
REPORTS
IN

INFORMATICS

ISSN 0333-3590

The SHIP Validator: An Annotation-Based
Content-Validation Framework for Java

Applications

Dag Hovland, Federico Mancini and Khalid A.
Mughal

REPORT NO 389 September 2009

B

ERGENSI
S

U
NI

VERSITAS

Department of Informatics

UNIVERSITY OF BERGEN
Bergen, Norway

This report has URL http://www.ii.uib.no/publikasjoner/texrap/pdf/2009-389.pdf

Reports in Informatics from Department of Informatics, University of Bergen, Norway, is available at
http://www.uib.no/ii/en/research/reports-in-informatics.

Requests for paper copies of this report can be sent to:

Department of Informatics, University of Bergen, Høyteknologisenteret,
P.O. Box 7800, N-5020 Bergen, Norway

http://www.ii.uib.no/publikasjoner/texrap/pdf/2009-389.pdf
http://www.uib.no/ii/en/research/reports-in-informatics

1

1

The SHIP Validator: An Annotation-Based
Content-Validation Framework for Java Applications

Dag Hovland, Federico Mancini and Khalid A. Mughal

Abstract

In this paper we investigate the use of Java annotations for software security purposes. In particular,
we implement a framework for content validation where the validation tests are specified by annotations.
This approach allows to tag which properties to validate directly in the application code and eliminates
the need for external XML configuration files. Furthermore, the testing code is still kept separate from
the application code, hence facilitating the creation and reuse of custom tests. The main novelty of this
framework consists in the possibility of defining tests for the validation of multiple and interdependent
properties. The flexibility and reusability of tests are also improved by allowing composition and boolean
expressions.

1 Introduction
The OWASP Top Ten Project [1] lists the lack of proper input validation as the most prevalent cause of
critical software vulnerabilities. For this reason, it is important to check that all input satisfies the criteria
under which it is safe to execute the program. As an example, take a Java program performing integer
division. Integer division by 0 is an illegal operation, resulting in a runtime exception. Hence the value of
the divisor should always be validated.

Carefully designing the application can alleviate problems caused by incorrect input. However, this
alone will not prevent problems that might arise when a bad input is either passed on to other subsystems
like databases, or manipulated and returned to the user.

Standard input validation mechanisms should make sure that all input is validated for length, type, syn-
tax, and business rules before accepting the data to be displayed, stored or used [1]. This task can be repeti-
tive and tedious for a programmer, and this is is the primary motive for implementing frameworks for input
validation (Commons Validator [2], Struts 2 [3], Hibernate [4], and Heimdall [5]). Such frameworks make it
easier to maintain and execute the testing code by decoupling the application logic from the validation logic.

For object-oriented languages like Java, the challenge is to validate specific properties of an object rep-
resenting the input, without writing validation code in the object itself. Historically, XML configuration
files have been used to achieve this separation of concerns, by explicitly storing the names of the properties

∗Email: Dag.Hovland,Federico.Mancini,khalid.mughal}@ii.uib.no,

Department of Informatics
University of Bergen
PB. 7803
N-5020 Bergen
Norway

2

to be tested and that of the tests to be performed. At runtime, reflection [6] or Servlet filters (listener or
interceptors) [3] are then used to actually run the tests on the target methods.

An alternate solution, based on annotations, which were introduced in Java 5.0 [6], has gradually
emerged. Approaches for input validation based on this new technology are described in [7, 8, 9], and
employed, for instance, by Struts 2 [3] and Hibernate [4].

Our approach is inspired by Heimdall [5], but adopts annotations instead of XML configuration, and
provides more extensive and powerful tools for the creation of custom validation tests. The reasons to
prefer annotations over XML configuration files have been well motivated in [8], and here we show in
practice how far annotations can be pushed for input validation purposes. Although some technical solutions
we use are also found in [7, 8, 9], we offer a simpler and more powerful way of creating custom tests,
with focus on reusability. Furthermore, we propose a way of defining validation constraints over multiple
properties of an object simultaneously, rather than just single properties. This allows the user to validate
the relationship between interdependent properties, which, to our knowledge, is not possible with any other
validation framework based on annotations or XML. For this purpose we distinguish between property-tests
and cross-tests. A property-test is used for the validation of a single object property (for instance, JavaBean
properties accessible through getter-methods), whereas a cross-test is concerned with constraints involving
multiple properties.

The next section shows a simple example of how annotations can be used for validation. This running
example is gradually extended to show more advanced features of our framework. A more formal description
of how new annotations can be created and used is given in Section 3. The second part of this article contains
the implementation details of the current version of the framework. Finally we compare our work to the other
framework we mentioned previously in this section, and draw some conclusions. The latest version of its
implementation is available from [10].

2 A Running Example
In this section we introduce a running example used throughout the paper, and show how annotations can be
used to define tests on single properties of an object.

We will use the web form for international money transfers from a hypothetical Internet bank (see Figure
1). IBAN (International Bank Account Number) is the standard for identifying bank accounts internationally.
Some countries have not adopted this standard, and for money transfer to these countries, a special clearing
code is needed in combination with the normal account number of the beneficiary. BIC (Bank Identifier
Code), also known as SWIFT, is needed to identify the beneficiary’s bank uniquely.

We assume that the object representing the form is created in Java, and that each field in the web form
is represented by a property of this object. Fields where the user does not enter a value, are in this example
represented by the null value. A partial implementation of this Java object is shown in Figure 1. Here every
annotation represents a test to be run on the return value of the method it is applied to. In our framework,
annotations representing tests are called validation-annotations. This categorization is further split into
property-annotations, which represent property-tests, and cross-annotations, which represent cross-tests.
All the annotations in Figure 1 are property-annotations, i.e., they involve checking a single property.

We use property-tests to check whether basic formatting rules are respected. For example, the annota-
tion @IntRange(min=0,max=10000) indicates whether the value of amountEuro is non-negative
and not greater than 10000. The property-annotation @IntRange(min=0,max=99) represents a test to
check whether amountCents is between 0 and 99. The property-annotation @ValidateBIC represents
a property-test for BIC codes, and @Required means that the field cannot be left empty.

3

IBAN

BIC BICCODE

Account

Clearing-code AB1232342

Amount € 10000 . 10 c

Pay international bill

Insert title here file:///scratch/workspace/Validation/tex/form.html

1 of 1 02/06/09 21:34

Figure 1: Web form for international bank transfer.

EXAMPLE OF ANNOTATED CODE

@ValidateBIC
@Required
public String getBIC() {
return BIC;

}

@IntRange(min=0,max=10000)
public Integer getAmountEuro() {
return amountEuro;

}

@IntRange(min=0,max=99)
public Integer getAmountCents() {
return amountCents;

}

Table 1: Example code using the property-annotations to test the input from the web form in Figure 1.

4

INTERFACE OF THE INNER CLASS OF A PROP-
ERTY ANNOTATION

DECLARATION OF @IntRange

public interface IPropertyTester
<A extends Annotation,I> {

public boolean runTest(A an, I o)
throws ValidationException;

}

@Validation
@Retention(RetentionPolicy.RUNTIME)
@Target({ElementType.ANNOTATION_TYPE,

ElementType.METHOD})
public @interface IntRange <IntRange,

Integer> {
int min();
int max();
public static class Tester
implements IPropertyTester{
public boolean runTest(IntRange r,

Integer v) {
return(v >= r.min() && v <= r.max());
} } }

Table 2: Example of a correct property-annotation declaration.

The annotations only specify what tests should be run on each value. To actually run the tests, the
WebForm object must be passed to a validator. The validator inspects the object through reflection, extracts
the annotations and the return values from the getter-methods, and invokes the corresponding tests. This
process is discussed in details in Section 4.

3 Validation annotations and tests
In this section we discuss the reasons for distinguishing between property-tests and cross-tests, and provide
details of how they are implemented and used.

3.1 Property-annotations and Property-tests
Declaring a property-annotation is fairly straightforward. As an example we use the declaration of the
annotation @IntRange shown in Figure 2.

A fundamental part of the declaration is the meta-annotation @Validation, which works as a marker.
Without it, our framework would not be able to distinguish a property-annotation from other annotations.
There are other solutions to this problem, but such marker-annotations are a standard way to compensate for
the lack of inheritance in annotations [8, 7, 9].

The @Retention(RetentionPolicy.RUNTIME) meta-annotation must be present such that the
property-annotation is accessible at runtime. The annotation @Target has the usual meaning, but we use
both ElementType.ANNOTATION_TYPE besides ElementType.METHOD to limit the use of some
special annotations. The annotation declaration itself is fairly standard and can be annotated with any number
of other annotations.

Finally, we require a public inner class which must contain the code of the property-test associated with
this property-annotation. This class must implement the interface IPropertyTester shown in Table 2

5

in order to ensure that it provides the implementation of the method runTest(), which is invoked by the
framework to run the test. Another possible approach for associating a test to an annotation is explained in
[7].

The test corresponding to the property-annotation @IntRange is defined in the inner class Tester, as
shown in Figure 2. The method runTest() is called by reflection and takes as parameters an instance of
the annotation and the object to test (that is, the return value of the method). We allow only one inner class
implementing IPropertyTester in the annotation declaration.

3.1.1 Handling null values

Many validation frameworks provide an annotation @Required which indicates that a certain property
should not be null [3, 4, 5]. However, no annotation seems to be provided to specify when a property can
be null.

To understand why this might be useful, let us assume that we allowed the field BIC in Figure 1 to
be left empty by the user, i.e., the method getBIC() in Table 1 was annotated with @NotRequired
instead. This means that if return value of getBIC() is null, no NullPointerException shpuld
be thrown during the validation process. To achieve this, either the test represented by @ValidateBIC
must be able to correctly handle a null value in this situation, or the framework should prevent any test
to be run when BIC has the value null. In the first case the burden of treating this special case is left
to the programmer, who must consider the possibility that any test he or she designs might be run on a
null value. However, tests are supposed to be reusable and cannot account for all possible ways of treating
a null value in different situations. The same problem arises when, in the absence of a @Required
annotation, the framework should decide how to interpret a null value, at the risk of masking a possible
error or causing one.

To avoid these problems, we provide the @NotRequired annotation, which can be used to specify that
a null return value is valid, and that in this case no other tests should be run on the value. If neither a
@Required nor a @NotRequired annotation is specified, the framework will simply run the other tests
on the method, even if the return value is null. Therefore, by default, our framework does not give any
special treatment to null values, and the programmer can design reusable tests, by handling a null value
in an independent way. In this setting, any NullPointerExceptionwill properly signal a programming
error.

3.2 Cross-annotations
Recall the specifications of international bank transfers mentioned in Section 2. All transfers require the BIC
code of the receiving bank, and in addition either the IBAN or both clearing code and the account number.
This means that there is a mutual dependency between some fields of the web form. Therefore, in order
to check such constraints in the corresponding object, it is not enough to consider the return values of the
involved methods independently. For this purpose we introduce a new type of validation-annotation which
we have called cross-annotations. These allow a programmer to create tests involving multiple properties of
an object, i.e., cross-tests.

In Figure 3 we extend the example in Figure 1 to show how it is possible to annotate the WebForm object
in order to enforce the constraints mentioned earlier. Each cross-test is represented by a cross-annotation,
which is applied to all methods whose return values are involved in the test. All annotations in the example
are cross-annotations with the exception of @Required and @NotRequired. The property-annotations
from Figure 1 are not shown in order to keep the example simple.

6

EXAMPLE OF USAGE OF CROSS-ANNOTATIONS

@Required
public String getBIC() { return BIC; }

@ExactlyOneNull
@NotRequired
public String getIBAN() { return IBAN; }

@ExactlyOneNull
@AllOrNoneNull
@NotRequired
public String getAccount() {
return account;

}

@AllOrNoneNull
@NotRequired
public String getClearingCode() {
return clearingCode;

}

Table 3: Code annotated with cross-annotations.

The cross-test represented by @ExactlyOneNull, which is applied to the return values of the methods
getIBAN() and getClearingCode(), ensures that exactly one of them has not been filled in the web
form. Furthermore, the cross-test represented by @AllOrNoneNull makes sure that either all or none of
the methods marked with it return null. Thus, we are able to check that either the IBAN is used, or both
the account number and the clearing-code are specified, but not all three.

Cross-annotations can be declared in almost the same way as property-annotations, as shown in Table
4. Only the marker-annotation, @CrossValidation, and the interface of the inner test class, shown in
Figure 4, are different.

As can be seen in Figure 4, a cross-test takes as parameter the corresponding cross-annotation and all the
return values involved in the test as a single List. This means that the return values are not differentiated
according to what method they come from, hence limiting the type of cross-tests that can be developed in
the current framework. These limitations are discussed in the next section.

3.3 Boolean composition
Another novelty of our approach is that we can combine validation-annotations with boolean operators in
order to create new validation-annotations. These composed annotations can be created by declaring a new
validation-annotation which is annotated with the validation-annotations we want to compose. In addition,
the special meta-annotation @BoolTest can also be used in the composition. Its single element is of type
public enum BoolType{OR, AND, ALLFALSE}, with the usual semantics. By default, specifying
a list of annotations without the @BoolTest annotation represents the conjunction of the corresponding

7

INTERFACE FOR THE INNER CLASS OF A CROSS-ANNOTATION

public interface ICrossTester<A extends Annotation, V> {
public boolean runTest(A a, List<V> v)

throws ValidationException;}

EXAMPLE OF CROSS-ANNOTATION

@Retention(RetentionPolicy.RUNTIME)
@Target({ElementType.ANNOTATION_TYPE, ElementType.METHOD})
@CrossValidation
public @interface AllOrNoneNull {
public static class Tester implements
ICrossTester<AllOrNoneNull,String> {
public boolean runTest(AllOrNoneNull c, List<String> v) {
... } }

Table 4: Example of a correct cross-annotation declaration.

DECLARATION OF @ValidateBIC

@Validation
@BoolTest(BoolType.AND)
@PatMatch("\\w{8}|\\w{11}")
@AdditionalTest
public @interface ValidateBIC{}

Table 5: Definition of the annotation @ValidateBIC, used in Figure 1.

tests, thus BoolType.AND is not strictly necessary.
Figure 5 shows the declaration of the annotation @ValidateBIC which we first introduced in Figure

1. This annotation is created by composing @PatMatch("\\w{8}|\\w{11}"), which is a common
annotation for string-matching tests, and the one represented by @AdditionalTest, which represents
some other possible test that we do not specify here. Since the annotation @BoolTest(BoolType.AND)
is also specified, the test represented by @ValidateBIC will succeed only if both the tests represented by
the two other property-annotations succeed.

Boolean composition can also be applied with cross-annotations. For example, given the web form
above, we want to check that the overall amount transferred is greater than 0.00, but not greater than
10000.00, we can use the cross-annotation @AmountCheck as shown in Table 6, since the fields for Euros
and cents are represented as different properties in the WebForm object.

In Table 6, we see that @AmountCheck is a composition of two other cross-annotations: @SumMin(1)
and @MaxAmount. The first represents a test checking that the sum of amountEuro and amountCents
is greater than 0. The second is in turn a composed cross-annotation, which by checking that either one of
the two values is smaller than 1, or both are smaller than 10000, can guarantee that the total amount they
represent together is at most 10000. This can be represented as the following formula: (Euros + Cents ≥
1) ∧ ((Euros < 1 ∨ Cents < 1) ∨ (Euros < 10000 ∧ Cents < 10000)). Besides, it is clear that the order

8

LOGICAL STRUCTURE OF @AmountCheck DECLARATION OF @MaxAmount

@CrossValidation
@BoolTest(BoolType.OR)
@OneLessThan(1)
@AllLessThan(10000)
public @interface MaxAmount {}

DECLARATION OF @AmountCheck

@CrossValidation
@BoolTest(BoolType.AND)
@SumMin(1)
@MaxAmount
public @interface AmountCheck {}

USAGE OF @AmountCheck IN THE CODE

@AmountCheck
public Integer getAmountEuro() {
return amountEuro;}

@AmountCheck
public Integer getAmountCents(){
return amountCents;}

Table 6: Example of composition with cross-annotations.

of Cents and Euros in the formula does not matter. In each subexpression, the same property must hold for
both. This means that we can always express this constraint by our operators as shown always in Table 6.

Now that we introduced composition, it might become clearer why we imposed the limitations discussed
in the previous section on cross-tests. If we allowed elements in cross-annotations which could be associated
to a particular return value, for instance to identify the method they came from, composition would become
more involved.

However, it is allowed to use element parameters to configure the test represented by the annotation,
as in @SumMin. Furthermore, since such a parameter should be the same for each instance of the cross-
annotation appearing in the object, it is good practice to encapsulate the annotation with the specific element
value into a new cross-annotation without any elements.

Using composition to encapsulate an annotation with specific argument values into one without parame-
ters, can also ease maintenance or/and refactoring. Also, boolean composition makes it particularly easy to
create validation tests based on white- and blacklisting.

Table 7: Examples of each of the four types of tests.
Basic Tests Composed Tests

Property-Tests @IntRange @ValidateBIC
Cross-Tests @AllOrNoneNull @AmountCheck

9

3.4 Recursive validation
In some cases, the return value of a method can be an object that needs special validation itself. In this
situation, the kind of tests that we have presented until now, might be too generic for an efficient validation.
On the other hand, we would like to avoid ad-hoc validation tests as much as possible, to preserve reusability.
For this purpose we define the special annotation @Valid, which validates an object according to the tests
defined in its own class declaration. In other words, we recursively run a validator on a return value, before
testing the rest of the object that is currently being validated.

A simple example might be to replace the methods getAmountEuro() and getAmountCents()
in the class WebForm, with a method getTotalAmount() which returns an object of type Amount and
was annotated with @Valid as shown in Table 8.

NEW METHOD OF THE CLASS WebForm NEW CLASS TO VALIDATE RECURSIVELY

@Valid
public Amount getTotalAmount {

return this.totalAmount;
}

public class Amount{
....
@AmountCheck
public Integer getAmountEuro() {
return amountEuro;}

@AmountCheck
public Integer getAmountCents(){
return amountCents;}}

Table 8: Example of recursive validation.

3.5 Composing property-tests into cross-tests
As seen above, cross-tests are given a list of values of the same type, and the test cannot distinguish between
them. Many cross-tests therefore consist either in counting how many of the values pass a given test, or in
applying some operation to all the values (e.g., a sum) and check whether the result passes a test. It seems
natural to reuse property-annotations to create these tests.

The annotations @CrossProperty and @CrossOperator can be used to construct cross-tests from
property-tests. The semantics of each annotation is as follows:

• @CrossProperty: it takes one of the operators shown in Table 9 and an integer. These two param-
eters together define how many return values must satisfy the given property-tests. For the operators
ALL and NONE, however, no integer is required.

• @CrossOperator: it takes a class defining an associative operator as argument (e.g., sum). This
operator is applied to the list of return values associated with the cross-annotation, and the resulting
value is checked against the given property-tests.

Table 10 contains examples of how @CrossProperty and @CrossOperator can be used to give
an alternative implementation of the cross-annotations: @AllNull, @OneLessThan(1) and @SumMin
seen in Table 6. Unfortunately, the cross-tests composed from property-test cannot take arguments, so the

10

Table 9: Operators that can be used to compose property-annotations into cross annotations
Annotation Argument

@CrossProperty {ALL,NONE,ATLEAST,ATMOST,EXACTLY}, int n
@CrossOperator Class <? extends ICrossOperator >

new test is called @OneLessThan1. By using this alternative implementation, the annotation @AmountCheck
defined in Table 6 can be created without writing any inner class containing the actual test.

DECLARATION OF @AllNull

@Retention(RetentionPolicy.RUNTIME)
@CrossValidation
@AllProperty
@IsNull
public @interface AllNull {}

DECLARATION OF @OneLessThan1

@CrossValidation
@Retention(RetentionPolicy.RUNTIME)
@CrossProperty(operator=PropertyOperator.ATLEAST,n=1)
@IntUpperBound(0)
public @interface OneLessThan1 {}

INTERFACE FOR CLASSES USED AS ARGUMENTS OF @CrossOperator

public interface ICrossOperator <A> {
public A op(A l, A r);

}

DECLARATION OF THE CLASS Sum

class Sum implements ICrossOperator<Integer>{
public Integer op(Integer l, Integer r){
return l+r;

}
}

DECLARATION OF @SumMin

@Retention(RetentionPolicy.RUNTIME)
@CrossValidation
@CrossOperator(Sum.class)
@IntLowerBound(1)
public @interface SumMin {}

Table 10: The code showing how to reimplement some cross-annotations composing @AmountCheck.

11

4 Implementation details

4.1 Packages
The hierarchy of packages comprising the framework is shown in Figure 2.

Figure 2: Package hierarchy.

4.1.1 Package validation

This is the main package which contains the following classes and interfaces:

• IValidatorFactory: interface used to define a factory creating Validator objects.

• ValidatorFactory: the (currently) unique factory implementing IValidatorFactory.

• IValidator: the interface defining the objects returned by an IValidatorFactory.

• Validator: the class of the validator objects used by the application.

• ValidationException: the class defining validation exceptions that can occur in the framework.

All other packages are subpackages of the validation package.

4.1.2 Package constraints

The classes contained in this subpackage implement the tools needed to extract validation annotations from
the application code. They create the corresponding annotation objects that associate tests and return val-
ues, run the actual validations tests and create a summary of the outcome. The main class of the package
is AnnotationObject. It is an abstract class that defines a common behaviour for most objects in this
package by giving a standard implementation for the majority of its methods. The reason is that the main
steps in the validation algorithm are the same for all types of annotations, hence we only need to plug-in
specialized implementations of particular methods for each type. In other words we use the Strategy Pat-
tern [11]. In particular, for each type of validation-annotation, i.e., property-annotations, cross-annotations,
and cross-annotations created from property-annotations, we need specialized methods for creating the tree
structure of the boolean composition and to run the corresponding tests. Figure 3 shows the class diagram
of the package.

12

Figure 3: Relation between some of the classes in the package no.uib.ii.ship.validation.constraints.

Every class that extends that superclass AnnotationObject, that is, the three subclasses
PropertyAnnotation, CrossAnnotation and CrossPropertyAnnotation, contains a field
to store the instance of the annotation they represent and a list of the AnnotationObjects encapsulated
by this annotation. The type parameters T, U and V, represent respectively: the interface implemented by the
inner class of the annotation boxed in the object, e.g., IPropertyTester for PropertyAnnotation
objects; and the type of the parameters accepted by the runTest() method of such an inner class. This
allows us to retrieve the inner class of the annotations in a generic way by reflection, so that the method
getInnerTester() needs to be implemented only in the abstract class AnnotationObject and can
be used by all its subclasses.

The other methods defined in the class AnnotationObject need to be specialized by the subclasses,
and can be divided into two types: those that create the list of children of an annotation and those that run
the tests.

The methods runRecTest() and runBasicTest() are used to actually test the return values. In
particular, runRecTest() is only used recursively on the annotation tree and to build the summary tree
according to the boolean composition of the partial tests, while runBasicTest() is the method that
actually invokes the inner test of an annotation on the given return value to check whether it passes the test
or not.

The other two classes found in this package, PropertyTest and CrossTest, have the following
tasks in common:

1. Collect the validation annotations on a method;

13

2. Create an AnnotationObject which will contain the tree of all these annotations (where the
AnnotationObject at the root does not represent any real annotation and its annotation field is,
therefore, set to null);

3. Retrieve the return value of the method by reflection;

4. Pass the return value to the AnnotationObject when invoking the runTest() method.

The difference between the two classes is that, given an object to validate, the Validator creates a new
PropertyTest object for each method to validate, but only one CrossTest to store all cross-tests. The
reason is simply that we do not know all the methods involved in a cross-test until all methods of the object
have been checked by reflection.

An example of an IPropertyTest object is given by the object diagram in Figure 4. The object
represents the property-annotations on the method getBIC() shown in Figure 1. The recursive structure
of the property-annotations is preserved by the tree structure of the object. As a side remark, this is the
IPropertyTest object that is created when the return value of the getBIC() method is not null.
Otherwise, the annotation @Required would be the only one appearing in the object.

Figure 4: Example of an IPropertyTest object.

4.1.3 Package summary

This package contains the classes used to create a summary of the validation test results. The summary
is structured as a tree that mimics the recursive boolean composition of the tests, and every class in this
package represents a different type of node in this tree, specialized to store the outcome of a specific type of
test.

The composite pattern[11] is used to implement the functionality of this package. All classes implement
the interface ISummary, since they all need to be able to print out and return the test results they store.

14

Figure 5: Class diagrams of the package summary, and example of MethodSummary object.

However some of them, i.e., the leaves of the tree which are of type LeafSummary, do not need to list or
add children to themselves, so that the corresponding methods are left empty even though they are defined in
the interface. All others classes are extensions of the class AnnotationSummary. This approach allows
us to create and query a summary in a uniform manner.

The correspondence between a class of this package and the kind of test result it contains is quite straight-
forward. A ValidationSummary object contains the summary for a whole object that was validated, and
it consists of:

1. A MethodSummary object for each method annotated with property-annotations.

2. One CrossSummary object which contains the results of all cross-tests. It has the same structure as
a MethodSummary, but with the difference that a CrossSummary object does not represent any
method, and therefore the related field is initialized differently.

The summary can also contain other ValidationSummary objects in case of recursive validation,
i.e., if a method is annotated with @Valid (see Section 3.4).

A class diagram of the package is shown in Figure 5, together with an object diagram representing the
results of the validation test on the return value of the getBic() method with the input shown in Figure 1.

4.1.4 Package annotations

The package annotations contains all annotations that can be used to create new validation-annotations,
and the interfaces that the inner class of each annotation type must implement. These annotations are listed
in Table 11. The subpackages contain the “ready-to-use” validation-annotations provided with the frame-
work. They are organized in property-annotations (Table 12 and 13), cross-annotations (Table 14) and

15

cross-annotations created by composing property annotations. Since these last ones differ from the annota-
tions in Table 14 only in their implementation, and the fact that they cannot take parameters, we do not list
them here.

no.ii.uib.ship.validation.annotations
ANNOTATION ELEMENTS USAGE
@Validation – See Section3.1
@CrossValidation – See Section 3.2

C
O

M
P @BoolTest BoolType value See Section 3.3

@CrossOperator Class <? extends ICrossOperator > See Section3.5
@CrossProperty PropertyOperator operator See Section3.5
@AllProperty Boolean value See Section3.5

Table 11: Annotations used as markers and to compose other annotations.

no.ii.uib.ship.validation.annotations.method
ANNOTATION ELEMENTS USAGE

N
U

L
L @IsNull –

Represents a test that succeeds only if the return
value it is applied to is null

@Required – See Section 3.1.1
@NotRequired – See Section 3.1.1

@NullTest boolean value
Represents a test that succeeds only if the return
value it is applied to is not null or if it is null
and value==true

X
M

L @SchemaNode
String file
String url

Checks an XML document against a XML
Schema gave as a node, which can be found ei-
ther at the location specified in file or at the
URL specified in url

@SchemaString
String file
String url

As the previous one, but the XML schema is
given as a string

@PatMatch String value
To match a String against the given regular
expression

@Valid – See Section 8

Table 12: Annotations used for single methods, i.e., property-annotations.

16

no.ii.uib.ship.validation.annotations.method.range
ANNOTATION ELEMENTS USAGE

R
A

N
G

E
A

N
N

O
TA

T
IO

N
S @DoubleLowerBound double value

Specialized annotations for the types
double, int and String, used to check
whether a return value satisfies a given
lower or upper bound, or is within a given
range.

@DoubleRange
double min
double max

@DoubleUpperBound double value
@IntLowerBound int value

@IntRange
int min
int max

@IntUpperBound int value
@StringLowerBound String value

@StringRange
String min
String max

@StringUpperBound String value

@StringLengthRange
int min
int max

Checks whether a String has a length
within the range [min,max]

Table 13: Annotations used for single methods, i.e., property-annotations.

no.ii.uib.ship.validation.annotations.cross
ANNOTATION ELEMENTS USAGE

R
A

N
G

E @OneLessThan int value
Checks whether at least one of the involved return val-
ues is smaller or equal than value

@AllLessThan int value
Checks whether all the involved return values are less
or equal than value

@OneAtLeast int value
Checks whether at least one of the involved return val-
ues is equal or greater than value

@AllAtLeast int value
Checks whether all the involved return values are
equal or greater than value

N
U

L
L @AllOrNoneNull – Checks whether either all the involved return values

are null or none of them is

@ExactlyNNull int value Checks whether exactly n of the involved return val-
ues are null

SU
M @SumMin int value Checks that the sum of the involved return values is

not smaller than value.

@SumRange
int min
int max

Checks that the sum of the involved return values is
within the integer range [min,max].

Table 14: Annotations used on multiple methods, i.e., cross-annotations.

17

4.1.5 Package test

This package provides examples of how the framework can be used, including the working example in this
paper.

4.2 Sequence diagrams
In this section we describe in detail how the framework works in practice, using sequence diagrams.

4.2.1 Usage example

Figure 6 describes the execution of the code that the user has to put in his/her application in order to use the
framework. For example, the execution of the following code can be traced in Figure 6:

InputObj o = new Webform(null,"BICCODE",null,"AB1232342", 10000, 10);
IValidatorFactory vf = new ValidatorFactory();
IValidator v = vf.getValidator();
ValidationSummary vs = val.validate(o);
boolean success=vs.getTestResults();
if (!success)

System.out.println(vs.toString());

Figure 6: Sequence diagram for the main steps of the validation process, where o is the object to be tested.

The methods returning values of properties to be tested, in this case the methods of the class Webform
(which can be found in the package test), must be annotated by the programmer as shown in the example
in Section 2. An important precondition assumed by the framework, is that all properties of an object to be
validated, are available through no-arg methods, e.g. getter methods in JavaBeans. This is not an important
restriction, especially for objects representing an input. If existing classes allow access to input only through
methods with parameters, it should be easy to add a no-arg method, which then supplies default argument(s)
to the former method.

The result of the validation is returned as an object of the type ValidationSummary, which can then
be queried by the application.

4.2.2 The validation process

Details of the call to the method validate() of the Validator object, on an object o, are shown in
Figure 7. The validator goes through all the methods of the object o, and by reflection finds all annotations

18

that are marked for validation. Then, for each method with such annotations, all local tests are recursively
constructed as a tree, and run on the return value and a summary of the results is created. The cross-tests are
collected and stored in a hash map as we go through the methods, and are run after all methods have been
locally tested.

1. The CrossConstraints object keeps track of the cross-tests that should be run on values in the object o. Each
cross-annotation in o is stored as a key in the hash map crossTests, together with a CrossTest object
containing the list of return values associated with it.

Steps 2 to 14 are repeated for each method in the class of the object o.

2-4. MetaConstraints is used to extract and store the validation- and cross-annotations on the method. Only if
there are any such constraints the value of constrained is true, and Steps 5 to 14 executed.

5-9. The PropertyTest takes care of retrieving the return value, running the tests on this value, and constructing the
corresponding MethodSummary. The latter is added to the ValidationSummary by the Validator.

10-14. The Validator retrieves the return value of the method to pass it to the CrossConstraints, which, in
turn, updates the list of values in the crossTests map for each cross-annotation which appears on the method.

15-20. Calling the method runCrossTests() causes each CrossTest object in the hash map crossTests
to run the corresponding tests on its list of return values, in a similar way as PropertyTest does. Finally
CrossConstraints creates a CrossSummary as described in Section 4.1.3.

21-22. The CrossSummary is added as a normal MethodSummary to the ValidationSummary.

Figure 7: Sequence diagram for a call to validate properties of the object o.

19

The real testing and creation of a summary is shown in the sequence diagram of Figure 8. This diagram
shows how the the return value of the method getBic() is validated against the test represented by the
annotation @ValidateBIC, and how the corresponding summary is created. The names of the objects are
the same as those in the object diagrams in Figure 4 and Figure 5.

Figure 8: Sequence diagram showing the actual validation of the getBIC() method.

20

4.2.3 The validation summary

Table 15 shows the printout of the summary generated by the validator for the input given in Figure 1.
To illustrate the similarity of the structure of the summary with that of an AnnotationObject, the

tree structure of the annotation @AmountCheck is included in the same table, where the boxes represent
the AnnotationSummarys containing the result of corresponding partial tests.

This tree structure is also graphically illustrated in the summary printout, but here only the tests that
caused the validation to fail are shown. Notice that because of the boolean operators, the meaning of failure
is dependent not only on a single test, but on entire subtrees of the summary. For this reason a different
message is printed according to which boolean operator was involved in the test. For instance, we can see
that @AmountCheck failed because all of @OneLessThen(1) and @AllLessThen(10000) failed.
If at least one had succeded, then also @MaxAmount would have succeded because of the OR operator, and
therefore the whole @AmountCheck test would have passed. In case of an AND operator, we just print
which tests failed. In case of an OR operator, we print that at least one of the tests should have succeeded
in order for the test to pass. Finally, in case of the ALLFALSE operator, we print that all the tests should
have failed, in order for the test to pass. We do this recursively on the tests, and the user can also decide the
recursive depth of the summary, in order to obtain the desired level of details.

AnnotationSummary OBJECT CONTAINING THE RESULT OF THE @AmountCheck TEST

PRINTOUT OF THE COMPLETE SUMMARY

The value "BICCODE" returned by "getBIC()"
has not passed the following property-test:
-Test: @ValidateBIC() because the following test(s) failed:
|--Test: @PatMatch(value=\w{8}|\w{11})

===
The following cross-tests have failed:
-Test: @AmountCheck() because the following test(s) failed: |
|--Test: @MaxAmount() because AT LEAST ONE |

of the following test(s) should have succeded: |
|--Test: @OneLessThan(value=1) |
|--Test: @AllLessThan(value=10000) |

-Test: @AllOrNoneNull()
-Test: @ExactlyOneNull() because ALL the following test(s) failed:
|--Test: @ExactlyNNull(value=1)

===

Table 15: Validation of the form given in Figure 1, by the tests defined in Tables 1, and Tables 3 and 6.

21

5 Related work
There are other ways of tackling the input validation problem, but they are fundamentally different from our
approach. For instance, there are static analysis tools [12] which provide support for tainting [13, 14] or
tools that provide specific solutions for particular input validation vulnerabilities like the AntiSamy project
for XSS [15].

Our framework is designed to allow the user to easily define and integrate custom validation tests in the
application. Replacing the classical XML configuration files with annotations retains most of the advantages
of having an external configuration file, like decoupling of validation logic from the application logic, and
reusable tests. In addition, methods and classes do not need to be referred by string references any more,
which is very error prone and requires additional maintenance. One disadvantage of switching to annota-
tions, might be that runtime changes are not possible anymore. However, being forced to recompile after
making changes helps to ensure the type safety of the application.

Additional advantages of using annotations instead of XML configuration files are discussed in Holm-
gren [8] and Hookom [7]. Both papers also include some technical solutions for using annotations to validate
object properties, but only provide some basic illustrative code, rather than a fully functional framework.
However, it seems like the ideas in [7] are the starting point for the Hibernate validator and the work in [9].

Many basic technical solutions we use are very similar to those provided by Hookom and Hibernate. For
example, using special meta-annotations as markers to allow the creation of custom validation-annotations
and the way of associating tests to annotations. However, it must be said that these are standard solutions
when annotations are involved.

When it comes to running the actual validation, we are close to the solutions proposed in [7, 9], which
allow complete decoupling between validation and application code. In contrast, the solution in Holmgren
involves inserting extra code inside the method to be validated. Although this approach allows tests on
methods without return values, i.e., setter methods or methods with parameters, it makes the test code and
the application code more interdependent, which is what we have tried to avoid.

Composition is also proposed in [9], although the full scope of boolean operators does not seem to have
been addressed. What is called a multi-valued constraint in [9], i.e., applying the same annotation with
different element values to the same method, can easily be achieved in our framework by encapsulating each
instance in another annotation as in Figure 2.

Struts 2 [3] also provides validation through annotations. It offers a limited set of standard annotations,
with no possibility of creating custom tests. As new annotations cannot be created, composition is not
possible and the only way to add custom tests is to use a @CustomValidator annotation which takes as
argument the name of the test. This is then associated to the corresponding class in an XML configuration
file. In other words, despite the use of annotations, classes are still referenced to by string names.

Most importantly, none of the mentioned related work seems to consider the possibility of validating
multiple properties. We consider our cross-annotations a natural extension of validation-annotations which
can add expressive power to the validation-tests that the user can design. Besides, we manage to keep most
of the technicalities involved in cross-validation hidden inside the framework, so that there is almost no
difference between property- and cross-annotations from a user point of view, and usability is not compro-
mised.

Finally, most of these frameworks are mainly designed to work with JavaBeans, and make strong as-
sumptions about the type of applications that can utilize them. Our framework, as Heimdall, does not
assume much about the application, and should be easy to integrate with any Java project.

22

6 Conclusion and future works
We have implemented a flexible content-validation framework [10] based on Java annotations, which can
easily be integrated into existing applications. The main idea in the design of this framework has been that
it should be easy to create libraries of custom validation-annotations, and that these tests should be highly
reusable. We have tried to provide simple, yet powerful means doing this, for example, using boolean com-
position. Besides, we have pushed the limits of annotations by allowing constraints involving interdependent
properties, which have not been addressed in any work we are aware of.

For future work, we intend to extend the library of predefined annotations by creating new tests aimed at
specific input validation vulnerabilities and improve the validation summary to support specific queries.

References
[1] “OWASP Top Ten project,” May 2009. [Online]. Available: http://www.owasp.org/index.php/

Category:OWASP Top Ten Project 1

[2] “Commons validator,” Apache, May 2009. [Online]. Available: http://commons.apache.org/validator/
1

[3] “Struts,” May 2009. [Online]. Available: http://struts.apache.org 1, 3.1.1, 5

[4] “Hibernate,” May 2009. [Online]. Available: https://www.hibernate.org/ 1, 3.1.1

[5] L.-H. Netland, Y. Espelid, and K. A. Mughal, “A reflection-based framework for content validation,”
in ARES. IEEE Computer Society, 2007, pp. 697–706. 1, 3.1.1

[6] K. Arnold, J. Gosling, and D. Holmes, The Java Programming Language, Fourth Edition. Addison-
Wesley, 2006. 1

[7] J. Hookom, “Validating objects through metadata,” O’Reilly, January 2005. [Online]. Available:
http://www.onjava.com/lpt/a/5572 1, 3.1, 5

[8] A. Holmgren, “Using annotations to add validity constraints to javabeans properties,” Sun,
March 2005. [Online]. Available: http://java.sun.com/developer/technicalArticles/J2SE/constraints/
annotations.html 1, 3.1, 5

[9] E. Bernard and S. Peterson, “Jsr 303: Bean validation,” Bean Validation Expert Group, March 2009.
[Online]. Available: http://jcp.org/aboutJava/communityprocess/pfd/jsr303/index.html 1, 3.1, 5

[10] D. Hovland, F. Mancini, and K. A. Mughal, “Ship validator,” August 2009. [Online]. Available:
http://shipvalidator.sourceforge.net 1, 6

[11] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley, 1995. 4.1.2, 4.1.3

[12] B. Chess and J. West, Secure programming with static analysis. Addison-Wesley Professional, 2007.
5

[13] W. Pugh, “Jsr 305: Annotations for software defect detection,” September 2006. [Online]. Available:
http://jcp.org/en/jsr/detail?id=305 5

23

http://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
http://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
http://commons.apache.org/validator/
http://struts.apache.org
https://www.hibernate.org/
http://www.onjava.com/lpt/a/5572
http://java.sun.com/developer/technicalArticles/J2SE/constraints/annotations.html
http://java.sun.com/developer/technicalArticles/J2SE/constraints/annotations.html
http://jcp.org/aboutJava/communityprocess/pfd/jsr303/index.html
http://shipvalidator.sourceforge.net
http://jcp.org/en/jsr/detail?id=305

[14] V. Haldar, D. Chandra, and M. Franz, “Dynamic taint propagation for java,” in ACSAC. IEEE Com-
puter Society, 2005, pp. 303–311. 5

[15] “OWASP AntiSamy project,” OWASP, May 2009. [Online]. Available: http://www.owasp.org/index.
php/Category:OWASP AntiSamy Project 5

24

http://www.owasp.org/index.php/Category:OWASP_AntiSamy_Project
http://www.owasp.org/index.php/Category:OWASP_AntiSamy_Project

	Introduction
	A Running Example
	Validation annotations and tests
	Property-annotations and Property-tests
	Handling null values

	Cross-annotations
	Boolean composition
	Recursive validation
	Composing property-tests into cross-tests

	Implementation details
	Packages
	Package validation
	Package constraints
	Package summary
	Package annotations
	Package test

	Sequence diagrams
	Usage example
	The validation process
	The validation summary

	Related work
	Conclusion and future works

