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Abstract

This paper is devoted to the non-symmetric channels. Here we will present
t-EC-AUED codes. Boinck and van Tilborg gave a bound on the length of
binary t-EC-AUED codes. A generalization of this bound to arbitrary alpha-
bet size is given. This generalized Boinck - van Tilborg bound, combined
with constructions, is used to determine the length of some optimal binary
and ternary t-EC-AUED codes. The size of optimal 0-EC-AUED codes is
the numver of vectors of length n and weight [n(g — 1)/2]. So we will make
computations for ¢t > 0, but for completeness, we give also the codes for t = 0.

1 Introduction

Most classes of codes have been designed for use on symmetric channels. However,
in certain applications, such as optical communications, the error probability from 1
to 0 is significantly higher than the error probability from 0 to 1. These applications
can be modeled by an asymmetric channel, on which only 1 — 0 transitions can
occur (asymmetric errors).

Further, some other memory systems behave like an unidirectional channel, on
which, even though both 1 — 0 and 0 — 1 errors are possible, all errors within
the message are of the same type (increasing or decreasing) when sending a certain
message (unidirectional errors).

In this paper we construct some optimal codes which can correct up to t errors
and detect all unidirectional errors.

2 Some Definitions and Notations
Let F, ={0,1,2,...,¢ — 1} for ¢ > 2.

Definition 1 The q-ary asymmetric channel is the channel on which the only
transitions that can occur are x — y, where 0 <y <z < qg—1.

If all y < x are possible as a received symbol, we call the channel complete. As
an example of a noncomplete channel is the channel introduced by Ahlswede and
Aydinian [1], on which when z is sent only 0 and z can be received. In this work we
assume that the channel is complete, when we considering an asymmetric channel.

Definition 2 The g-ary unidirectional channel is the channel on which all er-
rors within a codeword are of the same type (all increasing or all decreasing).



The codes, which are used to encode the message, sent over these channels, are
called g-ary asymmetric codes and q-ary unidirectional codes, respectively.

Let C be a code over F'. Let x,y € F' and let N(x,y) denote the number of
positions ¢ where z; > y;. If N(y,x) = 0 the vector x is said to cover the vector y
(x >y). If x>y ory > x the vectors x and y are said to be ordered, otherwise
they are unordered. The Hamming distance dg(x,y) between x and y is the sum
of N(x,y) and N(y,x):

di(x,y) = N(x,y) + N(y,x) = #{i | zi # yi}.

From the error detection point of view, the asymmetric and the unidirectional
codes are equivalent, that is, a code capable of detecting up to ¢ asymmetric errors
is also capable of detecting ¢t unidirectional errors.

Necessary and sufficient conditions for correcting and detecting errors of each of
the three types, symmetric, asymmetric and unidirectional, are known [2]. However,
sometimes a combination of correction and detection is required or even correction
and/or detection of errors of different type. In this work we will discuss codes
which are able to correct up to ¢ symmetric errors and detect all unidirectional
errors. Such a code is called a t-EC-AUED code.

Binary t-EC-AUED codes, in particular for ¢ = 1, have been extensively studied.
We construct some optimal binary and ternary t-EC-AUED codes for ¢ > 1.

A characterization when a code is a t-EC-AUED code is known, [3]:

Theorem 1 A code C is a t-EC-AUED code if and only if N(x,y) > t+ 1 and
N(y,x) > t+1, for all distinct x,y € C.

Let ng(a,t+ 1) denote the length of the shortest t-EC-AUED code of size a over
Fj'. We call a t-EC-AUED code of length n,(a,t + 1) and size a optimal.

Boéinck and van Tilborg gave a Plotkin type lower bound for the length of a
binary t-EC-AUED code [6]:

naa,t+1) > [(4_ [a2/21> (t—l—l)-‘ .

In the next section we make a generalization of this bound and using it and
some lemmas, which we will present, we construct some optimal binary and ternary
t-EC-AUED codes.

We remark that for ¢ = 0 it has been shown by de Bruijn et al. [5] that for given
n the largest 0-EC-AUED code of length n is the code of all codewords of weight
[n(g —1)/2]). There is no simple formula for this number in general, for ¢ = 2 it is
(fn721)' For larger ¢ the size of the codes is discused in the last section.

3 A generalized Boinck-van Tilborg bound

In this paper the expression ¢ + 1 occurs on many places, so we find it convenient

to use the notation 7% ¢ + 1.
The lower bound which was derived by Boinck and van Tilborg for the length
of a binary t-EC-AUED codes, rewritten in our notations is:

nale,T) 2 K‘*‘ fcjﬂ) TW | M

In this section we generalize Béinck - van Tilborg bound to non-binary codes.
Let

f(mo,ma, ... ,mg_1) = Z mimy,
0<i<j<(q—1)



q—1

S = mo+my+ ... +Mg—1 = E m;,
1=0
q—1

2 2 2 2

Sy = mog+mi+..+my_ ;= m;.
=0

Then S} = Sy + 2f(mo, m1,...,my—1) and so

1
f(m07mla --7mq—l) = 5(5% — SQ)

Let A(a) be the maximum of f(mg,m1,..,mg—1) over (mg, m1, ..., my_1), where
mg, M1, ...,Mg—1 are non-negative integers such that S; = a.

Lemma 1 If C is an (T — 1)-EC-AUED code of length n and size a, then
. ala — 1T
~ Aa)
Proof: Consider Zx,y:c N(x,y). Since C is a (T'—1)-EC-AUED code, N(x,y) >
T for all distinct x,y € C, and so

> N(x,y)>a(a—1)T. (2)

x,y€C
XAy

Let m; ; be the number of codewords x such that z; = i. Then,

> Nxy) S>> muimuy

x,y€C =1 0<i<j<q—1
XAy

= Y flmos,mag, ... mg-11)
1=1
< nX(a).
Combining this with (2), the lemma follows. O

Next we find an explicit expression for A(a). We note that if the m; were
real numbers, then the maximum of f(mg, m1,...,mg—1) would be obtained for
m; = a/(q—1) for all <. For non-negative integers m; let the maximum be obtained
for

(m07m17 BRI mq—l) = (,U/07 M1y aIU/q—l)-
Because of the symmetry we may assume that
po S 1 < < g1

Further, by assumption,

g—1
i = a
i=0
In particular, pg—1 > 1. Let
mo = fpio+1,
Mmg—1 = Hg-1—1,
m; = pforl<i<gqg-—2.



Then

0 < 2f(/”‘07:u1?"'7/j'q—1)_Qf(m07m1a"'amq—1)
I e ST
= —pp—pg_y + (o +1)* + (ng1 +1)°

= 2#0 — 2,uq_1 + 2

Hence, pt4—1 < po + 1. This implies that if a = ag + 3, where 0 < 3 < ¢ —1,

then
i =« for 0 <i<q—0,

wi=a+1l forg—pF<i<qg—1.

Hence

Ma) = s{a®—(a—B)0? — Ba+ 1)}

ala—a) = (a—ag)(l + )
5 .

Combining this with Lemma 1, we get the following bound.

Theorem 2 Fora>2 andT > 1 we have
ng(a,T) > GBT,(a,T),

where

GBT,(a,T) = [ 2a(a — 1)T w

ala —a) — (a —ag)(a+1)
and o = |a/q].

For ¢ = 2, this is exactly the bound (1).
Since

GBTy(qp+ (¢ —1),T) = GBTy(qp + ¢, T),
an immediate corollary of the theorem is:

Corollary 1 A g-ary (T — 1)-EC-AUED code of length
n < GBT,(qgu+q,T)

has size a < qu+ (¢ — 2).

4 A method to determine or estimate n,(a,T)

It appears that in many cases, the Boinck - van Tilborg bound and also its general-
ization is best possible, that is, we have equality in Theorem 2. In [8], we developed
a method to prove this in the binary case and in [7] in the ternary case, using
an efficient construction method. For a given a, the construction is recursive and
requires a computer search for some small values of T' to start the recursion. The
validity of the recursion is based on two lemmas involving the generalized Boinck -
van Tilborg bound. We state and prove them next.

Lemma 2 For alla >0, Ty > 0, and 15 > 0, we have

ng(a, Th + Ta) < ny(a,T1) + ng(a, I).



Proof: We represent a code of size a and length n by an (a x n) matrix with
the codewords as the rows. Let Cy be a (71 — 1)-EC-AUED code of size a and
length n4(a,T1) and Cy a (Th — 1)-EC-AUED code of size a and length ny(a, T3).
Let C = C1|Cy (matrix concatenation). This is an asymmetric code of size a and
length

n=ng(a,Th) + ng(a, Ts).

Let (x|x’) and (y|y’) be distinct codewords of C, where x,x’ € Cy and y,y’ €
C5. Then
N((x[x). (yly")) = N(x,y) + N(x',y') > Ty + T>.
Hence, C is an (Th + T> — 1)-EC-AUED code of length ng(a,T1) + ng(a, T5).
This proves the lemma. o

Lemma 3 If
ng(a,Th) = GBTy(a,T1),
ng(a,T>) = GBT4(a,Ts),
and
GBTq(a, Tl) + GBTq(a, Tg) = GBTq(CL, T1 + TQ),
then

nq(a,T1 + Tg) = GBTq(a, Tl + TQ)

Proof: Let C7, Cy and C be defined as in the proof of the previous lemma. Then,
by Theorem 2, Lemma 2, and the given conditions, we get

GBTq(CL,Tl —|—T2) S nq(a,Tl —|—T2)
< ngla, T1) + ng(a, Tz)
GBT,(a,Th) + GBTy(a,T>)
= GBTq (CL, T1 + TQ)
In particular, ng(a,Th + T2) = GBTy(a, T1 + T5). 0

5 Optimal binary (7' — 1)-EC-AUED codes

To determine ng(a,T’) we only need to consider a even (by Corollary 1).

In [4] optimal codes of size a = 2u are constructed for p = 1,2,3 by a more
direct, but less efficient, method. The size of the codes and the bounds on n are
the following:

a =2 for 2T <n < 3T,
a:4for3T<n<13—OT,

10 7
= —T < =1
a 6for3T_n<2T

We construct optimal codes for p = 4,5,6,7 by a combination of a computer
search and the use of Lemmas 2, 3, and Corollary 1 (for ¢ = 2).
When we are considering binary codes we will use the notation

BT (2u,T) = {(4 - i) T-‘

for the Boinck-van Tilborg bound.



Theorem 3 For T =2 (mod 4), we have

] snns ]

and
7
TLQ(&T) = ’VT-‘ y
2
otherwise.

Proof: For a = 8 we have BT'(8,T) = [%TW, hence n9(8,T) > [;T—‘

For T = 1, BT(8,1) = 4. According to de Bruijn et al., [5], the size of an
optimal 1-EC-AUED code of length 4 is (;1) = 6. So there is no 1-EC-AUED code
of length 4 and size 8. A computer search shows that nq(8,1) = 5, which is 1 above
the bound.

A computer search shows that for 7' = 2 there is no code meeting the bound
BT(8,2) and the length of the best code is 1 above the bound, so n2(8,2) = 8.

Matrices showing this are:

[ 00011 ] [ 00000111 ]
00101 00011001
00110 00101010
01001 01001100
Cr=1 01010 |© 2= | 01110000
01100 10010010
10001 10100100

| 10010 | | 11000001 |

For T = 3,4, 5, there are codes with length ns(8,7) = [27T']. Matrices showing
this are:

00000011111 ] 00000001111111
00011100011 00011110000111
00101101100 00101110111000
01010110100 C, — 01110011001001
01101010001 |~ 4~ | 10110101010010 |’
01110001010 11000111100100
10011011000 11011000011100
10100110010 | 11101000100011

Cs

000000000111111111
000011111000001111
000101111011110000
011010011100110001
011011100111000010
101100011101000110
101101100100011001
110110001010011010

Cs

A computer search shows that there is no codes meeting the bound for T = 6.
The best code is with length 1 above the bound. So n5(8,6) = 22 and one of the
possibilities to obtain Cg is a concatenation of Cy and Cs.

Using BT'(8,T) + BT(8,4) = BT(8,T + 4) for all T and Lemma 3 it follows
that the recursion which we will use to obtained codes for all T is Cpr = Cy|Cr—4.



For all T # 2 (mod 4) the length of the codes is exactly BT (8,T) and for T = 2
(mod 4) the length is bounded by BT'(8,T) and BT'(8,T) + 1.
Note that the fact ny(8,7) = ng(7,T) follows from Corollary 1. O

Theorem 4 For T > 2 we have
1
ny(10,7) = [;T—‘ .

Proof: For size 10 we use the same method. We have BT'(10,T) = f%—STW, hence
n2(10,T) > [BT]. We use that

BT(10,T) + BT(10,5) = BT(10,T +5).

The recursion which we will use to obtain codes for all T'is Cr = C5|Cr—5. We
have to note that according to de Bruijn et al., [5], the size of the optimal 1-EC-
AUED code of length 4, (since BT(10,1) = 4), is 6. So there is no code meeting
the bound for T'= 1. A computer search shows that the length of the best code is
1 above the bound, so n2(10,1) = 5 and the code is presented with the following
matrix :

00011
00101
00110
01001
01010
01100
10001
10010
10100
11000

For all other T > 2 there are codes meeting the bound. The codes Cr for
T =2,3,4,5, needed to start the recursion, are:

Cq

00001111 00000011111
00110011 00011100011
00111100 00101101100
01010101 01010110100

C, — 01011010 Cy = 01101010001
01100110 |’ 01110001010 |’
01101001 10011011000
10010110 10100110010
10011001 10110000101

| 10100101 | | 11000101001 |
[ 000000001111111 7 [ 000000000111111111 ]

000011110000111 000011111000001111

000101110111000 000101111011110000

001110011001001 011010011100110001

Cy— 010110101010010 s = 011011100111000010

011000111100100 |’ 101100011101000110

011011000011100 101101100100011001

011101000100011 110110001010011010

100111001100100 110110100001100101

| 101001011010010 | | 111001010010101100 |




If we use the recursion to obtain Cg = C1|Cj5 the code is with length 1 above the
bound, since the length of C is 1 above the bound. However there is code meeting
exactly the bound, namely Cs = C3|Cs.

This proves the theorem. The fact ny(10,T) = ny(9,7T) follows from Corollary
1. O

Theorem 5 For T =3 (mod 6), we have

1] <oz < [ ] 4

&

Proof: For size 12 we have BT'(12,T) = [4T7, hence ny(12,T) > [LT7].

For T =1, BT(12,1) = 4. According to de Bruijn et al., [5], the optimal 1-EC-
AUED code of length 4 has size 6. So there is no 1-EC-AUED codes of size 12 and
length 4. A computer search shows that the best code is with length n(12,1) = 6.
The matrix showing this is:

and

na(12,T)

otherwise.

000011
000101
000110
001001
001010
001100
010001
010010
010100
011000
100001
100010

Ci =

Computations have shown that ns(12,2) = [T but for T' = 3 there are no
codes which meeting this bound. The length is 1 above the bound. For T =
4,5,6,7,8 we have codes meeting exactly the bound. Matrices showing this for
T=2,3,4,5,6,7,8 are:

00001111 000000011111
00110011 001111100000
00111100 010001100011
01010101 010010101100
01011010 010101010100

c, — | 01100110 ¢y — | 011010010001
01101001 |’ 011100001010 |’
10010110 100011000101
10011001 100100100110
10100101 100110011000
10101010 101000101001

| 11000011 | | 101001010010 |




000000001111111 0000000000111111111
000011110000111 0000011111000001111
000101110111000 0000101111011110000
001110011001001 0011010011100110001
010110101010010 0011011100111000010
011000111100100 C 0101100011101000110
011011000011100 |’ > 0101101100100011001 |’
011101000100011 0110110001010011010
100111001100100 0110110100001100101
101001011010010 0111001010010101100
101010100101010 1001110010011001001
101100100010101 1001111000000110110

Cy =

0000000000011111111111
0000011111100000011111
0000101111101111100000
0011110001110001100011
0011110110010110001100
0111001001111010010100
1011011010001001111000 |’
1100110010111100010001
1101001100110100101010
1101100101000011011001
1110010101001101000110
1110101010000010100111

Cs

00000000000001111111111111
00000011111110000000111111
00000101111110111111000000
00111010001111000111000011
00111010110011111000001100
01011100011101001001110100
01011111000010010110111000 |’
01101101100101110000010011
10101111001000101001101001
10110101110001000110100101
11010110100100100011001110
11101000111000001110011010

Cy Cs = 02‘06-

Since BT'(12,T) + BT(12,6) = BT (12, T + 6), the recursion which we will use
to obtain codes for all T is Cr = Cg|Cr_g.

The best code for T = 9 is Cy = C3|Cs, which has length 1 above the bound.
So for all T = 3 (mod 6) the length of the codes is bounded by BT(12,T) and
BT(12,T) + 1. For the rest T # 3 (mod 6), the length of the codes is exactly
BT(12,T). This proves the theorem.

Again from Corollary 1 it follows that BT (12,T) = BT(11,T). O

Theorem 6 For T > 2 we have
2
Proof: For size 14 we have BT(14,T) = (2—76T], hence n2(14,T) > f%T].

For T =1, BT(14,1) = 4. According again to de Bruijn et al., [5], the size of
the optimal 1-EC-AUED code of length 4 is 6, so there is no 1-EC-AUED code of



length 4 and size 14. A computer search shows that the best code is with length
ny(14,1) = 6 and the matrix showing this is:

000011
000101
000110
001001
001010
001100
010001
010010
010100
011000
100001
100010
100100
101000

Since BT (14,T) + BT(14,7) = BT(14,T + 7), we need codes for T from 2 to 8
to start the recursion, which is Cp = C7|Cr_7. The codes for T = 2,3,4,5,6,7,8
are presented below:

Cy

00001111 000000111111

00110011 001111000011

00111100 010011001101

01010101 010011110010

01011010 011101010100

01100110 011110101000

o, — | 01101001 . — | 100111011000

27| 10010110 |> 737 | 101011100100 |’

10011001 101100001101

10100101 101100110010

10101010 110101100001

11000011 110110000110

11001100 111001001010

| 11110000 | | 111010010001 |
[ 000000001111111 [ 0000000000111111111
000011110000111 0000011111000001111
000101110111000 0000101111011110000
001110011001001 0011010011100110001
010110101010010 0011011100111000010
011000111100100 0101100011101000110
o, — | 011011000011100 . — | 0101101100100011001
47 | o11101000100011 |* ~° 0110110001010011010 |’
100111001100100 0110110100001100101
101001011010010 0111001010010101100
101010100101010 1001110010011001001
101100100010101 1001111000000110110
110001101001001 1010100110100101010
| 110010010110001 | | 1010101001110000101 |

10



00000000000011111111111
00000011111100000011111
00000101111101111100000
00011110001110001100011
00011110110010110001100
00111001001111010010100
01011011010001001111000
01100110010111100010001 |’
01101001100110100101010
01101100101000011011001
01110010101001101000110
01110101010000010100111
10011101100001100010011
10100111100010001110100

Co =

00000000000001111111111111
00000011111110000000111111
00000101111110111111000000
00111010001111000111000011
00111010110011111000001100
01011100011101001001110100
01011111000010010110111000
10011101100101110000010011 |’
10101111001000101001101001
11001110110000001110000111
11100011100101010011100100
11100100010111100100101010
11110000111000010101011001
11110001001010101010010110

Cy

Cs = C4|Cy.

This proves the theorem for all T' > 1.
From Corollary 1 we have BT (14,T) = BT(13,T). O

6 Optimal ternary (7 — 1)-EC-AUED codes

In this section we use the method described above for ¢ = 3.
Theorem 7 ForT > 1 we have

TL3(3, T) = 2T7
n3(4aT) = [%TFI s
n3(5,T) = 713(6,T) = ’V%T—‘ .

Proof: We first give the proof and the construction of the codes for a = 6.
We have GBT3(6,T) = [5T]. Hence, GBT3(6,T) + GBT5(6,2) = GBT3(6,T + 2).
Codes showing the stated result for T'=1 and T = 2 are

200 12200
020 21020
002 20102
Cr = 100 |’ C2= 02012
010 00221
001 11111

11



As shown in the proofs of Lemmas 2 and 3, codes Cr that prove the result for
general T are obtained by the recursion Cp = Co|Cp_s.

Note that the fact ng(5,7) = n3(6,T) follows from Corollary 1.

For a = 3, we only need one matrix to start the recursion Cr = C1|Cr_1:

02

o= | 11
20

For a = 4, we need 5 matrices to start the recursion Cpr = C5|Crp_s:

001 00022
020 01101
C1= 110 | C2= 10110 |’
200 22000
00000122 000000022222
. _ | 00111011 . _ | 001111101111
371 02022000 |° T° T | 120012210001 |’
11200001 212220000010
Cy = Co|Cs.

We finally consider a = 7,8, 9.

Theorem 8 We have 91 8
ST smm) < |57

for allT > 1.

Proof: For a = 7, we have GBT,(7,T) = [4T. We do not know if this bound
can be met in all cases. Computations have shown that it is met for T' < 7. Codes

proving this are the following.

012 00001222
021 00122011
102 02110102
Ci=| 111 |, C3=| 11010211
120 12201001
201 20210020
| 210 | | 21101110 |

Further, let
02 = C1|Cl, CT = 03|CT_3 for T = 4,5,6,7.

For T' = 8 the best code we have found so far is Cy|Cy whose length is one above
the bound. If there exists a code Cg meeting the bound for T = 8, the recursive
construction Cr = Cg|Cr_g gives codes meeting the bound for all T. However, if
this is not the case, we still can use a recursive construction to get estimates. We
note that [27T] = [T for 1 < T < 7, and the construction Cr = C3|Cr_3 gives
a code of length [$T] for all T. O

12



Theorem 9 We have

gﬂ <ng(8,T) <n3(9,T) < [gﬂ +1

for T =1 (mod 3), and

n3(8,T) = n3(9,T) = [gzﬂ

otherwise.

Proof: For a = 9 the bound is GBT3(9,T) = [3T]. There are no codes meeting
the bound for T' = 1, the bound is 3, but the shortest code has length 4:

0002
0011
0020
0101
0110
0200
1001
1010
1100

Gy

For T'=2 and T = 3, there are codes meeting the bound:

[ 000022 [ 00002222 7
001111 01111112
020201 02220002
022010 10120121
Cy=| 110011 |, C3= | 11202011
112200 12011201
200210 20210210
202001 21022100
| 221100 | | 22101020 |

Since GBT5(9,T) + GBT5(9,3) = GBT5(9,T + 3), the recursive construction is
Cp = C5|Cr—3. A computer search shows that there is no code for T' = 4 which
meet the bound. The best code is with length 1 above the bound. One of the
possibilities to obtain Cy is C3|Cs.

So for T = 1(mod 3) the length of the codes is bounded by GBT5(9,T) and
GBT3(9,T) + 1 and for the rest T, which are not equivalent to 1(mod 3) the length
of the codes is exactly GBT3(9,T). O
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