 from (u, v), is an upper bound on the number of times line 24 is executed. The

minimization in (12) is necessary as the first argument, |Y | |C|2 |W ′ \ Y |, an upper
bound on the number of times line 24 is executed derived from analysing the loop
structure, will be higher than |G| − |Ω| except for very small γ̄.

To obtain an estimate of the complexity of WB ELC(a), we assume that G =

24



(U ∪ V, E) is a (k, k)-bipartite graph where every vertex has degree γ. Moreover,
we assume that every pair of vertices from the same partition have λ common
neighbors.

Proposition 5

λ =
γ(γ − 1)

k − 1
.

Proof: Consider a vertex u ∈ U . This vertex has γ neighbors, each of which have
γ − 1 neighbors in U \ {u}. Hence the number of edges between Nu and U \ {u} is
γ(γ − 1). There are k − 1 vertices in U \ {u} and each of these have λ neighbors in
common with u. Hence the number of edges between Nu and U \ {u} is (k − 1)λ.
We then have that γ(γ − 1) = (k − 1)λ, and the result follows. �

Proposition 6

|Ω| = 2γ2 −
γ3

k
.

Proof: Each of the 2γ vertices in Nu ∪ Nv have γ neighbors, so clearly |Ω| ≤ 2γ2.
However, this counts edges (x, y) where x ∈ Nu and y ∈ Nv twice. Assuming
that all edges are equally likely, we have that the probability that there is an edge
between x and an arbitrary node z ∈ U is γ

k . Then the number of edges from x to

Nv is, on average, γ2

k . It follows that the total number of edges between Nu and

Nv is, on average, γ3

k . Subtracting the edges that have been doubly counted, we

get that |Ω| = 2γ2 − γ3

k . �

By our assumptions, we then have that |G| = kγ, |Y | = γ − 1, and |A| = |C| =

|W ′ \ Y | = γ − λ = γ(k−γ)
k−1 . By substituting into (12), we obtain

χ=kγ

(

1+
γ(γ − 1)(k − γ)

k − 1
+min

{
γ2(γ − 1)(k − γ)2

2(k − 1)2
,
γ(k − γ)2

k

})

. (13)

In the extreme cases, for very sparse and dense graphs, we have lim
γ→1

χ = k and

lim
γ→k

χ = k2. In the intermediate case, for instance for γ = k
2 , we have complexity

O(k4).

This bound is verified by simulations on various graphs (codes), i.e., running WB ELC(a)
and counting the number of candidate edges checked by an implementation of The-
orems 3 - 6, whether it uses recursive ELC or computes the counting formulas (we
assume the overhead is the same). Note the counter, κ, in Alg. 2. Given a graph,
G, representing a code, the simulation consists of counting the number of candidate
edges considered to produce L(G, T ). The specific threshold, T , is not important
for this simulation, as it does not affect the complexity in enumerating all WB-ELC
sequences (when we count complexity in number of edges considered), so we use
T = 0. This count is added to position |G| of a vector, c, denoted by c(|G|). The
number of distinct graphs of weight |G| is counted in a similar vector, d. In this
work, we focus on self-dual codes which are also even or doubly even. Since H
consists of codewords of the dual code, the weight of G also increases in steps of 2
or 4, respectively.

Random WB-ELC is then applied until a new (i.e., distinct) graph is found, and the
process is repeated until all entries of d are greater than some minimum number,
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g (we used g = 10).5 Let Gmax denote a graph of “weight 50%” (6), correspond-
ing to random ELC, beyond which we no longer think of the weight as bounded.
Fig. 10 shows the simulated average complexity of Alg. 2 on the codes described
previously, plotted against average column weight, γ̄(G) = |G|/k, in the interval
[γ̄(|G|min), γ̄(|G|max)]. This interval completely describes the encountered graphs
found by ELC for the given code. These simulations are compared against the
bound of (13) for the same values.

A related set of data from the same simulations is the relative fraction of WB-ELC
sequences in L(G, T ) attributed to Theorems 3, 5, and 6, and how this distribution
varies with |G|. Let G′ = e(G) for some e ∈ L(G, T ). Recall that the simulations
produced L(G, 0), so the WB-ELC sequences found must give |G|min ≤ |G′| ≤ |G|.
Define the matrix W by expanding the array c by a dimension of length 3. By
grouping the WB-ELC sequences in L(G, T ) by theorem, W (|G|, t) counts the num-
ber of WB-ELC sequences corresponding to distance t = 0, 1, 2 (Theorems 3, 5,
and 6, respectively). The total number of WB-ELC sequences for a weight class
is

∑

t W (|G|, t). Fig. 11 shows this data plotted as stacked histograms, where the
height of each segment gives the relative fraction (percentage of

∑

t W (|G|, t)) of
the corresponding theorem for that weight class. These show a trend, which holds
for various codes, that the fraction of depth-1 WB-ELC sequences decreases for
increasing weight, before stabilizing at a small but constant fraction. As |G| in-
creases, it must necessarily become easier to find edges for which ELC will preserve
the weight, culminating at |G|max. Accordingly, it must be even easier to bound the
weight even more by using double ELC (depth-2 WB-ELC). Furthermore, we note
a dominance of Theorem 6 over Theorem 5, which validates our implementation
checking Theorem 5 last (nested in the innermost loop).

Also shown is the average total number of WB-ELC operations found for each

weight class, normalized by ν = max
W

∑

t

W (|G|, t)/d(|G|) (the largest observation)

to produce a percentage (i.e., to fit in the same plot), ν-1
∑

t
W (|G|,t)
d(|G|) , for each

position in c (weight class).

For enumeration purposes, it may also be interesting to enumerate only those WB-
ELC operations involving a specific node, v⋆. By restricting the operation of Alg. 2
to v⋆ only, rather than V, the single iteration of the outer loop returns the subset
of operations which include v⋆. Due to the locality argument (Theorem 4), this
does indeed find the entire subset of L(G, T ) rooted in v⋆, i.e., of the form (u, v⋆)
or {(u, v⋆), (u′, v′)}.

4.2 Reduce Weight in IP-form

The WB-ELC algorithm can be used to reduce the weight of a bipartite graph.
By definition (3), the parity-check matrix related to G is in systematic form. The
purpose of reducing the weight of a systematic matrix may be motivated by the
SPA-WBELC algorithm described in Section 5, but is in itself an interesting special
(and more difficult) instance of the often encountered problem of finding a reduced-
weight basis for a (dual) code, which has been shown to be very hard [20].

We define instance (b) of Alg. 2, denoted WB ELC(b), as one which terminates upon

the first encountered WB-ELC operation to satisfy the threshold, T . The returned

5The distribution of |G| usually resembles a normal distribution, so g is to ensure a minimum
number of observations are achieved at the tails (high and low ends). The total number of graphs,
P

d(|G|), is much greater than 10 (|G|max − |G|min).

26



156 160 164 168 172 176 180 184 188 192

%

w

Depth-1
Depth-2, distance 2

Depth-2, distance 1
Total (logscale)

(a) [36, 18, 8] code, “R2.”

288 292 296 300 304 308 312 316 320 324 328

%

w

Depth-1
Depth-2, distance 2

Depth-2, distance 1
Total (logscale)

(b) [48, 24, 12] code, “EQR48.”

488
492

496
500

504
508

512
516

520
524

528
532

536
540

544
548

552
556

560
564

568

%

w

Depth-1
Depth-2, distance 2

Depth-2, distance 1
Total (logscale)

(c) [68, 34, 18] code, “C68,1.”

Figure 11: The percentage of depth-1 (Theorem 3) and depth-2 (Theorems 5 and 6)
WB-ELC found by WB ELC(a), for increasing weights, |G|. Also shown (in red)
is the (normalized) total count of WB-ELC sequences, and the plot in logarithmic
scale (orange).
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WB-ELC operations should ideally be uniform samples of L(G, T ). To improve
the uniformity of the sampling, all sets in Alg. 2 are permuted randomly before
being traversed in the (for) loops. This modification does not affect the ability to
enumerate all WB-ELC operations (if the stopping criterion mentioned above is
removed) only the order in which these are encountered, as is now desired. As long
as the current graph, G, is of weight |G|min ≤ |G| ≤ |G|min + T , and L(G, T ′) 6= ∅,
where T ′ = |G|min + T − |G|, WB ELC(b) will find a WB-ELC operation, e.

A simple algorithm is proposed, called Alg. minIP (listing omitted), which repeat-
edly invokes WB ELC(b)(G, -1) to determine a random WB-ELC sequence, e, such

that |e(G)| < |G|. We refer to this as Alg. minIP. Eventually, a graph is reached from
which it is not possible to further reduce the weight, such that WB ELC(b) returns

e = ∅. At this point, the proposed algorithm proceeds by random (unbounded)
ELC until the weight is increased and the reduction may resume. Alternatively,
WB ELC(b) may be modified to return the operation encountered which gives the

smallest weight increase. Both these heuristics are referred to as a kick.

Table 3 compares the performance of Alg. minIP against other algorithms to reduce
weight. Recall the codes selected for this work. The corresponding parity-check
matrices are optimized on weight, both in nonsystematic form, as well as systematic
form. The weight of the initial matrix, H0, e.g., as produced by Magma, is denoted
by |H0| (where (4) gives the weight of G). Alg. IP is a recursive, deterministic depth-
first algorithm to traverse the orbit of a code, by means of ELC operations on G.
Unless the orbit of the code is impractically large, this approach will determine the
minimum-weight systematic matrix. However, for most codes, the search space is
exponential in n. The corresponding column in Table 3 shows the lowest weight
systematic matrix found. For “R2” and “C38,2,” we were able to compute the
entire ELC orbit of the codes, to find optimal-weight matrices in systematic form.
For “C68,1,” the orbit is infeasibly large, yet, using WB-ELC preprocessing, we
were able to find a systematic matrix of weight 488. For nonsystematic form,
Alg. nonIP takes random combinations of minimum-weight codewords of the dual
code (to generate the parity-check matrix), and attempts to find combinations of
n − k linearly independent rows. Generally, this algorithm succeeded in finding
minimum-weight matrices of weight (n−k)dmin(C⊥), or at least coming quite close.
In terms of search time, only the largest code required more than a few seconds
to find the reported matrices, using a standard desktop computer (Alg. IP and
Alg. nonIP ran for ∼ 1 day, while Alg. minIP used ∼ 3 days).

Fig. 12 shows the response of WB ELC(b) in terms of which theorem is returned

from the randomized algorithm with T = 0, for increasing weight, |G|. As discussed
previously, the fraction of all WB-ELC sequences (i.e., when considering the entire
L(G, T )) corresponding to depth-1 is small but constant (Fig. 11), but comes to
dominate the response of WB ELC(b) simply because it is natural and convenient

to check Theorem 3 first. Similarily, the fraction corresponding to depth-2 reflects
the position of these theorems in Alg. 2, based on the results of Fig. 11. As in Fig. 11,
random WB-ELC sequences are used to find the next distinct Tanner graph, G′.
Then, WB ELC(b) with T = 0 is used to choose a random WB-ELC for G′, and the

corresponding theorem is added to the counter for the weight class |G′|. In order
to increase the observations (number of distinct Tanner graphs) at the low-weight
weight classes, Alg. minIP (i.e., T = -1) is used to find the next distinct Tanner
graph, G′. This simulation illustrates the relative occurrence of Theorems 3, 5,
and 6 (and kicks) for a graph of a given weight, when T = 0. This response can
give an indication on which theorem occurs more frequently as a function of |G|.
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Figure 12: The percentage of depth-1 (Theorem 3) and depth-2 (Theorems 5 and 6)
returned (picked) by WB ELC(b), for increasing weight, |G|. The fraction of kicks
is also shown, corresponding to when Alg. minIP gives a new graph, G, for which
L(G, 0) = ∅.

It should be emphasized, however, that WB ELC(b), if run in succession with T ≥ 0,

does not get stuck unless L(G, T ) = ∅ for the starting graph, G. The overall trend
for the various codes simulated is that the number of kicks (for T = 0) decreases
for increasing graph weight – which makes sense, as finding a WB-ELC sequence
is, intuitively, more difficult for sparser graphs. Figs. 15(a), 16(a), and 17(a) show
the performance of WB ELC(b) in terms of number of candidate edges considered

on average in order to find a random WB-ELC sequence, for increasing T – see
Section 5 for a discussion.

4.3 Bounded-Weight Sub-Orbit

The orbit of a code is the set of distinct (nonisomorphic) graphs one finds by any
sequence of ELC operations. Specializing this to WB-ELC operations, the same
procedure gives a bounded-weight sub-orbit of the code in which all graphs are of
weight |G′| ≤ |G0|+ T . The size of this sub-orbit depends on G0, and, obviously, T .
Using T = |G|max − |G0|, corresponding to unbounded weight (i.e., random ELC),
we enumerate the entire orbit of the code. Otherwise, another (disjoint) bounded-
weight sub-orbit may be found “around” a graph G′, where |G′| ≤ |G0| + T , which
is not already in some previously enumerated bounded-weight sub-orbit.

For increasing values of T , certain sub-orbits which are disjoint for lower T may
become linked to form supercomponents, as shown figuratively in Fig. 13. For the
“EQR48” code, the minimum weight is 288. Using data from a random search,
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Table 3: Reduced-weight matrices. Results of Alg. minIP compared to other al-
gorithms. Column |H0| specifies the weight of the initial parity-check matrix, H0,
(e.g., as constructed by Magma). The bound does not assume a systematic form
matrix.

Code |H0| Bound (2) minIP IP nonIP

BCH15 [15, 5, 7]† 42 40 40 1 40 40 4

Ext. Golay [24, 12, 8] 96 96 96 1 96 96 4

R2 [36, 18, 8] 188 ⋆ 144 156 156 2 152
C38,2 [38, 19, 8] 240 ⋆ 152 166 166 2 154
EQR48 [48, 24, 12] 320 288 288 1 288 288 4

C68,1 [68, 34, 12] 612 ⋆ 408 488 492 410 3

† Only code which is not self-dual, and dmin(C⊥) = 4.

⋆ Initial matrix described in [13, 16] (not generated by Magma).
1

Lower bound (2) on matrix minimum weight achieved.
2

Entire orbit enumerated, so these weights are optimum for systematic matrices.
3

Minimum-weight matrix possible to construct using 33 minimum-weight

(dual) codewords, and one of weight 14.
4

Optimal weight in nonsystematic form, |H| = (n− k)dmin(C⊥).

we found 110 distinct minimum weight structures (all connected in either pairs
or triples), and, within T = 4, the largest supercomponent found contains 371
structures of weight 288 and 292. Including also T = 8, the resulting sub-orbit
contains only one supercomponent, connecting all ∼ 70 000 graphs found in our
random search. In contrast, a brute force (recursive) attempt to enumerate the
orbit of this code, only found 30 minimum weight graphs before running out of
memory on a standard desktop computer.

5 Generalized SISO HDPC Decoder

For this work, the most important application is the use of WB-ELC operations
during SISO HDPC decoding, where the aim is to have increased diversity (i.e.,
more parity-check matrices for the same code) which are all well-suited for use in
iterative decoding. Several parameters of a parity-check matrix affect its suitability
for decoding, where one of these is the weight, or density, of the matrix. Let the
received noisy channel vector be y = (-1)x + n, where x is a codeword and n is
AWGN. In the log-likelihood ratio (LLR) domain, the initial LLR at position v is
Lv

0 , 2
η2 yv, where η is the standard deviation of the AWGN.

5.1 Edge-Local Damping Rule

The generalized SISO HDPC decoder, Alg. 3, gives a common framework for itera-
tive decoding of HDPC codes, where different operations can be used to give diver-
sity during decoding. The framework is based on the SPA-PD algorithm [14], and
centers around applying a damping routine [20] to SPA iterations interspersed with
operations to give increased diversity during decoding. Three nested loops control
the dynamic damping scheme. The maximum number of iterations is τ = I1I2I3,
and for every I1 iterations a diversity stage is executed, in which the extrinsic con-
tribution of the LLRs, Γv

j , of each variable node, v, is scaled down by a damping
coefficient, α, 0 < α < 1, and accumulated on the input to the next iteration
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Figure 13: Sub-orbits of “EQR48” code, for which |G0| = 288. Nodes represent
distinct graphs of the indicated weight, and edges represent a WB-ELC operation
connecting two graphs. Curved edges mean arbitrary WB-ELC operations may
exist. Between weight classes, this is indicated by dashed lines. The components
within the same weight class are disjoint (if we do not cross dashed lines).

according to

Lv
j+1 = Lv

j + αΓv
j . (14)

The extrinsic contribution to variable node v (the sum of all incoming messages,
µv←u

j ) in iteration j is

Γv
j =

∑

u∈Nv

µv←u
j (15)

where we define Γv
0 , 0. The damping coefficient may be viewed as a measure of

trust in the information produced by the Tanner graph, which is scaled down, as
opposed to the information received from the channel, which is never damped. Each
time we increment α, “the contribution from the Tanner graph” is strengthened, so
the outer loop is an implementation of I3 independent serial decoders of the received
channel vector, for varying values of α (allowing a parallel implementation). The
rationale behind damping originates from gradient algorithms, where α is the step
width, which is varied in order to prevent the algorihm (in our case, the convergence
of the iterative decoding process, in terms of negative sum of soft syndromes) from
getting stuck at pseudo-equilibrium points (local minima) [20, 32]. The contribution
from the received noisy channel vector is never damped, which is obvious if we
rewrite (14) as Lv

j+1 = Lv
0 + αΣj

j′=1 Γv
j′ . These new, damped LLRs are then used

to re-initialize the decoder. So, after resetting all messages to neutral LLRs,

µv←u
j := 0, ∀ (u, v) ∈ G (16)

iteration j + 1 begins by, in effect, forwarding the new, damped input towards the
check nodes. This global reset stage is necessary when the operation used in the
SISO HDPC decoder acts on the variable node level, e.g., as in SPA-PD which
permutes L [14]. After this, the relationship (15) between extrinsic information
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Algorithm 3 SISO-HDPC(p, I1, I2, I3, α0,OP,DR)
1: α = α0

2: for I3 times do
3: Restart decoder from channel vector
4: for I2 times do
5: Stop if syndrome check is satisfied
6: Apply damping rule, DR, with coefficient α
7: Apply at random p operations, OP
8: for I1 times do
9: Apply SPA iteration (‘flooding’ scheduling)

10: end for
11: end for
12: Increment damping coefficient, α := α0 + (1 − α0)

I3

I3−1
13: end for

..
. ..

.

Figure 14: Description of LD, affecting all edges inserted by ELC on (u′, v′). These
new edges (solid lines), (u, v) ∀ v ∈ N v′

u′ , are initialized for the next iteration with
µv→u

j+1 = Lv
j + α(Γv

j − µv←u
j ) = Lv

j + αΓv
j , since µv←u

j = 0.

(on edges) and LLRs (in nodes) does not hold. The global stage of (14) and (16),
followed by re-initializing all edges, is referred to as global damping (GD).

In contrast to GD, we have previously proposed edge-local damping schemes more
suited for the edge-local action of ELC [25, 26]. The damping rule (14) can be
generalized to include and take advantage of extrinsic information on an edge. For-
mulated for the edge-local perspective (damping each edge separately), the damping
rule (14) becomes

µv→u
j+1 = Lv

j + α(Γv
j − µv←u

j ) (17)

where the extrinsic contribution µv←u
j is subtracted, to adhere to the extrinsic

principle of the SPA.

ELC on (u′, v′) complements the edges of Eu′,v′ . By defining a flooding SPA iteration
as the update of all check nodes followed by all variable nodes (this is usually done
in the opposite order, at no general significance), we ensure that all soft information
on edges which are removed from any v ∈ N v′

u′ is contained (summed) in Γv. Thus,
we need only focus on edges inserted by ELC, i.e., precisely (u, v) ∈ Eu′,v′ after
ELC. Fig. 14 shows an example situation, using the mapping from Tanner graph
to simple graph where a check node is grouped with its systematic variable node.
The figure shows the situation after ELC on (u′, v′), where the solid lines are the
inserted edges. These new edges must be initialized with some outgoing message,
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µv→u
j+1 , before the next SPA iteration (iteration j+1, which begins with check nodes),

so (17) implements a damping-and-initialization rule. However, since µv←u
j = 0 for

new edges, (17) reduces to (14). We emphasize that the edges connected to Nv\Nv′ ,
i.e., those unaffected by ELC on (u′, v′), are not damped and retain their extrinsic
messages for the next iteration. Restricting damping to the edges affected by ELC
is referred to as edge-local damping (LD) [25]. There is still some loss of extrinsic
information due to ELC, since only the sum of adjacent messages is stored in a
variable node, yet the loss is significantly smaller than that resulting from the reset
stage involved in GD. We also propose a more advanced local damping rule in [26],
which was not found effective for the codes used in this work.

Every I1I2 iterations, α is incremented towards 1, and the decoder is restarted
(I3 times) from the received noisy channel vector. This constitutes, in effect, the
starting of a new, serial decoder, only with a new and increased (i.e., reduced effect)
damping coefficient.

5.2 Real-Time WB-ELC Algorithm

In a decoding setting, where the Tanner graph to be modified contains soft infor-
mation on the edges, it is natural to focus on the approach of using the counting
formulas to minimize loss of soft information in the WB-ELC stage. The aim
is to produce a random set of reduced-weight Tanner graphs for C, at minimum
(search) overhead. As before, the weight of each graph should be upper-bounded,
|H| ≤ |H0| + T , and we determine the local threshold

T ′ = |H0| + T − |H| (18)

based on the weight |H| of the current graph, H. The WB-ELC stage is to be done
during decoding, in between SPA iterations, so efficiency is a key concern. Based
on WB ELC(b), we now consider a set of further modifications to give a real-time

version, which we refer to as WB ELC(c). By increasing the coarseness of the search,

a random WB-ELC sequence may be found at a decreased average complexity, in
terms of number of candidate edges considered. Rather than exhaustively traversing
the entire local subgraphs induced (entire sets A, C, etc.) by the theorems around
the root edge, (u, v), the search may be confined to checking the depth-2 theorems
for only one, random choice of (u′, v′), and one for (u′′, v′′) – see Fig. 9. This
way, Theorem 3 is checked while producing the subsets required for Theorems 5
and 6, and WB ELC(c) applies this coarse search using all edges (u, v) ∈ G as

root edge. In this sense, depth-1 has a natural precedence over depth-2, (single
ELC is half the complexity of double ELC). As shown in Fig. 11, the percentage
of depth-2 WB-ELC sequences constitute a large fraction of the total sequences
output by WB ELC(a) (they are relatively easy to find), validating the heuristic of

only checking Theorems 5 and 6 on a subset of the candidate edges.

Figs. 15(a), 16(a), and 17(a) compare the complexity of WB ELC(c) to WB ELC(b).

The complexity shows the average number of edges checked to find the first random
WB-ELC operation on a graph of weight |G|, and for T = 0. As before, each
weight class is simulated independently, and new graphs are found using Alg. minIP.
We also compare a variant of WB ELC(c) which only considers depth-1 WB-ELC,

denoted by WB ELC(c,1). The reduced search space gives a further improvement in

number of candidate edges checked. From a decoding perspective, it makes sense to
compare this ELC complexity to the adaptive belief propagation (ABP) algorithm,
which uses a GE stage in between SPA iterations [21, 26]. Implemented in terms
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Figure 15: Code “R2.”
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Figure 16: Code “EQR48.”
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of ELC operations, the complexity of a GE stage is n − k, which is included as the
red reference line.

Figs. 15(b), 16(b), and 17(b) illustrate the graph weights resulting from the previous
simulations. For WB ELC(b), a (horizontal) histogram is plotted for each weight

class |G|, showing the distribution of the weights of the graphs, G′, found when
the search starts from G. This distribution is over |G0| ≤ |G′| ≤ |G|, with an
average around |G|, until |G| reaches the average weight resulting from random
(i.e., unbounded) ELC, beyond which the distributions begin forming a normal
distribution centered on the average weight described in (6). The average weight
due to repeated random (unbounded) ELC is slightly higher than the “50% weight.”
The fraction of repeated Tanner graphs (as in row-equivalent matrices) encountered
is indicated by the red bar below the histograms. Only at the low-weight end of
the scale, when |G| is near |G0|, are such repetitions encountered, which indicates
that, generally, a very high degree of diversity results from using random WB-ELC
operations during decoding. Some fraction of the encountered graph weights in
the histograms is above the maximum weight of the class, |G′| > |G| (recall that
we simulate T = 0). This indicates the fraction of graphs for which the weight
can not be upper-bounded by T = 0, resulting in a kick to a higher weight. Any
such kicks are a result of Alg. minIP giving a new graph, G′, for which |G′| < |G|
(using T = -1), such that WB ELC(b)(G

′, 0) = ∅. However, this occurs only at the

low-weight end of the scale and we may conclude that the search is, in fact, able to
maintain the desired weight-bounding. The average weight plots for WB ELC(c)
and WB ELC(c,1) show only a slight increase in average weight at the low-weight

end, which indicates the number of kicks resulting from the reduced-complexity
search. This indicates a complexity reduction with negligible performance penalty.
Furthermore, we verify the above assumption that the weight can be bounded by
depth-1 WB-ELC alone, by noting that WB ELC(c,1) also succeeds in bounding

the weight.

Fig. 18 shows a similar experiment which focuses on the performance of WB-ELC in
a decoding setting. Starting from a reduced-weight graph, G0, we simulate the aver-
age performance of keeping |G| upper-bounded by |G0|+T . Reflecting the intended
usage, e = WB ELC(b)(G, T ′) (or (c) or (c,1)) is used (rather than Alg. minIP)

to find the next WB-ELC operation, where T ′ = |G0| + T − |G| using (18). This is
then repeated for G′ = e(G) until 1 000 graphs are simulated for this T . Then, the
experiment proceeds the same way for the next value of T . Again, we compare the
complexity against a GE stage. Let TGE denote the threshold for which the com-
plexity of WB ELC intersects this measure. For thresholds T > TGE the average
complexity of a WB-ELC stage is lower than that of a GE stage, while still giving
a weight-bounding effect (as compared to random ELC).

5.3 Error-Rate Observations

The SPA-ELC decoding algorithm, which uses random ELC operations in between
SPA iterations to gain diversity, has previously been shown effective [25]. The sim-
ulation results in Fig. 19 compare the proposed SPA-ELC decoder against various
decoding algorithms, where we ensure that τ = I1I2I3 is fixed. The algorithms are
all implemented using the SISO HDPC framework, with the configurations sum-
marized in Table 4. The parameter p specifies the number of ELC operations to
employ every I1 iterations. The values of p, I1, I2, and I3 are chosen empirically,
based on frame error-rate (FER) simulations. In Fig. 20, using code “R2,” we fix
one of the loop constants (and fix τ = 600), and determine the second for varying
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Figure 19: Simulation results. Each SNR point is simulated until at least 100 frame-
error events were observed (otherwise, error bars indicate a 95% confidence interval
[28]). The union bound is calculated based on the full weight enumerator of the
code.

41



Table 4: Decoding algorithms simulated in this work, and the corresponding con-
figurations of Alg. 3
Decoding Algorithm Configuration

SPA(τ) SISO-HDPC(0, 1, τ, 1, 1,−,−)
SPA-PD(I1, I2, I3, α0) SISO-HDPC(1, I1, I2, I3, α0,PD,GD)
SPA-ELC(p, I1,I2,I3, α0) SISO-HDPC(p, I1,I2,I3,α0,ELC,LD)
SPA-WBELC(p, I1, I2, I3, α0, T ) SISO-HDPC(p, I1, I2, I3, α0,WB ELC(b)(G, T ),LD)

values of I1 which we know to have the greatest influence on performance. The
nearly identical data obtained for fixed I2 and fixed I3 verifies that the performance
is dominated by I1, and that the best performance is found for low values of I1,
specifically for I1 = 1. This is verified also for the “EQR48” code. The value of p
is then selected based on data shown in Fig. 22, where we find an optimal value at
reasonably low values of p. This value is only slightly sensitive to SNR. The initial
damping coefficient, α0 = 0.08, is borrowed from [20].

The drawback of SPA-ELC is an increase in matrix weight, so unless the orbit of the
code contains only “low” weight (i.e., near |G|min) graphs (e.g., the BCH15 and the
extended Golay code, for which the orbit contains only two graphs), the performance
of the SPA is negatively affected by increased weight. Not only does this increase
the complexity of computing the SPA update rules, but there is also a well-known
adverse effect on convergence due to short cycles in the Tanner graph. The aim of
the SPA-WBELC decoder is to use WB-ELC to give structurally distinct matrices
of bounded weight. We will show that the SPA-WBELC decoder outperforms SPA-
PD [14] when Aut(C) is small. For SPA-WBELC, the operation is WB-ELC, which
amounts to either one or two ELC operations. For a similar degree of diversity,
a budget of p ELC operations per I1 iterations is allocated for the SPA-WBELC
decoder, which is decremented by |e|. (This means the SPA-WBELC decoder may
use p + 1 ELC operations per ELC stage, but the average is very close to p, so
we ignore this.) As for SPA-ELC, optimal values of parameters are determined
empirically, as shown in Fig. 23.

In Fig. 19, the performance of SPA-ELC and SPA-WBELC is simulated for vari-
ous codes of different blocklength when signalling over the AWGN channel. The
graphs used for decoding were optimized on weight in a preprocessing stage, as
reported in Table 3. For SPA and SPA-PD, the same graph is used throughout
the decoding process, and this graph is also used in a nonsystematic form for these
decoders.6 For the ELC-based decoders, the initial (preprocessed) TG(H) is re-
stored at the beginning of each frame (codeword simulated). For SPA-PD [14],
the operation is permutation from Aut(C), selected at random by taking random
combinations of generators of Aut(C) [6]. As a reference, the performance of the
optimal maximum-likelihood decoder (MLD) is simulated where this is feasible, and
is otherwise approximated by a union bound using the full weight enumerator of
the code.

A simple scheme running SPA on seven distinct minimum-weight matrices for the
extended Golay code gives an improvement over SPA [1]. We observe a performance
gain of ∼ 0.5dB at bit-error rate 10-4 over this scheme (we still observe a gain of
∼ 0.25dB when we limit SPA-ELC to τ = 200 iterations). We also observe an
improvement in error-rate on this code over the more advanced multiple-bases belief
propagation (MBBP) algorithm, which uses 15 n×n matrices (based on cyclic shifts

6We have also simulated SPA and SPA-PD on systematic matrices (not shown), to verify that
FER performance is not significantly sensitive to this.
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(a) I3 = 20 fixed, and I2 = τ/(I1I3).

 1

 2

 3

 4

 5  1
 2

 3
 4

 5
 6

 7
 8

 9
 10

10
-3

10
-2

10
-1

F
E

R

3.5 dB
4.0 dB
4.5 dB

p
I1

F
E

R

(b) I2 = 30 fixed, and I3 = τ/(I1I2).

Figure 20: Simultaneous determination of parameters p and I1 for SPA-ELC de-
coding on code “R2.” The minimum FER is for low I1 and p ≈ 2.

43



 1

 2

 3

 4

 5  1
 2

 3
 4

 5
 6

 7
 8

 9
 10

10
-4

10
-3

10
-2

10
-1

FER

3.5 dB
4.0 dB
4.5 dB

p
I1

FER

Figure 21: Similar response for SPA-ELC on code “EQR48” (I3 = 20 fixed and
I2 = τ/(I1I3)).

of minimum-weight codewords in C⊥) in a parallel (i.e., list) decoding scheme [17].
At FER 3 · 10-3 we observe a gain of ∼ 0.2dB when using τ = 600 iterations. In
addition to this improvement in performance, we also achieve a significant reduction
in complexity, by avoiding parallelism, using fewer iterations (they use a maximum
of 1 050 iterations), and avoiding redundant parity-check matrices.

The overall observation is that SPA-ELC outperforms SPA for all codes, with a
significant gain (over 1dB) which increases with blocklength. Most interestingly, we
observe that the flooring effect of SPA on the “C68,1” code (occurring already at FER
10−4) is avoided by adding random ELC operations to the decoding process. For the
smaller-size codes, BCH15 and the extended Golay code, the performance of SPA-
ELC coincides with that of the SPA-PD decoder. This is an interesting observation,
as the SPA-PD is regarded among the state-of-the-art iterative SISO decoders for
HDPC codes. However, the overhead of generating elements from Aut(C) is not
trivial, which may make the random, graph-local SPA-ELC decoder an interesting
alternative. For the larger codes, it is apparent that SPA-ELC cannot keep up with
SPA-PD. This results from the weight increase due to random ELC, which is the
main motivation for this work. When the weight is not bounded, random ELC
will give graphs sampled from the orbit of the code, which is generally extremely
large. However, rare exceptions exist, including the ELC-preserved codes, as well as
“BCH15” and the extended Golay code for which the orbit is of size 2. This follows
from the fact that the orbits of these codes are well behaved for ELC decoding;
they contain only “low” weight graphs – see Examples 4 and 5. Thus, these codes
are nearly ELC-preserved, such that any sequence of random ELC operations will
preserve the structure of two, rather than one, graphs. SPA-ELC on these codes
can be thought of as SPA-PD, but now using two distinct graphs; in a sense, a
combination of SPA-PD and MBBP.

Consider next the R2 code, for which Aut(C) is small, and even more importantly
the “C38,2” code, for which Aut(C) is trivial. These codes are included to report
the performance of SPA-PD on codes which are arguably not the optimal choice for
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Figure 22: Details for SPA-ELC with I1 = 1, I2 = 30, and I3 = 20. Here, p = 0
denotes SPA decoding (with no damping). p may be increased to slightly reduce
flooring effect.

this algorithm. For these codes, it is seen that SPA-ELC has a gain over SPA-PD,
especially in terms of a removing a floor-effect on “R2.” The “C38,2” code is a
propos of an important class of codes, for which the structure is not so strong as
to facilitate a nontrivial Aut(C). Although not considered in this work, for most
random codes (such as LDPC codes) it may be expected that Aut(C) is trivial,
in which case SPA-PD “reduces” to SPA (conceptually, only applying the identity
permutation), giving further meaning to the aforementioned gain of SPA-ELC over
SPA. To emphasize; SPA-ELC can improve SPA decoding on codes where SPA-PD
cannot.

For the larger “EQR48” and “C68,1” codes, however, |Aut(C)| and the orbit size
are both large (in fact, the actual size of the orbit appears to be impractical to
compute), so additional measures are required to maintain the gain of ELC-based
decoding. Using WB-ELC, it is possible to bound the weight due to ELC, and the
simulations verify the assumption that the performance of iterative SISO decoding
is sensitive to increased graph weight; SPA-WBELC shows a consistent gain over
SPA and SPA-ELC for all codes considered, closing the gap to SPA-PD also for
these largest codes. For the special “BCH15” and extended Golay code, we verify
that the performance of SPA-ELC and SPA-WBELC is the same.

The choice of parameters has a large impact on SPA-WBELC performance. As dis-
cussed, a preprocessing stage is required not only to obtain a reduced-weight initial
graph H0, but also to check that the “low” weight sub-orbit of this graph (within
|H0| + T ) is sufficiently large to provide the required amount of diversity during
decoding. The SPA-WBELC decoder uses the exhaustive algorithm WB ELC(b)
to determine random WB-ELC operations, rather than one of the real-time ver-
sions. This algorithm does not employ heuristics (i.e., kicks), so it is important to
choose an initial graph for which a sufficiently large sub-orbit is “available” during
decoding. Assuming T ≥ 0, it is always possible to go back to the previous graph
by undoing the previous WB-ELC operation. The SPA-WBELC decoder will per-
form pI3I2 = pτ/I1 WB-ELC operations during decoding, so a sufficient amount
of diversity is, arguably, ∼ pτ/I1 distinct Tanner graphs. Alternatively, a speed-up
could be achieved by using WB ELC(c) (or even WB ELC(c,1)), but then at a small

penalty in FER due to the number of kicks required by these real-time implementa-
tions. As the aim of this work is to report the benefits of bounding the weight due
to ELC, we have not gone into detail on this and do not include a dedicated set of
simulations. Using Alg. minIP, we are able to reach (or, at least closely approach)
the minimum-weight bound from (2), producing a set of candidate bounded-weight
graphs. The procedure outlined in Section 4.3 gives an indication on whether the
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Figure 23: Simultaneous determination of parameters p and I1 for SPA-WBELC
decoding on code “R2.” Here, I3 = 20 and I2 = τ/(I1I3).

number of distinct Tanner graphs reachable via WB-ELC within threshold T is
sufficient. This way, the initial graph H0 is chosen, and the parameter T is set. In
summary, using T = 4 or 8, diversity and weight-bounding is achieved for “R2” and
“EQR48.” All codes were simulated using WB ELC(b), so, for “C68,1,” the thresh-

old used in simulations was increased to T = 56 in order to reduce simulations time
for this code.

The FER performance of SPA-WBELC has a deterministic response to increase in
T . As shown in the simulations, by increasing T , a gain is found in the low-SNR
range. Yet, for increasing SNR, the FER performance “breaks off” at some point,
approaching that of SPA-ELC. As such, this should not be considered a floor-effect
(as the FER resumes its initial slope), but rather an indication that the distinc-
tion between SPA-WBELC and SPA-ELC is stronger at low SNR. This may be
explained by considering the general performance of SPA; at low SNR (high noise),
the number of iterations is, generally, higher than that at high SNR. Thus, the
number of operations (in this sense, ELC operations) is greater per frame simulated
at low SNR. At high SNR, as the average number of iterations per frame approaches
1 (an initial syndrome check is not used in this work, which would otherwise give
an average of 0 iterations), the result of ELC and WB-ELC is to a large extent the
same, as the weight increase of SPA-ELC is limited to at most one stage consisting
of p ELC operations.

5.4 Complexity Observations

We also report simulations data on the average complexity of the various decoding
algorithms. Since the SPA-ELC and SPA-WBELC decoders use a systematic ma-
trix and modify the corresponding graph during decoding, whereas the SPA and
SPA-PD decoders use a static, nonsystematic matrix, the complexity cannot be re-
ported simply in terms of average number of iterations per codeword. However, the
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complexity of all stages of SPA decoding and the ELC operation is proportional to
the number of edges involved, so decoding complexity may be measured in average
number of SPA messages [9, 11], counted as

χD =
1

F

∑

F

J≤τ
∑

j=1

|Hj | (19)

where J is the number of iterations used for a frame (which varies with SNR and
the specific noise pattern), and F is the total number of frames simulated per SNR
point. In terms of messages (edges processed), the complexity of one (flooding) SPA
iteration is 2(|G| + n − k) = 2(kγ̄ + n − k). For the following argument, we assume
again that k = n − k. At the expected “50% weight” the complexity of one SPA
iteration is 2k(γ̄ + 1) = 2k(k/2 + 1) = k2 + 2k, which is significantly higher (by at
least a factor of 4) than the ELC complexity, k2/4−k+1, from (5). As such, we do
not take the overhead of applying ELC operations into account in the comparisons
– especially when SPA iterations are in the log-likelihood domain, where the check
node update rule involves use of the computationally heavy hyperbolic tangent rule
(this is not taken into account in the analysis above).

For complexity, as defined in (19), we observe the desired effect of bounding the
weight increase due to ELC. For SPA-ELC, the average weight of H quickly set-
tles around “50% weight,” i.e., k(k + 2)/2 following from (6), whereas for SPA-
WBELC, the average weight is around |H0| + T – as shown by the histograms in
Figs. 15(b), 16(b), and 17(b). The inset plots, comparing number of SPA messages,
in Fig. 19 indicate a general trend where the SPA-PD decoder has the lowest com-
plexity, while the SPA is the most complex decoder. As these two algorithms use
the exact same graph (for a given code), any difference must be entirely in terms
of number of iterations used per codeword. In other words, this shows how the
SPA-PD is a very important benchmark, as it gives an improvement in both FER
and complexity. Similarily, our proposed SPA-WBELC algorithm also has an im-
provement in complexity (in terms of average number of SPA messages), over SPA
and SPA-ELC, and is not far from the benchmark complexity of SPA-PD. The com-
plexity improvement (over SPA-ELC) is a direct benefit from bounding the weight.
However, as we have discussed, there is a significant search overhead incurred by
the SPA-WBELC decoder. This is highly implementation-dependant, and more
efficient implementations (perhaps even tailored to the specific code used) may be
possible.

Conclusion

In this work, we have presented a mapping from a Tanner graph to a simple, bipar-
tite graph such as to facilitate the use of a graph operation known as ELC during
iterative, graph-based decoding. It is known that ELC modifies locally the struc-
ture (i.e., the edges) of a graph, without changing the associated code. We have
identified and described how the ELC operation – or more generally a sequence of
ELC operations – may induce a graph isomorphism, and how this is linked to code
automorphism, i.e. to Aut(C). From the code perspective, we have also defined
a notion of Tanner graph isomorphism (row-equivalence of matrices), and shown
the relationship to the corresponding trivial (in terms of decoding) subgroup of
Aut(C). This gives a natural relationship with a state-of-the-art decoding algo-
rithm for classical (HDPC) codes, SPA-PD, which improves decoding by employing
random permutations from Aut(C) during decoding.
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The concept of isomorphic ELC operations has been generalized to a weight-bounding
application of ELC, WB-ELC, for which the effect of ELC on the weight of the graph
is upper-bounded by a threshold. All possible instances of WB-ELC due to single
and double application of ELC on a graph are classified, where we show that all
double instances occur on adjacent edges. In this sense, WB-ELC adheres to the
locality of ELC and SPA, which, in turn, simplifies the implementation and com-
plexity of an algorithm to enumerate all WB-ELC operations on a graph, within
a threshold value. The complexity of such an algorithm is analyzed theoretically,
and verified empirically by simulations on a set of different graphs (corresponding
to typical HDPC codes of different blocklength).

Several applications of WB-ELC are suggested, which all relate to the context of
graph-based decoding on a Tanner graph of a HDPC code. First of all, a set of
reduced-weight (Tanner) graphs may be produced using WB-ELC with a negative
threshold, from which a graph suitable for decoding is chosen in terms of having a
large bounded-weight sub-orbit, to within some threshold. To facilitate the use in
decoding, various heuristics are proposed to devise a real-time, reduced-complexity
version of the enumeration algorithm. Again, simulations are used to assess the
benefits of these heuristics on the same set of graphs (HDPC codes). The resulting
operation is finally used to describe a SPA-WBELC decoder.

A generalized framework for SISO decoding of HDPC codes is proposed, based
on the SPA-PD algorithm. By abstracting the operation used to gain diversity in
between SPA iterations, various decoding algorithms may be implemented in this
common framework. This ensures a fair comparison in simulations results, which
are presented both in terms of FER and complexity (in terms of number of SPA
messages computed per codeword). In this context, we also describe a novel edge-
local damping rule, which is suitable in the local context of ELC-based decoding.
In total, extensive simulations data show a consistent gain of SPA-ELC and SPA-
WBELC over SPA, and where SPA-WBELC approaches closely the performance
of SPA-PD. Furthermore, we emphasize types of graphs (or, codes) well-suited for
SPA-WBELC, but for which SPA-PD can not be used.
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Appendix

A. Proof of Lemma 2, ELC on Adjacent Edges

Proof: Let A 6∼ B denote the complementation of the edges between nodes in A and
B, where double complementation cancels out: A 6 6∼ B = A ∼ B. Define the sets
A = N u

v \N u
v′ , B = N u

v ∩N u
v′ , C = N u

v′ \N u
v , and D = N v,v′

u . ELC on two adjacent
edges, {(u, v), (v, v′)} gives the same graph as ELC directly on (u, v′). Consider the
initial graph, G, consisting of the following components

G = (u, v), (u, v′), (u,D), (v,A ∪ B), (v′, B ∪ C), (A ∪ B ∪ C) ∼ D.
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We may then denote the graph after ELC on (u, v) as G(u,v), for any edge

G(u,v) = (v, u), (v, v′), (v,D), (u,A ∪ B), (v′, A ∪ C), (A ∪ B) 6∼ D,C ∼ D

and

G{(u,v),(v,v′)} = (v′, u), (v′, v), (v′,D), (u,B ∪ C), (v,A ∪ C), A 6 6∼ D, (B ∪ C) 6∼ D

where double complementation cancels out, e.g., A 6 6∼ D = A ∼ D. It is then readily
seen that

G(u,v′) = (v′, v), (v′, u), (v′,D), (v,A ∪ C), (u,B ∪ C), A ∼ D, (B ∪ C) 6∼ D

= G{(u,v),(v,v′)}.

Note that, due to the swap in the first ELC on (u, v), we have that (v, v′) and (u, v′)
refer to the same edge, before and after ELC on (u, v). See also Fig. 4. �

This proof can be extended to nonbipartite graphs, although this is outside the
scope of this paper.

B. Implementation Notes for WB-ELC Algorithm

To facilitate an efficient reuse of sets, slight modifications are made to the counting
formulas. Theorem 6 considers pairs of edges adjacent at distance one, so, given
(u, v) from Theorem 3, we can reuse the sets N u

v and N v
u and |Eu,v| for all depth-2

instances rooted in the edge (u, v).

For Theorem 6, v′ is picked from N v
u . Then, for all possibilities of u′ ∈ A = N u

v \N u
v′ ,

it is possible to reuse the left-hand sets A, B, and C for all instances of Theorem 6.
By choosing u′ ∈ A rather than N u

v , we know that (u′, v′) /∈ G. Thus, we know that
Theorem 6 applies, and, since A ⊆ N u

v , we generally save some search time. With
W = E ∪ F = N v

u′ , we get the following modifications to (10)

u′ ∈ A ⊂ X = N u
v ⇒ |A| → |A| − 1, |EA,E∪F | → |EA,W | − |W |

v′ ∈ D ⊂ Y = N v
u ⇒ |D| → |D| − 1, |EB,D∪E | → |EB,Y | − |B|

|EC,D∪F | → |EC,D∪F | − |C|.

From Theorem 4 we know that u′′ must be selected among nodes within distance
2 from v, which gives a significant reduction in search space. This means that, for
Theorem 5, we choose u′′ ∈ C = N u

v′ \ N u
v , since the node must be at distance two

from (u, v). By choosing v′′ ∈ Nu′′ \N v
u , we can reuse W ′ = Nu′′ . We also reuse the

sets corresponding to the root edge, (u, v) (namely, Y and X). For all valid choices
of v′′, W ′ = N v′′

u′′ ∪ {v′′}. This means that |N v′′

u′′ | = |W ′| − 1 is invariant (does not

need to be recomputed). Furthermore, as v′′ ∈ W ′ is connected to X ′ = N u′′

v′′ , we
have that |EX′,Nu′′

v′′

| = |EX′,W ′ | − |X ′|.

For Theorem 5, we need to do a little more bookkeeping to avoid repetitions. First
of all, a simple check, u′′ > u, is to avoid combinations of ELC that give the same
graph, i.e., {(u, v), (u′′, v′′)} = {(u′′, v′′), (u, v)}. However, additional steps need to
be taken to avoid repetitions. Consider the situation when we arrive at Theorem 5:
The edge (u, v) is reused from Theorem 3, and v′ is reused from Theorem 6 (in-
directly, in the use of C). Now we can check Theorem 5, {(u, v)(u′′, v′′)}, for all
possibilities of u′′, v′′. However, for different choices of v′, there may be an overlap
in the resulting sets C, resulting in repeated enumeration of WB-ELC according
to Theorem 5. Such challenges arise as a consequence of nested evaluation of the
theorems, and a quick solution to the problem is to simply keep track of the ‘used’
edges (u′′, v′′) in a set S, and avoid checking these repeatedly.
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