REPORTS
IN
INFORMATICS

ISSN 0333-3590

CALCO Young Researchers Workshop

CALCO-jnr 2007
Selected Papers

Magne Haveraaen, John Power, Monika
Seisenberger

REPORT NO 367 February 2008

Department of Informatics

UNIVERSITY OF BERGEN
Bergen, Norway

This report has URL
http://www.ii.uib.no/publikasjoner/texrap/pdf/2008-367.pdf

Reports in Informatics from Department of Informatics, University of Bergen, Norway, is available
athttp://www.1i.uib.no/publikasjoner/texrap/.
Requests for paper copies of this report can be sent to:

Department of Informatics, University of Bergen, Hgyteknologisenteret,
P.O. Box 7800, N-5020 Bergen, Norway

http://www.ii.uib.no/publikasjoner/texrap/pdf/2008-367.pdf
http://www.ii.uib.no/publikasjoner/texrap/

CALCO Young Researchers Workshop
CALCO-jnr 2007

Selected Papers
Magne Haveraaen* John Power'
Department of Informatics Department of Computer Science
University of Bergen University of Bath
N-5020 Bergen Bath, BA2 7TAY
Norway United Kingdom

Monika Seisenberger

Department of Computer Science
Swansea University
Swansea, SA2 8PP

UK

February 29, 2008

Abstract

The CALCO Young Researchers Workshop, CALCO-jnr, was a satellite event for 2nd
Conference on Algebra and Coalgebra in Computer Science, August 20-24, 2007,
Bergen, Norway (CALCO’07). CALCO-jnr was dedicated to presentations by PhD
students and by those who completed their doctoral studies within the past few years.
This report contains selected, refereed papers from the workshop.

Related URLs

e The conference
http://www.1i.uib.no/calco07/

e The report
http://www.1i.uib.no/publikasjoner/texrap/pdf/2008-367.pdf

e Bergen Open Research Archive (BORA)
https://bora.uib.no/

*http://www.ii.uib.no/~magne

fhttp://www.cs.bath.ac.uk/department/contact-department /academic-staff/
dr-john-power.html

fhttp://www.cs.swan.ac.uk/~csmona/

http://www.ii.uib.no/calco07/
http://www.ii.uib.no/publikasjoner/texrap/pdf/2008-367.pdf
https://bora.uib.no/
http://www.ii.uib.no/~magne
http://www.cs.bath.ac.uk/department/contact-department/academic-staff/dr-john-power.html
http://www.cs.bath.ac.uk/department/contact-department/academic-staff/dr-john-power.html
http://www.cs.swan.ac.uk/~csmona/

CALCO Young Researchers Workshop
CALCO-jnr 2007

20 August 2007

Selected Papers
edited by

Magne Haveraaen, John Power, and Monika Seisenberger

UNIVERSITY OF BERGEN

Preface

CALCO brings together researchers and practitioners to exchange new results
related to foundational aspects and both traditional and emerging uses of al-
gebras and coalgebras in computer science. The study of algebra and coalgebra
relates to the data, process and structural aspects of software systems.

This is a high-level, bi-annual conference formed by joining the forces and
reputations of CMCS (the International Workshop on Coalgebraic Methods in
Computer Science), and WADT (the Workshop on Algebraic Development Tech-
niques). The first CALCO conference was held in Swansea, Wales, in 2005; the
second took place in Bergen, Norway, in 2007.

The CALCO Young Researchers Workshop, CALCO-jnr, was a CALCO 2007
satellite event dedicated to presentations by PhD students and by those who
completed their doctoral studies within the past few years. Attendance at the
workshop was open to all — many CALCO conference participants attended
the CALCO-jnr workshop and vice versa. In total, CALCO-jnr 2007 had 12
contributions, by authors from 8 countries and 16 different institutions, — and
over 40 participants.

CALCO-jnr presentations were, on the basis of submitted 2-page abstracts,
selected by the CALCO-jnr PC. After the workshop, the authors of each presen-
tation were invited to submit a full 10-15 page paper on the same topic. They
were also asked to write anonymous reviews of papers submitted by other authors
on related topics. Additional reviewing was organised and the final selection of
papers was carried out by the CALCO-jnr PC. The volume of selected papers
from the workshop is published as a Department of Informatics, University of
Bergen, technical report, and it is available through the open access database
http://bora.uib.no/. Authors will retain copyright, and are also encouraged to
disseminate the results reported at CALCO-jnr by subsequent publication else-
where.

The CALCO-jnr PC would like to thank the workshop participants, the re-
viewers, and the CALCO 2007 local organisers for their efforts to make this event
a success. The support of all sponsoring institutions is gratefully acknowledged:
Department of Informatics, University of Bergen, Bergen University College, The
Research Council of Norway, City of Bergen, and IFIP WG1.3 on Foundations
of System Specification.

February 2008 Magne Haveraaen
John Power
Monika Seisenberger

Table of Contents

The Microcosm Principle and Concurrency in Coalgebra

Ichiro Hasuo (Radboud University Nijmegen and Kyoto University),
Bart Jacobs (Radboud University Nijmegen), Ana Sokolova (University
of Salzburg)

CPS-CASL-Prover — Tool Integration and Algorithms for Automated
Proof Generation

Liam O’Reilly (Swansea University), Yoshinao Isobe (AIST, Tsukuba),
Markus Roggenbach (Swansea University)

Generalized Sketches for Model-driven Architecture

Adrian Rutle (Bergen University College), Uwe Wolter (University of
Bergen), and Yngve Lamo (Bergen University College)

Objects Versus Abstact Data Types: Bialgebraically
Ondrej Rypacek (University of Nottingham)

A Relational Semantics for Distributive Substructural Logics and the
Topological Characterization of the Descriptive Frames

Tomoyuki Suzuki (University of Leicester)

Limits and Colimits in Categories of Institutions

Adam Warski (University of Warsaw)

Author Indexo

The Microcosm Principle
and Concurrency in Coalgebra

Ichiro Hasud-3:4, Bart Jacobs*, and Ana Sokolova**

1 Inst. for Computing and Information Sciences, Radboud ehsity Nijmegen
Postbus 9010, 6500GL Nijmegen, the Netherlands
E-mail: {i chiro, bart }@s. ru.nl
2 Dept. of Computer Sciences, University of Salzburg
Jakob-Haringer-Str. 2, 5020 Salzburg, Austria
E-mail:anas@s. uni - sal zbur g. at
3 Research Inst. for Mathematical Sciences, Kyoto Universit
Kitashirakawa-Oiwakecho, Kyoto 606-8502, Japan
1 PRESTO Research Promotion Program, Japan Science andlaphAgency

Abstract. Coalgebras are categorical presentations of state-bgseuirs. In in-
vestigating parallel composition of coalgebras (reafizioncurrency, we ob-
serve that the same algebraic theory is interpreted in tiferdnt domains in a
nested manner, namely: in the category of coalgebras, ati ifinal coalgebra
as an object in it. This phenomenon is what Baez and Dolan ¢edled themi-
crocosm principlea prototypical example of which is “a monoid in a monoidal
category.” In this paper we obtain a formalization of the rméosm principle
in which such a nested model is expressed categorically asabte lax natural
transformation. An application of this account is a geneoahpositionality result
which supports modular verification of complex systems.

1 Introduction

Design of systems withoncurrencyis nowadays one of the mainstream challenges in
computer science [19]. Concurrency is everywhere: withithernet being the biggest
example and multi-core processors the smallest; also in@ulag component-based
architecture of a complex system its components collabarna concurrent manner.
However numerous difficulties have been identified in ggttioncurrency right. For
example, a system’s exponentially growing complexity ig @f the main obstacles.
One way to cope with it is amodularverification method in which correctness of the
whole systenC; || --- || C, is established using correctness of each compofient
Compositionality—meaning that behavior @f | D is determined by behavior ¢fand
that of D—is an essential property for such a modular method to work.

* Also part-time at Technical University Eindhoven, the Natands.
** Supported by the Austrian Science Fund (FWF) project no9B3:8N15. During the work on
this paper A.S. was employed at Radboud University Nijmegen

http://www.ii.uib.no/publikasjoner/texrap/pdf/2008-367 .pdf

2 Ichiro Hasuo, Bart Jacobs, and Ana Sokolova

Coalgebras as systemd his paper is a starting point of our research program airhed a
better understanding of the mathematical nature of comnayt In its course we shall
usecoalgebrass presentations of systems to be run in parallel. The ussatdebras as

an appropriate abstract model of state-based systemséasingly established [11,26];
the notion’s mathematical simplicity and clarity provide with a sound foundation
for our exploration. The following table summarizes howredjents of the theory of
systems are presented as coalgebraic constructs.

I system | behavior-preserving mgp behavior
morphism of coalgebras by coinduction
FX Ff - =
coalgebraically| coalgebra F ¢X ' B ¢Y Zg(ﬁn;ﬂZg @)
X o
X—F7Y X%

This view of “coalgebras as systems” has been successfppiiea in the category
Sets of sets and functions, in which case the word “behavior” ipréffers (roughly)
to bisimilarity. Our recent work [5, 6] has shown that “belwat’can also refer to trace
semantics by moving froriets to a suitable Kleisli category.

Compositionality in coalgebras We start with the following question: what is “com-
positionality” in this coalgebraic setting? Conventidpalompositionality is expressed
as:C ~ C"andD ~ D' impliesC | D ~ C' || D', where the relation- denotes
the behavioral equivalence of interest. If this is the caserélation~ is said to be a
congruencegwith its oft-heard instance being “bisimilarity is a congnce.”

When we interpret “behavior” in compositionality as the lgedraic behavior in-
duced by coinduction (see (1)), the following equation cematural as a coalgebraic
presentation of compositionality.

FX || FY FrXx Y
beh| ¢t ar = beh| ¢t beh| d1 2)
X Y X Y

But a closer look reveals that the two “parallel compositperators’|| in the equation
have in fact different types: the first oif@oalg x Coalg, — Coalg, combines
systems (as coalgebras) and the secondreZ — Z combines behavior (as states
of the final coalgebra).Moreover, the two domains are actually nested: the latter on
Z = FZ is an object of the former or@oalg ..

The microcosm principle What we have just observed is one instance—probably the
first one explicitly claimed in computer science—of timicrocosm principleas it is
called by Baez and Dolan [1]. It refers to a phenomenon tleas#éme algebraic theory
(or algebraic “specification,” consisting of operationd @quations) is interpreted twice

in a nested manner, once in a categ@rgnd the other time in its object € C. This

5 At this stage the presentation remains sloppy for the saksinoplicity. Later in technical
sections the first composition operator will be denotedsjyand the second composition
operator will have the typ& ® Z — Z instead ofZ x Z — Z.

The Microcosm Principle and Concurrency in Coalgebra 3

is not something very unusual, because “a monoid in a mohcédegory” constitutes
a prototypical example.

monoidal categonf | | monoidX € C
®:CxC—C multiplication XX 54X
IecC unit 14 x
X2 XX<cX
I9X2X2X®I unit law A ®)
X
o XXX+ X®X
XY ®2Z) > (X®Y)® Z|associativity law + +
XX —X

Notice here that the outer operatigrappears in the formulation of the an inner opera-
tion 1. Moreover, to be precise, in the inner “equations” the oisi@morphisms should
be present in suitable places. Hence this monoid exampl@d&nates that, in such
nested algebraic structures, the inner structure depamtisecouter. What is a math-
ematically precise formalization of such nested models®aring this question is a
main goal of this paper.

Such a formalization has been done in [1] when algebraicttres are specified
in the form ofopetopesHere instead we shall formalize the microcosm principle fo
Lawvere theorie$18], whose role as categorical representation of algelitegories
has been recognized in theoretical computer science.

As it turns out, our formalization looks like the situation the
right. HerelL is a category (a Lawvere theory) representing an alge-
braic theory; an outer modél is a product-preserving functor; and, *X>CAT
an inner modelX is a lax natural transformation. The whole setting
is 2-categorical: 2-categories (categories in categpsEye as an appropriate basis for
the microcosm principle (algebras in algebras).

Applications to coalgebras: parallel composition viasync The categorical account
we have sketched above shall be applied to our original sureabout parallel com-

position of coalgebras. As a main application we progeaneric compositionality the-
orem For an arbitrary algebraic theoily, compositionality like (2) is formulated as
follows: the “behavior” functobeh : Coalg; — C/Z via coinduction preserves an
IL-structure. This general form of compositionality holdsGf has anlL-structure and

F : C — C lax-preserves th&-structure.

Turning back to the original setting of (2), these generaliagptions read roughly
as follows: the base catega@yhas a binary operatigfi and the endofunctaf comes
with a natural transformatiosync : FX || F'Y — F(X || Y). Essentially, thisync is
what lifts || on C to || on Coalg, hence “parallel composition vignc.” It is called a
synchronizatiorbecause it specifies the way two systems synchronize with @her.
In fact, for a fixed functo' there can be different choices ©inc (such as CSP-style
vs. CCS-style), which in turn yield different “parallel cpwsition” operators on the

categoryCoalg ..

4 Ichiro Hasuo, Bart Jacobs, and Ana Sokolova

Related work Our interest is pretty similar to that of studiestnélgebraic structures
in computer science (such as [3,12,14-16,27]), in the Shiaseve are also concerned
about algebraic structures on coalgebras as systems. @entframework is distin-
guished in the following aspects.

First, we handleequationsin an algebraic theory as an integral part of our ap-
proach. Equations such as associativity and commutatgpear explicitly as com-
mutative diagrams in a Lawvere thedty We benefit from this explicitness in e.g.
spelling out a condition for the generic associativity te§liheorem 2.4). In contrast,
in the bialgebraic studies an algebraic theory is preseeitb@ér by an endofunctor
X = Il,es Xlol or by amonad’. In the former case equations are simply not present;
in the latter case equations are there but only implicitly.

Secondly and more importantly, by considering higher-disi@nal, nested alge-
braic structures, we can now compose different coalgelsrast as different states of
the same coalgebra. In this way the current work can be searn@her-dimensional
extension of the existing bialgebraic studies (which foonsinner” algebraic struc-
tures).

Organization of the paper We shall not dive into our 2-categorical exploration from
the beginning. In Section 2, we instead focus on one spedifeébaaic theory, namely
the one for parallel composition of systems. Our emphagsgetlis on the fact that
the sync natural transformation essentially gives rise to paralt@hposition||, and
the fact that equational properties pf(such as associativity) can be reduced to the
corresponding equational propertiespiic.

These concrete observations will provide us with intuitionabstract categorical
constructs in Section 3, where we formalize the microcosimcjgle for an arbitrary
Lawvere theorylL. Results on coalgebras such as compositionality are priogeslin
their full generality and abstraction.

In this paper we shall focus ostrict algebraic structures on categories in order
to avoid complicated coherence issues. This means for deaimgt we only consider
strict monoidal categories for which the isomorphisms in (3) afadghequalities. How-
ever, we have also obtained some preliminary observation®laxed (“pseudo” or
“strong”) algebraic structures: see Section 3.3.

2 Parallel composition of coalgebras

2.1 Parallel composition viasync natural transformation

Let us start with the equation (2), a coalgebraic represientaf compositionality. The
operator|| on the left is of typeCoalg; x Coalg, — Coalg. It is natural to re-
quire functoriality of this operation, making itlafunctor. A bifunctor—especially an
associative one which we investigate in Section 2.3—playsrgortant role in vari-
ous applications of category theory. Usually such an (aagee) bifunctor is called a
tensor we follow this convention and denote it lsy. Therefore the “compositionality”

The Microcosm Principle and Concurrency in Coalgebra 5

statement now looks as followfis.

FX FY FX FY
beh| ¢t ® 1 =beh(ct beh(gt 4)
X Y X Y

The first question is: when do we have such a temsa@n Coalg,? In many appli-
cations of coalgebras, it is obtained by lifting a tenspon the base catego to
Coalg.” Such a lifting is possible in presence of a natural transétion

F(X®Y)
syncy y - FX FY MSYNCxy
FX®FY — F(X®Y), usedin ¢t ® dt = FX®QFY . (5
X Y te®d
XY

We shall call thissync asynchronizatiofbecause its computational meaning is indeed a
specification of the way two systems synchronize. This vélillustrated in the coming
examples.

Once we have an outer parallel compositioran inner

operatori| which composes behavior (i.e. states of the fingl(z ®Z)- -~ * Fz
coalgebra) is also obtained immediately by coinduction ase nna|T<
on the right. Compositionality (4) is also straightforwéansd Z®7Z - T +7Z

finality: both sides of the equation are the unique coalgetmgphism fronr & d to the
final . The following theorem summarizes the observations so far.

Theorem 2.1 (Coalgebraic compositionality)Assume that a categofy has a tensor
® : Cx C — C and an endofunctof’ : C — C has a natural transformation
syncy y 1 FX®FY — F(X®Y). If moreover there exists a finél-coalgebra, then:

1. The tensor® on C lifts to an “outer” composition operator® : Coalg, x
Coalg; — Coalg.
2. We obtain an “inner” composition operatdir Z ® Z — Z by coinduction.
3. Between the two composition operators the compositiyr@bperty (4) holds.
O

We can put the compositionality property (4) in more absttaoms as “the functor
beh : Coalg, — C/Z preserves a tensor,” meaning that the diagram below left com
mutes. Here a tens@y on the slice categor{Z/Z is given as on the right, using the
inner compositior|.

beh x beh XY

Coalgy x Coalg, ————— C/Z x C/Z X v ® 1f®g
® 1 < v ¢9> = Z®||Z (6)
Coal C/z Z Z +
gr beh / 7

5 Strictly speaking the presentation (4) is still sloppy.@ireach side of the equation is of the
type X ® Y — Z, to be precise the right-hand side should be denotefl by(beh(c) ®
beh(d)).

” Note that we use the symbel for a tensor orCoalg . while reserving a more standard tensor
symbol® for a tensor on the base categdty

6 Ichiro Hasuo, Bart Jacobs, and Ana Sokolova

The point of Theorem 2.1 is as follows. Those parallel contmrsoperators which
are induced byync are well-behaved ones: good properties like compositigname
for free. We shall present some examples in Section 2.2.

Remark 2.2 The view of parallel composition of systems as a tensor siracon
Coalg has been previously presented in [13]. The interest theom isategorical
structures orCoalg » rather than on properties of parallel composition such ags
sitionality. In [13] and other literature an endofunctowith sync (equipped with some
additional compatibility) is called monoidal endofunctdt

2.2 Examples

In Sets: bisimilarity is a congruence We shall focus on LTSs and bisimilarity as their
process semantics. For this purpose it is appropriate éSteks as our base categoty
andP,, (X x _) as the functof'. We use Cartesian products as a tensaBets. This
means that a composition of two coalgebras has the produlsedfvo state spaces as
its state space, which matches our intuition. The fungpin F' is the finite powerset
functor; the finiteness assumption is needed for existeheefioal F-coalgebra. It is
standard (see e.qg. [26]) that a fifalcoalgebra captures bisimilarity via coinduction.

In considering parallel composition of LTSs, the followitvgp examples are well-
known ones.

— CSP-styld7]: a.P || a.Q = P || Q. For the whole system to make araction,
each component has to makeaaction.

— CCS-styl§21]:a.P || a.Q = P || Q,assuming” = {a,b,...}u{a,b,... \U{7}.
When one component outputs on a channahd another inputs from, then the
whole system makes an intermamove.

In fact, each of these different ways of synchronizationlbarepresented by a suitable
sync natural transformation.

Pu(Zx X) x Pu(ZxY) — Pu(E x (X xY))
(u,0) T {a @) | @a) eun @y ev)
(u,v) = {(n (@) | (o) €un (@y)ev}

By Theorem 2.1, each of these gives (differentpn Coalg -, and|| on Z; moreover
the behavior functobeh satisfies compositionality. Since the current behaviocton
beh (induced by coinduction iSets) gives behavior modulo bisimilarity, this specific
instance of Theorem 2.1 reads: bisimilarity is a congruemitie respect to both CSP-
style and CCS-style parallel composition.

8 Later in Section 3 we will observe that a functBrwith sync is a special case of kax L-
functor, by choosing a suitable algebraic theérySuch a functorF’ with sync is usually
called a monoidal functor (as opposed fexamonoidal functor), probably because it preserves
(inner) monoid objects; see Proposition 3.8.1.

% Here we focus on synchronous interaction. Both CSP and C@& 4 additional kind of
interaction, namely an “interleaving” one; see Remark 2.3.

The Microcosm Principle and Concurrency in Coalgebra 7

Remark 2.3 As mentioned in the introduction, in some ways this paperbzseen as
an extension of the bialgebraic studies started in [27]. él@wthere is also a drawback,
namely the limited expressive powerghc: FX @ FY — F(X ®Y).

Our sync specifies the way an algebraic structure interacts with &gebaaic one.
In this sense it is a counterpart of a distributive 1&¥ = F'X in [27] representing
operational rules, wher&' is a functor induced by an algebraic signature. However
there are many common operational rules which do not allqwesentation of the
form Y F = FJX; therefore in [27] the type of such a distributive law is ewetly
extended to¥' (F' x id) = F'X*. The class of rules representable in this form coincides
with the class of so-calle@SOS-rules

At present it is not clear how we can make a similar extensioméirsync; conse-
quently there are some operational rules which we cannoehixydync. One impor-
tant example is aimterleavingkind of interaction—such as.P || Q % P || Q which
leaves the second component unchanged. This is taken carg23] by the identity
functor (d) appearing on the left-hand side 8 F x id) = FX*. For oursync to
be able to model such interleaving, we can repladey the cofree comonad on it, as
is done in [13, Example 3.11]. This extension should be gittédrward but detailed
treatment is left as future work.

In IC¢(T): trace equivalence is a congruenceln our recent work [6] we extend
earlier observations in [10, 25] and show that trace semms#tincluding tracesetse-
mantics for non-deterministic systems and trdistributionsemantics for probabilistic
systems—is also captured by coinduction when it is emplageal Kleisli category
Ke(T). Applying the present composition framework, we can codelthat trace se-
mantics is compositional with respect to well-behaved lpgr@omposition. The details
are omitted here due to lack of space.

2.3 Equational properties of parallel composition

Now we shall investigate equational properties—assatifigticommutativity, and so
on—of parallel compositior®, which we have ignored deliberately for simplicity of
argument. We present our result in terms of associativifg;straightforward to trans-
fer the result to other properties like commutativity. Thaimpoint of the following
theorem is as follows: i is associative ansiync is “associative,” then the liftingp is
associative. The proof is straightforward.

Theorem 2.4 LetC be a category with a strictly associative tensof®and F : C —
C be a functor wittsync : F'.X @ FY — F(X @ Y). If the diagram

FX ® sync sync
FX®(FYQFZ) — S FXQFY®Z) —— F(X®(Y®Z))
+id +id (M
FXQFY)QFZ —— FXQ@Y)QFZ —— F(X®Y)® ~Z
(JOFZ oy FX®Y) e FlxX @Y)® 2)
commutes, then the lifted tenseron Coalg . is strictly associative. a

10 As mentioned already, in this paper we stickstrict algebraic structures.

8 Ichiro Hasuo, Bart Jacobs, and Ana Sokolova

The two identity arrows in (7) are available due to strictoasativity of ®. In the next
section we shall reveal the generic principle behind theroamativity condition of (7),
namely a coherence condition on a lax natural transformatio

As an examplesync®S” and sync®CS in Section 2.2 are easily seen to be “asso-
ciative” in the sense of the diagram (7). Therefore the tegutensors® are strictly
associative.

3 Formalizing the microcosm principle

In this section we shall formalize the microcosm principde &n arbitrary algebraic
theory presented as a Lawvere thehrylhis and the subsequent results generalize the
results in the previous section. In particular, we will abta general compositionality
result which works for an arbitrary algebraic theory.

As we sketched in the introduction, an outer model will be a
product-preserving functdf : . — CAT; an inner model inside ey
will be a lax natural transformatiol : 1 = C.Herel : L. — CAT L ——"5CAT
is the constant functor which maps everything to the categjavith
one object and one arrow (which is a special case of an outdethd/lediating 2-cells
for the lax natural transformatioX’ play a crucial role as inner interpretation of alge-
braic operations. In this section we heavily rely on 2-catagl notions, about which
detailed accounts can be found in [4].

3.1 Lawvere theories

Lawvere theorieare categorical presentations of algebraic theories. dtiemis intro-
duced in [18] (not under this name, though) aiming at a categldormulation of “the-
ories” and “semantics.” An accessible introduction to tleéion can be found in [17].
Lawvere theories are known to be equivalenfitgtary monads These two ways of
presenting algebraic theories have been widely used irrétieal computer science,
e.g. for modeling computation with effect [8, 22]. Recemt&lepments (such as [24])
utilize the increased expressive poweeafichedLawvere theories.

Inthe sequel, by aRP-categorywe refer to a category with (a choice of) finite prod-
ucts. AnFP-functoris a functor between FP-categories which preserves finiteéymts
“on-the-nose,” that is, up-to-equality instead of up-gomorphism.

Definition 3.1 (Lawvere theory) By Nat we denote the category of natural numbers
(as sets) and functions between them. Therefore every anrdvat is a (cotuple of)
coprojection; an arrow ilNat°® is a (tuple of) projectiort?

A Lawvere theoryis a small FP-categori. equipped with an FP-functoH :
Nat°? —IL which is bijective on objects. We shall denote an objecL.dfy a natu-
ral numberk, identifyingk € Nat°® andHk € L.

™ Anarrow f : n — k in Nat can be written as a cotupl@ (1, . - . , 5 y(n)] Wherer; : 1 — k
is the coprojection into theéth summand ofl + --- + 1 (k times).

The Microcosm Principle and Concurrency in Coalgebra 9

The categoryNat°*—uwhich is a free FP-category on the trivial categaryris there
in order to specify the choice of finite productslin For illustration, we make some
remarks orlL’s objects and arrows.

— An objectk € L is ak-fold productl x --- x 1 of 1.

— An arrow inLL is intuitively understood as an algebraic operation. Thdt i— 1 as
ank-ary operation; and — n as am-tuple(fy, ..., f,) of k-ary operations. To be
precise, arrows ifi. also include projections (such as : 2 — 1) andtermsmade
up of operations and projections (suchas (m,m) : 3 — 1).

Conventionally in universal algebra, an algebraic thesrgriesented by aalgebraic
specification X, E')—a pair of a set” of operations and a sét of equations. A Law-
vere theonlL arises from sucllX, F) as its so-calledlassifying categore.g. [9,18]).
An arrowk — n in the resulting Lawvere theoflyis ann-tuple ([t (7)], . . ., [t.(Z)])
of X-terms withk variablesz’, where[_] denotes taking an equivalence class modulo
equations ink.

Our leading example is the Lawvere thedron for monoids!? It arises as a classi-
fying category from the well-known algebraic specificata@inmonoids. This specifica-
tion has a nullary operatianand a binary onen; subject to the equatioms(x, e) = z,
m(e,z) = x, andm(x, m(y, z)) = m(m(z,y), 2).

Equivalently, Mon is the freely generated FP-) (eid) id
category by arrow® = 1 and2 = 1 subject to the 1—2«—1 3-—2
commutativity on the right. These data (arrows and corril&\> *{m/ld ‘dx'"; N *1“"
mutative diagrams) form aRP-sketchsee [2]). "

3.2 Outer models:LL-categories

We start by formalizing an outer model. It is a category with a X
IL-structure, hence called drcategory It is standard that a (set-
. . . . L 2 X2

theoretic) model of.—a setwith anL-structure—is identified with ., < ;.
an FP-functoil. % Sets. Concretely, letX = X1 be the image of 1 X
1 € L. Thenk € L. must be sent t&(* due to preservation of finite products. Now the
functor’s action on arrows is what interprdt&s operations inX, as illustrated above
right. Equations (expressed as commutative diagrarh} &me satisfied because a func-
tor preserves commutativity.

Turning back tdlL-categorieswhat we have to do here is to just repldbets by
the categoryC AT of (possibly large and locally small) categories.

Definition 3.2 (L.-categoriesL-functors) A (strict) L-categoryis an FP-functoi. <
CAT. In the sequel we denote the image of 1 € IL by C; and the imag€(f) of an
arrowf by [f].

12 The Lawvere theorMon for the theory of monoids should not be confused with thegrate
of (set-theoretic) monoids and monoid homomorphisms (Wwoften denoted biMon as
well).

10 Ichiro Hasuo, Bart Jacobs, and Ana Sokolova

An L-functor ' : C — D—a functor preserving ah-structure—is a natural trans-

C
. .
formation L. _yF X CAT .
D

Another way to look at the previous definition is to viewlasstructure as “factor-
ization throughNat°®? — IL.” We can identify a categorf € CAT with a functor
1 — CAT, which is in turn identified with an FP-functd¥at°® — CAT, because
Nat°? is the free FP-category oh. We say thatC has anlL-structure, if this FP-
functor factors througtt/ : Nat°® — L (as below left). Note that the factorization is
not necessarily unique, because there can be differentefay®rpreting the algebraic

theoryLL in C. Similarly, a functorC L D is identified with a natural transforma-
tion 1 ZVFXCAT ; and then with Nat°® —vF XCAT due to the 2-universality of
Nat? as a free object. We say that thispreserves ai.-structure, if the last natural
transformation factors through : Nat°® — I (as below right).

Nat°P A, L Nat°? LN L
™ 4 &\Af:\)—
C 17
CAT CAT

Example 3.3 The usual notion of strictly monoidal categories coincideéth I-cate-
gories forl. = Mon. A tensor® and a unit/ on a category arise as interpretation of the
operation® = 1 and0 = 1; commuting diagrams ilMlon such asn o (id,e) = id
yield equational properties of and /.

3.3 Remarks on “pseudo” algebraic structures

As we mentioned in the introduction, in this paper we focusitt algebraic struc-
tures. This means that monoidal categories (in which aateity holds only up-to-
isomorphism, for example) fall out of our considerationtéfrding our current frame-
work to such “pseudo” algebraic structures is one importhrgction of our future
work. Such an extension is not entirely obvious; we shaltdkeome preliminary ob-
servations in this direction.

The starting point is to relax the definition @fcategories from (strict) functors
L — CAT to pseuddunctors, meaning that composition and identities aregriesl

only up-to-isomorphism. Then it is not hard to see that a geéunctorMon & CAT
(which preserves finite products in a suitable sense) giseso a monoidal category.
Indeed, let us denote a mediating iso-2-cell for compasiipC, ¢ : [g] o [f] = [g o
f]. The associativity diagram (below left) gives rise to the fao-2-cells on the right.

. . . [mxid]
in Mon 3@2 M C3 \ ‘Vm led”
idxm] |m fxml | Imo@mial=Imo(idxm)] l[[m]] ®)
2 — 1 Nﬂ m,idxXm

[m]

The comp05|t|0rtCm idxm ® Cm,mxid IS what gives us a natural isomorphism X ®
(Y ® Z) = (X ®Y) ® Z. Moreover, the coherence condition on such isomorphisms

The Microcosm Principle and Concurrency in Coalgebra 11

in a monoidal category (like the famous pentagon diagram{2@]) follows from the
coherence condition on mediating 2-cells of a pseudo fur{ste [4]).

So far so good. However, at this moment it is not clear whatdar@onical con-
struction the other way round, i.e. from a monoidal categorg pseudo functdg In
the present paper we side-step these 2-categorical sebitst restricting ourselves to
strict, non-pseudo functors.

3.4 Inner models:IL-objects

We proceed to formalize an inner model. It is an object inLacategory which it-
self carries an (inner).-structure, hence is called drobject A monoid object in a
monoidal category is a prototypical example. We first presenabstract definition;
some illustration follows afterwards.

Definition 3.4 (L-objects) An LL-object X in anIL-categoryC is a lax natural trans-
formationX : 1 = C (below left) which is “product-preserving”: this means ttize
compositionX o H (below right) is strictly, non-lax natural. Here : . — CAT
denotes the constant functor to the trivial one-objectgratel .

1 1
/\
L %CAT Nat® — [, %CAT

Such a nested algebraic structure—formalized ak-abject in anL-category—shall
be called anicrocosm moddbr L.

Let us now illustrate the definition. Firs's i3 Nat°® in CAT

componentat € L is a functorl =} C which is & Rt
identified with an objecfX e C. This is the “car- T i)
rier” object of this inner algebra. Moreover, any 1 1——C

other component X5 ¢k must be thei-tuple (X, ..., X) € C* of X's. This is be-
cause of (strict) naturality ok o H (see above right): for any< [1, k] the composite
m; o X is required to beX;.

The (inner) algebraic structure on arises inthe in. in CAT

jati - - Xo=(X,X
form of mediating 2-cells offthebax natural trans 9 2=t >C2
formation. For each arroé — n in L, lax natu- dm I Zx, YIml=®
rality of X requires existence of a mediating 2-cell 1 1——C

Xt : [f] o Xx = X,. The diagram (above right) shows the situation when we set
f = m, a binary operation. The natural transformati&fp can be identified with an

arrowX ® X % X in C, which gives an inner binary operation 6h

3 For example, given a monoidal categdly we need to define a functgm o (m x id)] =
[m o (id x m)] in (8). It's not clear whether it should carfyX, Y, Z) to X ® (Y ® Z), or to
XeY)®Z.

12 Ichiro Hasuo, Bart Jacobs, and Ana Sokolova

H_o_w d_o such inner_operations on satisfy _equations_as 1 cl
specified inL.? The key is the coherence condittbon medi- Il LI
ating 2-cells: it requires(;q = id concerning identities; and Xgof = 1——C*
Xeof = X o ([g] o Xf) concerning composition (as on the l 2 &m

right). The following example illustrates how such cohesn
induces equational properties.

Example 3.5 A monoid object in a strictly monoidal category is an exangdflenlL-
object in anlL-category. Here we take = Mon, the theory of monoids.

For illustration, let us here derive associativity of mpiitation X @ X % X.Inthe
current setting the multiplicatiop is identified with a mediating 2-ceX’,,, as above.
The coherence condition yields the two equalitigshielow.

inlL in CAT
) 3) 1—— 3 11— 3 1—— 3
;dxm\z &mXId I Xidxm\i/[[idxm]] (;) (;) Il L//meid\i/ﬂmxid]]
2 2 1——C? Xmo (idxm) J 1—— 2
my Vm I %, Im =Xmo(mxid) I %, ~Im
1 1——C 1— ! 1——C

Now it is not hard to see that: the composed 2-cell on the tafiesponds toY 3 Xxp

X2 X and the one on the right correspondsiid 5" X2 % X. The equalities
(*) above prove that these two arroX$ = X are identical.

3.5 Microcosm structures in coalgebras

In this section we return to our original question and apply framework we just
introduced to coalgebraic settings. First we present sase besults, which are used
later in our main result of general compositionality. Thestoucts in Section 2 (such
assync) will appear again, now in their generalized form. Some itkegand proofs are
omitted here due to lack of space. They will appear in thénfamtning extended version
of this paper, although the diligent reader will readily Wwiiiem out.

Let C be anL-category, and® : C — C be a functor. We can imagine that, for
the categoryCoalg . to carry arnL-structure F' needs to be somehow compatible with
LL; it turns out that the following condition is sufficient. # weaker tharF’s being an
LL-functor (see Definition 3.2).

Definition 3.6 (Lax L-functor) A functor F' : C — D betweerlL-categories is said to

C

be alax L-functorif it is identified with'> some lax natural transformatian ~ v X CAT
D

which is product-preserving (i.€” o H is strictly natural; see Definition 3.4).

¥ This is part of the notion of lax natural transformations 4.
15 Meaning:F' : C — D is thel-component of such a lax natural transformatides D.

The Microcosm Principle and Concurrency in Coalgebra 13

Lax L-endofunctors are natural generalization of func-inl. in CAT (FF)
tors withsync as in Section 2. To illustrate this, look at 2 c?——C?
the lax naturality diagram on the right for a binary op- *1““ ®jé 2 (E@’
erationm. Here we denote the outer interpretatjom] F
by ®. The2-component isf, = (F, F) because the lax natural transformatibnis
product-preserving. The mediating 2-cé}}, can be identified with a natural transfor-
mationF'X ® F'Y — F(X ®Y); this is what we previously calleync. Moreover F,
(as generalizesync) is automatically compatible with equational propertigsif The-
orem 2.4); this is because of the coherence condition onatirdi2-cells like Ty is
a suitable composition df;, after F.”

The following results follow from a more general result ceming the notion of
inserters namely: whenG is an oplaxLL-functor andF’ is a laxL-functor, then the
inserterlns(G, F) is anlL-category.

Proposition 3.7 1. LetC be anlL-category andF' : C — C be a laxLL-functor.
ThenCoalg . is anlL-category; moreover the forgetful funct@loalg - Y Cisa
(strict, non-lax)LL-functor.

2. Given a microcosm modél € C for L, the slice categor/ X is anlL-category;

moreover the functo€/ X 4% ¢ is anL-functor. O

Note thatCoalg being anlL-category means not only that operations are interpreted
in Coalg; but also that all the equational properties specified.iare satisfied in
Coalg .. Therefore this result generalizes Theorem 2.4.

Concretely, an operatioh: & — 1 in L is interpreted inCoalg; andC/X as
follows, respectively.

FIf(X) (Y

)
< FXy FX),) T < vi Yi) iile
M1, ..., MCk — [[f]](FX) Yt .o, LYk = Tf)—5
= A e X * X
[F1(X) X

Compare these with (5) and (6); these make an essential Useaafl X which gener-
alizesync and|| in Section 2, respectively.

Proposition 3.8 1. A laxIL-functor preservek.-objects. Hence so does &nfunctor.
2. Afinal object of arl.-categoryC, if it exists, is arnL-object. The inneL-structure
is induced by finality. a0

We can now present our main result. It generalizes Theor&ph2nce is a gener-
alized version of the “coalgebraic compositionality” etjoa (4).

Theorem 3.9 (General compositionality)Let C be anlL-category andF’ : C — C
be a laxLL-functor. Assume further that: Z = FZ is the final coalgebra. Then the

14 Ichiro Hasuo, Bart Jacobs, and Ana Sokolova

functorbeh : Coalg, — C/Z is a (non-lax)L-functor. It makes the following diagram
of L-functors commute.

Coalg L C/z

UNC%m O

The proof is straightforward by finality. Heil€oalg . is anlL-category (Proposition
3.7.1). S0 isC/Z because(€ Coalg is anlL-object (Proposition 3.8.2) = U(¢
is anL-object (Propositions 3.8.1 and 3.7.1); herftg” is anlL-category (Proposi-
tion 3.7.2).

We have also observed some facts which look interestingrbutat directly needed
for our main result (Theorem 3.9). They include: the catgdopbj of L-objects inC
and morphisms between them forms the lax limit of a diagfani. — CAT; the sim-
plicial categoryA is the “universal” microcosm model favlon (cf. [20, Proposition
VII1.5.1]). The details will appear in the forthcoming extid version.

4 Conclusions and future work

In this paper we have observed that the microcosm princgdecélled by Baez and
Dolan) brings new mathematical insights into computerrsme Specifically, we have
looked into parallel composition of coalgebras, which vibsérve as a mathematical
basis for the study of concurrency. As a purely mathemagixpédition, we have pre-
sented a 2-categorical formalization of the microcosmqipie, where an algebraic
theory is presented by a Lawvere theory. Turning back to oigiral motivation, the
formalization was applied to coalgebras and yielded somergéresults which ensure
compositionality and equational properties such as astaity.

There are many questions yet to be answered. Some of thembkavealready
mentioned, namely: extending the expressive poweyraf (Remark 2.3), and a proper
treatment of “pseudo” algebraic structures (Section 3.3).

On the application side, one direction of future work is ttabsh a relationship
betweersync and(syntactic) format$or process algebras. Osync represents a certain
class of operational rules; formats are a more syntactic twalo the same. Formats
which guarantee certain good properties (such as commwitijaiee [23]) have been
actively studied. Such a format should be obtained by tading) e.g. a “commutative”
sync into a format.

On the mathematical side, one direction is to identify mostances of the micro-
cosm principle. Mathematics abounds with the (often iniplidea of nested algebraic
structures. To name a few: a topological space in a toposhwiitself a “generalized
topological space”; a category of domains which itself iesria “structure as a do-
main.” We wish to turn such an informal statement into a maidécally rigorous one,
by generalizing the current formalization of the microcqminciple. As a possible first
step towards this direction, we are working on formalizing imicrocosm principle for
finitary monads which are known to be roughly the same thinigeas/ere theories.

Another direction is a search farfolded nested algebraic structures. In the current
paper we have concentrated on two levels of interpretagioexample with more levels
might be found e.g. in an internal category in an internatgaty.

The Microcosm Principle and Concurrency in Coalgebra 15

Acknowledgments Thanks are due to Kazuyuki Asada, John Baez, Masahito Hasega
Bill Lawvere, DuSko Pavlovi¢, John Power and the pareits of CALCO-jnr work-
shop 2007 including Alexander Kurz for helpful discussiansl comments.

References

1. J.C. Baez and J. Dolan. Higher dimensional algebranHtategories and the algebra of
opetopesAdv. Math 135:145-206, 1998.

2. M. Barr and C. Wells.Toposes, Triples and TheorieSpringer, Berlin, 1985. Available
online.

3. F. Bartels.On generalised coinduction and probabilistic specificatiormats. Distributive
laws in coalgebraic modellingPhD thesis, Free Univ. Amsterdam, 2004.

4. F. Borceux.Handbook of Categorical Algeby&ol. 50, 51 and 52 oEncyclopedia of Math-
ematics Cambridge Univ. Press, 1994.

5. |. Hasuo. Generic forward and backward simulations. |B&er and H. Hermanns, editors,
International Conference on Concurrency Theory (CONCUB630vol. 4137 ofLect. Notes
Comp. Sci.pp. 406—420. Springer, Berlin, 2006.

6. |. Hasuo, B. Jacobs and A. Sokolova. Generic trace seosaviti coinduction. Logical
Methods in Comp. S¢i3(4:11), 2007.

7. C.A.R. HoareCommunicating Sequential ProcessBsentice Hall, 1985.

8. M. Hyland and A.J. Power. Discrete Lawvere theories andmdational effects.Theor.
Comp. Sci.366(1-2):144-162, 2006.

9. B. JacobsCategorical Logic and Type TheariNorth Holland, Amsterdam, 1999.

10. B. Jacobs. Trace semantics for coalgebras. In J. AdamelS. Milius, editorsCoalge-
braic Methods in Computer Scienosl. 106 ofElect. Notes in Theor. Comp. SEilsevier,
Amsterdam, 2004.

11. B. Jacobs. Introduction to coalgebra. Towards mathemat states and observations, 2005.
Draft of a bookywww. ¢s. ru. nl / B. Jacobs/ PAPERS/ i ndex. ht ni .

12. B. Jacobs. A bialgebraic review of deterministic aut@maegular expressions and lan-
guages. In K. Futatsugi, J.P. Jouannaud and J. Meseguerseissays Dedicated to Joseph
A. Goguenvol. 4060 ofLect. Notes Comp. Scpp. 375-404. Springer, 2006.

13. P.T. Johnstone, A.J. Power, T. Tsujishita, H. WatanadelaWorrell. An axiomatics for cat-
egories of transition systems as coalgebrad.dgic in Computer SciencéEEE, Computer
Science Press, 1998.

14. M. Kick, A.J. Power and A. Simpson. Coalgebraic semarfiic timed processednf. &
Comp, 204(4):588-609, 2006.

15. B. Klin. From bialgebraic semantics to congruence fasman Workshop on Structural
Operational Semantics (SOS 20049l. 128 ofElect. Notes in Theor. Comp. Sgip. 3—-37.
2005.

16. B. Klin. Bialgebraic operational semantics and modgidoIn Logic in Computer Science
pp. 336—345. IEEE Computer Society, 2007.

17. A. Kock and G.E. Reyes. Doctrines in categorical logicJ.|Barwise, editotdandbook of
Mathematical Logicpp. 283—-313. North-Holland, Amsterdam, 1977.

18. F.W. LawvereFunctorial Semantics of Algebraic Theories and Some Algjelftroblems in
the Context of Functorial Semantics of Algebraic TheorD thesis, Columbia University,
1963. Reprints in Theory and Applications of Categorie2@4) 1-121.

19. E.A. Lee. Making concurrency mainstream. Invited talc@NCUR 2006, 2006.

20. S. Mac LaneCategories for the Working Mathematicia8pringer, Berlin, 2nd edn., 1998.

21. R. Milner. Communication and Concurrencirentice-Hall, 1989.

16

22.
23.

24.

25.

26.

27.

Ichiro Hasuo, Bart Jacobs, and Ana Sokolova

E. Moggi. Notions of computation and monati#. & Comp, 93(1):55-92, 1991.

M.R. Mousavi, M.A. Reniers and J.F. Groote. A syntactimmutativity format for SOS.
Inform. Process. Lett93(5):217-223, 2005.

K. Nishizawa and A.J. Power. Lawvere theories enrictved a general basdourn. of Pure
& Appl. Algebrg 2006. To appear.

J. Power and D. Turi. A coalgebraic foundation for lingare semantics. [rCategory
Theory and Computer Scienaml. 29 of Elect. Notes in Theor. Comp. SEilsevier, 1999.
J.J.M.M. Rutten. Universal coalgebra: a theory of sgsteTheor. Comp. Sci249:3-80,
2000.

D. Turiand G. Plotkin. Towards a mathematical operatisemantics. li.ogic in Computer
Sciencepp. 280-291. IEEE, Computer Science Press, 1997.

CSP-CASL-Prover — Tool integration and
algorithms for automated proof generation

Liam O’Reilly!, Yoshinao Isobe?, Markus Roggenbach!*

! Swansea University, United Kingdom
2 AIST, Tsukuba, Japan

Abstract. The specification language CspP-CASL allows one to model
data as well as processes of distributed systems within one framework. In
our paper, we describe how a combination of the existing tools HETS and
Csp-Prover can solve the challenges that Csp-CASL raises on integrated
theorem proving for processes and data. For building this new tool, the
automated generation of theorems and their proofs in Isabelle/HOL plays
a fundamental role. A case study of industrial strength demonstrates that
our approach scales up to complex problems.

1 Introduction

Distributed computer applications like flight booking systems, web services, and
electronic payment systems such as the EP2 standard [ep202], require parallel
processing of data. Consequently, these systems have concurrent aspects (e.g.
deadlock-freedom) as well as data aspects (e.g. functional correctness). Often,
these aspects depend on each other.

In [Rog06], we present the language Csp-CASL, which is tailored to the spec-
ification of distributed systems. Csp-CASL integrates the process algebra Csp
[Hoa85,R0s98] with the algebraic specification language CASL [Mos04]. Its novel
aspects include the combination of denotational semantics in the process part
and, in particular, loose semantics for the data types covering both concepts of
partiality and sub-sorting. In [GRS05] we apply Csp-CASL to the EP2 standard
and demonstrate that CspP-CASL can deal with problems of industrial strength.

Here, we develop theorem proving support for Csp-CASL and show that our
approach scales up to practically relevant systems such as the EP2 standard.
Csp-CASL comes with a simple, but powerful notion of refinement. Csp-CASL
refinement can be decomposed into first a refinement step on data only and
then a refinement step on processes. Data refinement is well understood in the
CASL context and has good tool support already. Thus, we focus here on pro-
cess refinement. The basic idea is to re-use existing tools for the languages CASL
and Csp, namely for CASL the tool HETS [MMLO07] and for Csp the tool Csp-
Prover [IR05,IR06], both of which are based on the theorem prover Isabelle/HOL
[NPWO02]. This re-use is possible thanks to the definition of the Csp-CASL se-
mantics in a two step approach: First, the data specified in CASL is translated

* This cooperation was supported by the EPSRC Project EP/D037212/1.

http://www.ii.uib.no/publikasjoner/texrap/pdf/2008-367 .pdf

18 Liam O’Reilly, Yoshinao Isobe, Markus Roggenbach

into an alphabet of communications, which, in the second step, is used within
the processes, where the standard Csp semantics are applied.

The main issue in integrating the tools HETS and Csp-Prover into a Csp-
CAsL-Prover is to implement — in Isabelle/HOL — Csp-CAsL’s construction of
an alphabet of communications out of an algebraic specification of data written
in CASL. The correctness of this construction relies on the fact that a certain
relation turns out to be an equivalence relation. Although this has been proven
to hold under certain conditions, we chose to prove this fact for each Csp-CAsL
specification individually. This adds an additional layer of trust. It turns out
that the alphabet construction, the formulation of the justification theorems
(establishing the equivalence relation), and also the proofs of these theorems
can be automatically generated.

Closely related to CspP-CASL is the specification language pnCRL [GP95].
Here, data types have loose semantics and are specified in equational logic with
total functions. The underlying semantics of the process algebraic part is oper-
ational. [BFG'05] presents - on the fly, as the focus of the paper is on protocol
verification — the prototype of a pCRL-Prover based on the interactive theorem
prover PVS [ORS92]. The chosen approach is to represent the abstract pCRL
data types directly by PVS types, and to give a subset of uCRL processes,
namely the linear process equations, an operational semantics in terms of la-
belled transition systems. Thanks to uCRL’s simple approach to data — neither
sub-sorting nor partiality are available — there is no need for an alphabet con-
struction — as it is also the case in CSP-CASL in the absence of sub-sorting and
partiality. Concerning processes, CSP-CASL provides semantics to full CSp by re-
using the implementation of various denotational CSP semantics in Csp-Prover.

Our paper is organized as follows: Section 2 introduces the CsP-CASL seman-
tics along with a case study from the EP2 system. Section 3 describes the existing
tools which we make use of. The overall architecture of Csp-CASL-Prover is pre-
sented in Section 4. Section 5 discusses in detail how we build a single alphabet
which can be used as a parameter for the process type in Csp-Prover. Then
we consider how integration theorems can lift proof obligations on the alphabet
back onto proof obligations over the data from a CsP-CASL specification. In Sec-
tion 7 we analyze which parts of our Isabelle code are specification dependent.
Section 8 finishes our paper with a case study on how to prove deadlock freedom
of a dialog within the EP2 system.

2 CSP-CASL

Csp-CasL [Rog06] is a comprehensive language which combines processes writ-
ten in Csp [Hoa85,Ro0s98] with the specification of data types in CASL [Mos04].
The general idea is to describe reactive systems in the form of processes based
on CsP operators, where the communications of these processes are the values
of data types, which are loosely specified in CASL. All standard CSp operators
are included, such as multiple prefix, the various parallel operators, operators for
non-deterministic choice, communication over channels. Concerning CASL fea-

Csp-CAsL-Prover — Tool integration and algorithms 19

tures, the full language is available to specify data types, namely many-sorted
first order logic with sort-generation constraints, partiality, and sub-sorting.

Syntactically, a CSP-CASL specification with name N consists of a data part
Sp, which is a structured CASL specification, an (optional) channel part Ch to
declare channels, which are typed according to the data part, and a process
part P written in Csp, within which CASL terms are used as communications,
CASL sorts denote sets of communications, relational renaming is described by a
binary CASL predicate, and the CSP conditional construct uses CASL formulae
as conditions — see Figure 1 for an instance of this scheme:

ccspec N = data Sp channel Ch process P end

2.1 EP2 in CSP-CASL

As a running example, we choose a dialog nucleus of the EP2 system [ep202],
see [GRS05] for further details of the modelling approach. In this dialog, the
credit card terminal and another component, the so-called acquirer, are sup-
posed to exchange initialization information over the channel C_SI_Init. The
messages on this channel can be classified into SessionStart, SessionEnd,
ConfigDataRequest and ConfigDataResponse. In order to prove that the di-
alog is deadlock-free, we need to ensure that messages of type SessionEnd
are different from messages of type ConfigDataResponse. The terminal initi-
ates the dialog by sending a message of type SessionStart, see the process
Ter_Init. The acquirer receives this message, see the process Acq-Init. In
Acq_ConfigManagement, the acquirer then takes the internal decision either to
end the dialog by sending the message e of type SessionEnd or to start a data
exchange with the terminal. The terminal, on the other side, waits in the pro-
cess Ter _ConfigManagement for a message from the acquirer. Depending on the
type of this message, the terminal ends the dialog with SKIP, engages in a data
exchange, or executes the deadlock process STOP. The system consists of the par-
allel composition of terminal and acquirer. Should one of these two components
be in a deadlock, the whole system will be in deadlock.

The original dialog in EP2 has many more possibilities for the data exchange.
To this end, it involves 11 sorts, but it exhibits the same structure. For simplicity,
we present here only the above nucleus. However, we successfully applied our
approach to the full dialog. Our proof on deadlock freedom (see Section 8) scales
up from the nucleus to the real version.

2.2 CSP-CASL semantics

Semantically, a CSP-CASL specification is a family of process denotations for a
Csp process, where each model of the data part Sp gives rise to one process
denotation. The definition of the language CsP-CASL is generic in the choice of
a specific Csp semantics. For example, all denotational CsP models mentioned
in [Ros98] are possible parameters.

20 Liam O’Reilly, Yoshinao Isobe, Markus Roggenbach

ccspec GetInitialisationData =
data sorts SessionStart, SessionEnd,

ConfigDataRequest, ConfigDataResponse < D_SI_Init
forall x:ConfigDataRequest; y:SessionEnd . not (x=y)
ops r: ConfigDataRequest; e: SessionEnd

channel C_SI_Init: D_SI_Init
process
let Ter_Init = C_SI_Init ! sessionStart: SessionStart
-> Ter_ConfigManagement
Ter_ConfigManagement = C_SI_Init ? configMess
-> IF (configMess: SessionEnd) THEN SKIP ELSE
(IF (configMess: ConfigDataRequest) THEN
C_SI_Init ! response: ConfigDataResponse
-> Ter_ConfigManagement ELSE STOP)
Acq_Init = C_SI_Init ? sessionStart: SessionStart
-> Acq_ConfigManagement
Acq_ConfigManagement =
C_SI_Init ! e -> SKIP
[7] C_SI_Init ! r -> C_SI-Init ? response: ConfigDataResponse
-> Acq_ConfigManagement
in Ter_Init |[C_SI_Init]| Acq_Init

Fig. 1. Nucleus of an EP2 dialog.

The semantics of CsP-CASL is defined in a two-step approach 3, see Figure 2.
Given a Csp-CASL specification (Sp, P), in the first step we construct for each
model M of Sp a CsP process P’'(A(B(M))). To this end, we define for each model
M, which might include partial functions, an equivalent model B(M) in which
partial functions are totalized. B(M) gives rise to an alphabet of communications
A(B(M)). In the second step we point-wise apply a denotational CSP semantics.
This translates a process P'(A(B(M))) into its denotation dps in the semantic
domain of the chosen Csp model.

In the following we sketch the alphabet construction — see [Rog06] for the full
details. The purpose of the alphabet construction is to turn a CASL model into
an alphabet of communications. CASL models are defined in two steps: First, we
define what a model over a many-sorted signature is. Using this concept we then
define what a model over a sub-sorted signature is.

A many-sorted signature X = (S, TF, PF, P) consists of

— a set S of sorts,

— two S* x S-sorted families TF = (T'F,, s)wes,ses and PF = (PFy, s)wes~ ses
of total function symbols and partial function symbols, respectively, such that
TF,sNPF, =0 for each (w,s) € S* x S, and

— a family P = (Py)wes~ of predicate symbols.

3 We omit the syntactic encoding of channels into the data part.

Csp-CAsL-Prover — Tool integration and algorithms 21
(Sp, P)
WL
CASL ~-Yem,

-o

(dar) MeMod(sp)

(P'(A(B(M)))) memod(sp) Csp semantics

Fig. 2. Csp-CASL semantics.

Given a many-sorted signature X' = (S, TF, PF, P), a many-sorted X-model M
consists of

— a non-empty carrier set M; for each s € S,

— a partial function (fy,s)ar : My — M; for each function symbol f € TF,, ;U
PF, s, the function being total for f € T'F,, 5, and

— arelation (py)y € M, for each predicate symbol p € P,,.

Together with the standard definition of first order logic formulae and their
satisfaction, this definition yields the institution PFOL=, see [Mos02] for the
details.

A sub-sorted signature ¥ = (S,TF, PF, P, <) consists of a many-sorted sig-
nature (S, TF, PF, P) together with a reflexive and transitive sub-sort relation
<s C 8 x S. With each sub-sorted signature X = (S,TF, PF, P,<) we asso-
ciate a many-sorted signature r= (5‘ , TF, PF,]5), which extends the underlying
many-sorted signature (S,TF, PF, P) with

— a total injection function symbol inj : s — s’ for each pair of sorts s <g &/,

— a partial projection function symbol pr : s’ —7s for each pair of sorts s <g &',
and

— an unary membership predicate symbol €, : s’ for each pair of sorts s <g s’

Sub-sorted X-models are many-sorted Y-models satisfying in PFOL™ a set of
axioms J (X)), which prescribe how the injection, projection, and membership
behave?. A typical axiom in J(X) is inj, ((7) < x for s € S. Together with
the definition of sub-sorted first order logic formulae and their satisfaction, this
definition yields the institution SubPFOL=, see [Mos02] for the details.

Given a sub-sorted model M on carrier sets, its strict extension S(M) is de-
fined as: B(M), = M,U{L} for all s € S, where L & M, for all s € S. The strict
extension is uniquely determined. We say that a signature ¥ = (S, TF, PF, P, <)
has local top elements, if for all u,u’,s € S the following holds: if u,u’ > s then
there exists t € S with ¢ > u,u’. Relatively to the extension (M) of a model
M for a sub-sorted signature with local top elements, we define an alphabet of
communications

ABOD) = (14 B -

ses

4 and also define how overloading works.

22 Liam O’Reilly, Yoshinao Isobe, Markus Roggenbach

where (s,x) ~ (s',2') iff either
— z =2’ = 1 and there exists u € S such that s < v and s’ < u,
or

— x# 1,2’ # 1, there exists u € S such that s <wu and s’ < u, and
— for all u € S with s < u and s’ < u the following holds:

(inj (s‘,u))M(x) =inj (s’,u)M(x/)

for s,s’ € S, v € M,,x’ € M, . For signatures with local top elements the
relation ~ turns out to be an equivalence relation [Rog06].

2.3 CSP-CASL refinement

Given a denotational CsP model with domain D, the semantic domain of CSp-
CASL consists of families of process denotations dy; € D. Its elements are of the
form (dpr)mer where I is a class of algebras. As refinement ~»p we define on
these elements
(dar)ser ~p (dyp)mrer
iff
I'CIANVM' €I’ :dy Cp d/M’?

where I’ C I denotes inclusion of model classes over the same signature, and Cp
is the refinement notion in the chosen CsP model D. Concerning data refinement,
we directly obtain the following characterisation:

(Sp, P) ~p (Sp', P) if {; 1%/[(05(?()5']))2

The crucial point is that we fix both the signature of the data part and the
process P. For process refinement, a similar characterisation is obvious:

(Sp),
C Mod(Sp)

. for all M € Mod(Sp) :
(Sp, P) ~p (Sp,Q) if {P’(A(ﬁ(M))) Cp Q]’J(A(ﬂ(M)

Csp-CASL refinement can be decomposed into first a data refinement and
then a process refinement?®:

(Sp, P) ~p (Sp', P')
—

(Sp, P) = (Sp/, P) A (Sp',P) 555 (Sp/, P')

Here, € and Rﬂ% represent data refinement and process refinement, respec-
tively. Data refinement does not deal with the process part at all. Thus, to prove
data refinement we can re-use the existing tool support for CAsL. Consequently,
we focus in this paper on tool support for process refinement.

® Note that the order of the decomposition is essential: (Sp, P) ~p (Sp/,P’) #
(Sp, P) 5% (Sp, P') A (Sp, P') %5 (Sp', P").

Csp-CAsL-Prover — Tool integration and algorithms 23

3 Tools involved

Csp-CasL-Prover makes appropriate re-use of existing technology and tools. In
this section we will explain what these tools are and what they do.

3.1 Isabelle/HOL

Isabelle/HOL [NPWO02] is a widely used, generic interactive theorem prover for
Higher Order Logic. Theorems are entered into Isabelle/HOL via commands.
Isabelle/HOL then displays proof goals which need to be discharged. For example
the command theorem T1: "a+b = b+a" creates a theorem with the name T1
and a goal of a+b = b+a.

To prove such a theorem, proof commands are issued which transform goals
into other goals (or possibly many sub-goals). A goal is discharged if it is trans-
formed into the truth value True. A theorem is proven when all of its proof
obligations have been discharged. Previously established theorems can be used
within further proofs as new proof commands. Proof commands can be combined
in various ways to form tactics, which can ease the burden of discharging proof
goals.

Theory files consist of scripts of Isabelle commands and proof commands.
Such theory files can use theorems, proofs, data structures and functions written
in other theory files. This brings in a concept of modularity to Isabelle/HOL.

Commands allow the user to extend the logic, for example, by adding new
data structures, types, and function definitions to Isabelle/HOL. This allows the
user to accommodate for the particular area of interest.

For example, the command datatype Num = N nat | I int adds a new
data type with the name Num. This creates a new type which is the sum of
natural numbers and integers. Here, N and I are user chosen type constructors
while nat and int are the built in types of natural numbers and integers, re-
spectively. Such a datatype declaration comes with a built in induction tactic
within Isabelle/HOL. In our example of Num, this induction tactic simplifies to
a complete case distinction.

The commands that Isabelle/HOL offers are able to create new data struc-
tures, functions, relations, etc. Theorems can then be used to prove properties
of data structures, functions and relations, while proof commands can use the
definition of such structures, functions and relations. For example, we define a
new function plus:: Num => Num => Num such that a natural number will be
returned only if both arguments are natural numbers, else an integer will be re-
turned. The definition of plus is as expected. The following Isabelle/HOL code
proves our new function plus to be commutative:

theorem comm: "plus a b = plus b a"
apply(induct_tac a)

The first line sets up the theorem with the name comm and states that plus is
commutative. The second line applies the induction tactic on the variable a. This
simplifies to a finite case distinction over our sum type, i.e. a can have the form

24 Liam O’Reilly, Yoshinao Isobe, Markus Roggenbach

N nat or I int. Hence, after application of the induction tactic induct_tac, the
following two sub-goals are shown:

goal (theorem (comm), 2 subgoals):
1. !!'nat. plus (N nat) b = plus b (N nat)
2. !lint. plus (I int) b = plus b (I int)

Here b, nat, and int are variables where nat and int are locally bound in each
subgoal (indicated by the !'! symbol). Further induction on the variable b along
with simplification proves our theorem.

3.2 HETS

HETS (the Heterogeneous Tool Set) [MMLO7] is a parsing, static analysis and
proof management tool for various specification languages centred around CASL
[Mos04].

One of the features of HETS is the ability of translating a specification from
one specification language into a specification from another language, while pre-
serving its semantics. An important instance of this is the translation of CASL
specifications into suitable code for use in the theorem prover Isabelle/HOL. In
our setting we use HETS as an input/output tool, loading specifications written
in CAsL and encoding them into Isabelle/HOL code. This translation process is
non-trivial and Csp-CASL-Prover exploits this functionality heavily.

3.3 CSP-Prover

Csp-Prover [IR05,IR06] is a theorem prover built upon Isabelle/HOL. Csp-
Prover is dedicated to refinement proofs over CSP processes. It is generic in the
models of CSp that can be used. It can be instantiated with all main CsP models.
The trace model 7 and the stable-failures model F are available, while imple-
mentations of the stable-revivals model R and failure-divergences model N are
underway. Csp-Prover provides a deep-encoding of CsP within Isabelle/HOL.
Consequently, it offers a type ’a proc (which is used within Section 5.2), the
type of CsP processes that are built over the alphabet ’a, where ’a is an Is-
abelle/HOL type variable.

Csp-Prover supports two proof methods, namely syntactical and semantical
proofs. Syntactical proofs transform the syntax of CSP processes into equivalent
CsP processes until syntactical identity is reached. Semantical proofs evaluate
the denotational semantics of CSP processes and compare the denotations.

Csp-Prover comes with a large collection of CsP laws and tactics. CSP-Prover
tactics combine these laws to powerful proof principles. One typical example is
the tactic cspF_hsf_tac, which transforms CsP processes to a ‘head normal
form’ over the model F.

Csp-CAsL-Prover — Tool integration and algorithms 25

CSP-CASL Prover

Hets + CSP-Prover

Theory Files

Isabelle

IRES Translated

Process & Data
Refinement
([Sp1[P) <= ([Sp'LIP

Refinement
Holds /
Doesn't Hold

Process & Data
Refinement
(Sp.P) <= (Sp",P)

-» | Theorem »!
Prover

Translator

Interactive
Theorem Proving

Fig. 3. Diagram of the basic architecture of Csp-CASL-Prover.

4 Basic architecture of CSP-CASL-Prover

Csp-CasL-Prover uses the existing tools HETS and Csp-Prover discussed in
Sections 3.2 and 3.3. Its proposed architecture is shown in Figure 3. The overall
idea is that Csp-CasL-Prover takes a Csp-CASL process refinement statement
as its input. The Csp-CASL specifications involved are parsed and transformed
by Csp-CAsL-Prover into a new file suitable for use in Csp-Prover. This file
can then be directly used within Csp-Prover to interactively prove if the Csp-
CASL process refinement holds. For example, dead lock freedom of a system of
processes can be proven using such a refinement statement, see Section 8 for
details.

Csp-CAsSL-Prover re-uses the existing functionality of HETS in order to pro-
duce part of the file that will be used as input to Csp-Prover. We take the
data part of a Csp-CASL specification and translate this into Isabelle/HOL via
HETS. This generates (in general) several types in Isabelle/HOL, which need to
be transformed into one alphabet to become the parameter of the Csp-Prover
process type ’a proc. This is expressed in Figure 3 by HETS being labelled as
“Hets +”, which represents the extra encoding that needs to be done. This is
discussed in more detail Section 5.2.

The final form of the file which is produced by Csp-CAsL-Prover (i.e. HETS
and the extra encoding) is labelled as “Translated Processes and Data Refine-
ment” in Figure 3. Figure 4 shows how this file is split up into five distinct
parts. The first three parts can all be automatically generated from the original
Csp-CASL specification. The final two parts are dependent on the application.
Csp-CAsL-Prover provides place holder code that the user can fill in and expand.

The first part of the file shown in Figure 4 “Hets Translation of CASL” is the
direct encoding of the data part of the Csp-CASL specification which is produced
by HETS — see Section 5.1. The second part “Alphabet Construction & Justi-

26 Liam O’Reilly, Yoshinao Isobe, Markus Roggenbach

Hets Translation of CASL
To be automatically

Alphabet Construction & Justification Theorems generated by CSP-CASL
Prover.

Integration Theorems

Data Theorems Application dependent, to

be provided by the user.

Process Theorems

Fig. 4. Structure of a translated Csp-CASL specification using Csp-CASL-Prover.

fication Theorems” provides the CsP-CASL semantics, namely the alphabet of
communications, over which CSP processes can be constructed — see Section 5.2.
The third part “Integration Theorems” provides the user with a mechanism to
lift proof obligations on processes to proof obligations on data in the HETS en-
coding only — see Section 6. These Integration Theorems are crucial in keeping
the final proof of the process refinement small, readable and manageable — see
Section 8 for an example. The forth part is where the user shall write auxiliary
theorems and proofs which are helpful for the specific refinement to be proven.
The final part is where the user shall provide the proof of the refinement between
the processes.

5 Alphabet construction

In this section we first discus the encoding that is produced by HETS. Then we
describe how to encode the alphabet construction in Isabelle/HOL.

5.1 HETS encoding

We use HETS in order to encode the data part of a CspP-CASL specification®. Es-
sentially, HETS produces Isabelle/HOL commands such as typedecl and func-
tion declarations, followed by axioms which define the properties of such de-
clared types and functions. CASL sub-sorting and partiality are encoded within
Isabelle/HOL by adding undefined elements to each sort and by providing injec-
tion and projection functions between sorts in the sub-sort relation. Full details
of this encoding can be found in Chapter 4 of [Mos02].

Figure 5 shows part of the encoding” that HETS produces for the CsP-CASL
specification for the nucleus of the EP2 dialog in Figure 1.

HETS produces one typedecl for each sort declared in the CSpP-CASL spec-
ification. A typedecl command extends the signature by a new type which is

S Currently, the chosen encoding of HETS does not allow for the use of free and
generated types, however, this difficulty will be over come in future versions of HETS.

" For the purposes of a clear presentation in the paper, we have slightly adapted the
naming scheme of HETS.

Csp-CAsL-Prover — Tool integration and algorithms 27

typedecl D_SI_Init
typedecl D_SI_Init_ConfigDataRequest ...

consts

e :: "D_SI_Init_SessionEnd" r :: "D_SI_Init_ConfigDataRequest"
g__bottom_1 :: "D_SI_Init" ...

g__defined_1 :: "D_SI_Init => bool"

g__defined_2 :: "D_SI_Init_ConfigDataRequest => bool"
g__defined_4 :: "D_SI_Init_SessionEnd => bool" ...

g__inj_1 :: "D_SI_Init_ConfigDataRequest => D_SI_Init"

g__inj_3 :: "D_SI_Init_SessionEnd => D_SI_Init" ...

g__proj_1 :: "D_SI_Init => D_SI_Init_ConfigDataRequest" ...

ga_nonEmpty : "EX x. g__defined_1(x)" ...
ga_notDefBottom : "ALL x. (7 g__defined_1(x)) = (x = g__bottom_1)" ...
Ax1 : "ALL x. ALL y. g__defined_2(x) & g__defined_4(y) -->

" g__inj_1(x) = g__inj_3(y)"

Fig. 5. HETS Encoding for the nucleus of the EP2 specification (Figure 1).

assumed to be non-empty. After introducing all types for messages, the constants
e and r are declared. Their type is the translated version of the sort from the
specification, i.e. D_SI_Init_SessionEnd and D_SI_Init_ConfigDataRequest,
respectively. Then constants representing an undefined element of each sort are
declared. The constant g__bottom_1 represents the undefined element of type
D_SI_Init. This is where the strict encoding of the models is produced - see
Section 2.2. Next, functions are declared to capture definedness, injection and
projection functions. This is followed by axioms that control how these function
behave, including the axioms of J(%) from Section 2.2 which describe the encod-
ing of the sub-sorted signature into a many-sorted signature. Besides this, the
axioms state that there is a single unique undefined element in each sort - see
axiom ga notDefBottom — and that each sort has at least one defined element
— see axiom ga nonEmpty. Full details of these axioms can be found in [Mos02].
Finally, the original axiom from the CsSP-CASL specification has been added with
the name of Ax1. This axiom changes slightly from the specification because of
the encoding of undefined elements. Now the axiom states that two messages
of types D_SI_Init _ConfigDataRequest and D_SI_Init_SessionEnd are never
equal if they are both defined.

5.2 Alphabet construction within Isabelle/HOL

The goal of the alphabet construction is to create an alphabet of communi-
cations (the new type Alphabet) in Isabelle/HOL as set out in Section 2.2. We
then use this type with CsP-Prover to form the type Alphabet proc of Csp
processes over this alphabet of communications.

As HETS produces a shallow encoding of CASL, it is impossible to give a
single alphabet definition within Isabelle/HOL. To overcome this obstacle, we

28 Liam O’Reilly, Yoshinao Isobe, Markus Roggenbach

consts
compare_with_A :: "D_SI_Init => PreAlphabet => bool"
primrec
compare_with_A_A: "compare_with_A ax (C_A ay) = (ax = ay)"
compare_with_A_B: "compare_with_A ax (C_B by) = (ax = g__inj(by))"
consts
eq :: "PreAlphabet => PreAlphabet => bool"
primrec

eq_A: "eq(C_A ax)
eq_B: "eq(C_B bx)

compare_with_A ax"
compare_with_B bx"

Fig. 6. Alphabet construction for the nucleus of the EP2 dialog (Figure 1).

produce an encoding which is specifically crafted, however in a systematic way
for each data part of a CSP-CASL specification. This encoding can automatically
be produced by an algorithm that we report on in this paper.

The algorithm generates the code in multiple stages. First the algorithm
produces the construction section followed by the justification section. The con-
struction section creates a new type what we call PreAlphabet and defines a
relation over this type. The justification section is a collection of theorems and
proofs which make sure that we are allowed to use the code from the construction
section in the way we want. Then the alphabet of communications is produced
using both the type PreAlphabet and the relation.

The construction section consists of a new data-type called the PreAlphabet
which is the disjoint union of all the sorts that HETS produces. The particular
code for the creation of the PreAlphabet for the nucleus is:

datatype PreAlphabet = C_A D_SI_Init

| C_B D_SI_Init_ConfigDataRequest
| C_C D_SI_Init_ConfigDataResponse
| C_D D_SI_Init_SessionEnd

|

C_E D_SI_Init_SessionStart

Next a relation called eq is defined. This relation takes as parameters two
elements of the PreAlphabet and checks weather they are equal with respect to
the Csp-CASL semantics (this is the relation ~ from Section 2.2).

Figure 6 shows part of the code that is produced for the eq relation of the
nucleus. Here, auxiliary functions are used to compare each constructor of the
data-type PreAlphabet with every other constructor. These auxiliary functions
are used in order to make use of primitive recursion in Isabelle/HOL. Finally
the eq relation is defined. Basically, two elements of the PreAlphabet are equal
if they are equal in all super-sorts. This is accomplished using the injection
functions to test the elements of the PreAlphabet at the correct sorts.

Csp-CAsL-Prover — Tool integration and algorithms 29

The Csp-CAsL-semantics requires the relation eq to be an equivalence re-
lation. The justification section checks that this property holds. The code for
checking reflexivity and symmetry is simple. Thus, we focus on the proof of
transitivity. The main idea behind this proof is to induct all the variables until
only finitely many case distinctions remain. Isabelle/HOL can then automati-
cally solve all of the cases by using some previously proven lemmas. Figure 7
shows part of the code that is produced to check that the eq relation is transitive.
We carefully apply induction to the variables x and y in specific sub-goals by first
pulling the sub-goal to the top of the list (using the prefer command) and then
applying induction to the variable in the first sub-goal. The numbers associated
with each prefer command are systematically generated by our algorithm.

lemma eq_trans: "[| eqxy ; eqy z |] ==> eq x 2"
apply (induct x)

prefer 1 apply(induct y)

prefer 6 apply(induct y)

prefer 16 apply(induct y)
prefer 21 apply(induct y)
prefer 1 apply(induct z)
prefer 6 apply(induct z)

prefer 116 apply(induct z)

prefer 121 apply(induct z)

apply(auto simp add: g__inj_x_eq_g__inj_y ... g__inj_x_eq_g__inj_y_3)
done

Fig. 7. Proof of transitivity of the eq relation.

We illustrate this proof idea by a concrete example. Consider the sub-sort
structure shown in Figure 8 where the functions shown are the injections func-
tions which HETS provides® . After applying induction one of the resulting
proof obligations is © ~ y Ay ~ z = = ~ z, where z,y and z are variables
of the types S,T and U, respectively. Expanding the definition of x ~ z yields
two new sub-goals: inj_S_.U(z) = z and inj_S_.V(z) = inj-U_-V(z). We focus
here on proving inj_S_V(z) = inj-U_V(z). This equation means that x is equal
to z in the sort V. Expanding the definition of x ~ y we obtain the equation
inj_S_V(z) = inj T V(y). From y ~ z we obtain inj T V(y) = inj UV (z).
These two facts together yield inj_S_V(x) = inj_U_V(z). This proves one part
of the goal, the other can be proven in a similar way using the fact that the func-
tions we use are injections (these axioms are provided by HETS). Isabelle/HOL
can carry out all these proofs fully automatically, provided the simplifier is en-

8 We use the notation of ~ inplace of the Isabelle function eq.

30 Liam O’Reilly, Yoshinao Isobe, Markus Roggenbach

Vv
ianV inj UV
~
y:T oi z:U
£
injsk /anU

x:S

Fig. 8. Example of a possible sub-sort structure with injection functions.

riched with the right injection axioms, see the last but one line apply(auto
simp add: g__inj x eq.-g--inj.y ... g--inj x eq-g--inj_y_-3) of Figure 7.

Figure 9 shows part of the algorithm which produces the theorem and proof
of transitivity of the eq relation.

Let n = Number of Sorts in the Specification.

output lemma eq_trans: "[| eq x y; eqy z |] ==> eq x 2"
output apply(induct x)

for i = 1 ton {output prefer (i*n)+1 apply(induct y)}
for i = 1 to n”2 {output prefer (i*n)+1 apply(induct z)}
output apply(auto simp add: ‘{all Inject, all Decomp}’)
output done

Fig. 9. Algorithm for producing the theorem and proof of transitivity of the eq relation.

Finally, after the justification section, the alphabet of communications is
constructed:

instance PreAlphabet::eqv
by intro_classes

defs (overloaded) preAlphabet_sim_def : "x ~ y == eq x y"

instance PreAlphabet::equiv
apply(intro_classes)

apply(unfold preAlphabet_sim_def)
apply(rule eq_refl)

apply(rule eq_trans, auto)
apply(rule eq_symm, simp)

done

types Alphabet = "PreAlphabet quot"

Csp-CAsL-Prover — Tool integration and algorithms 31

First we instantiate PreAlphabet as the class eqv which allows us to define
a relation ~. Then we define this relation in terms on the eq function. In the
next step we instantiate PreAlphabet as the class equiv, which comes with
proof obligations that the ~ relation is indeed an equivalence relation. Finally
we create a type synonym called Alphabet as the quotient of PreAlphabet

6 Integration theorems

CsP processes communicate within the alphabet of communications. As the al-
phabet of communications is a quotient, CSP processes actually communicate
equivalence classes. Arguing about the elements of the communications alpha-
bet can therefore be difficult. However, Csp-CASL-semantics asks only three
different questions on the alphabet of communications, see [Rog06]. The most
prominent is the test whether two elements of the alphabet of communications
are equal or not. This test, for example, is used when two processes synchronise.

In order for the end-user to be able to easily argue on the Csp-CASL process
part they need to be able to easily test whether two equivalence classes are equal
or not. CsP-CASL-Prover provides integration theorems which allow tests on the
alphabet of communications to be lifted back to tests on the data from the HETS
encoding. Figure 10 shows an example of one such integration theorem from the
nucleus of the EP2 dialog.

lemma integration_theorem: "(class(C_B t1) = class(C_B t2)) =
(g__inj(t1) = g__inj(t2))"

apply(simp add: quot_equality)

apply(unfold preAlphabet_sim_def)

apply(auto simp add: g__inj_x_eq_g__inj_y ... g__inj_x_eq_g__inj_y_S)

done

Fig. 10. Example of an integration theorem and it’s proof.

The integration theorem of Figure 10 states that two equivalence classes,
which are based on the type “data request” (as they have the form C_B x), are
equal if and only if their underlying elements of the pre-alphabet are equal in
their top most sort (i.e. D-SI_Init). Such data theorems and their proofs can be
automatically generated by algorithms.

Proof practice shows that with these integration theorems available, reason-
ing about the behavioural aspects of a CsP-CASL specification becomes as easy
(or challenging) as reasoning on data and processes separately, where reasoning
on processes usually depends on theorems concerning data.

32 Liam O’Reilly, Yoshinao Isobe, Markus Roggenbach

7 Dependencies

The following table shows the dependencies of the pre-alphabet construction
and the integration theorems. T'(D) denotes that the theorem is dependent on
the parameter in the column heading, while T'(I) expresses that the theorem is
independent of the parameter in the column heading, and similar P(_) expresses

the dependencies of the proofs on the parameter in the column heading.

Specification | # of Sorts |[Sub-sort Structure
Pre-Alphabet Construction||T'(D) / P(D)|T'(I) / P(D)| T(D) / P(D)
eq-Reflexivity () /) P)|T) /P T(I) / P()
eq-Symmetry T(I)/ P(D)|T(I)/ P(D) T{) /P
eq_Transitivity T(I) / P(D)|T(I) /] P(D)| T(I)/ P(D)
Integration Theorems T(D) / P(D)|T(I) /] P(D)| T(D)/ P(D)

The reflexivity property of the eq relation is completely independent of the
specification whereas the proof of symmetry relies only on the number of sorts
and the proof of transitivity relies on the number of sorts and the sub-sort
structure(indirectly). The integration theorems are the most dependent on the

specification. All these proofs can be automatically generated by algorithms.

8 Proof of deadlock freedom of EP2

spec D_ACL_GetInitialisation =
sorts SessionStart, SessionEnd,

ConfigDataRequest, ConfigDataResponse < D_SI_Init
forall x:ConfigDataRequest; y:SessionEnd . not (x=y)
ops r: ConfigDataRequest; e: SessionEnd

end

ccspec sequential_system =
data D_ACL_GetInitialisation
channels C_SI_Init: D_SI_Init

process
let
Abstract =
C_SI_Init ! sessionStart: SessionStart -> Loop
Loop = C_SI_Init ! e -> SKIP
[“] C_SI_Init ! r -> C_SI_Init ! response: ConfigDataResponse
-> Loop

in Abstract
end

Fig. 11. Csp-CASL specification of a sequential system.

Csp-CAsL-Prover — Tool integration and algorithms 33

As an application of CspP-CASL-Prover we show how to prove deadlock free-
dom in an industrial setting. Here we prove deadlock freedom of the nucleus as
shown in Figure 1. We have also proven deadlock freedom of the full EP2 dialog:
the proof script scales up.

Our approach is to prove that, in the stable failures model F, the nucleus
is a refinement of the sequential system shown in Figure 11. Here, we have an
Abstract process that sends a SessionStart value and then enters a loop. The
Loop process either sends a SessionEnd message and terminates, or it sends a
ConfigDataRequest message followed by a ConfigDataResponse message and
then repeats the loop. Loop chooses internally, which of these two branches is
taken. As this system has no parallelism it is impossible for it to deadlock. Pro-
cess refinement within stable failures model preserves deadlock freedom. Hence
if we can show that the EP2 nucleus is indeed a refinement of the sequential
system, the EP2 nucleus is guaranteed to be deadlock free.

For our refinement proof we apply the algorithms discussed in this paper on
both the EP2 nucleus as well as on the sequential system specification. Adding
the integration theorems to Isabelle/HOL’s simplifier set then allows us to prove
deadlock freedom as shown in Figure 12 (we actually show more, namely that
both systems are equivalent). This refinement proof involves recursive process
definitions. These are first unfolded, then (metric) fixed point induction is ap-
plied. A powerful tactic from Csp-Prover finally discharges the proof obligation.
The whole proof script involves syntactic proof techniques only.

theorem ep2: "Abs_System =F System"
apply (unfold System_def Abs_System_def)
apply (rule cspF_fp_induct_left[of _ "Abs_System_to_System"])
apply (simp_all)
apply (induct_tac p)
apply (tactic {* cspF_hsf_tac 1 *} | rule cspF_decompo |
auto simp add: csp_prefix_ss_def image_iff inj_on_def)+

done

Fig. 12. Proof of deadlock freedom of the nucleus (see Figure 1).

9 Summary and future work

We have shown how to combine the tools HETS and Csp-Prover into a proof tool
for CsP-CASL. The main challenges turned out to be the encoding of Csp-CASL’s
alphabet construction in Isabelle/HOL as well as the automated generation of
integration theorems. The alphabet construction turns a many-sorted algebra
into a flat set of communications. The integration theorems translate questions

34 Liam O’Reilly, Yoshinao Isobe, Markus Roggenbach

on the alphabet of communications back into the language of many-sorted al-
gebra. In both cases, we managed to come up with an algorithm that — take a
Csp-CaAsL specification as their input — produce the required types, functions,
theorems, and proofs in Isabelle/HOL. A case study on the EP2 system, for
the moment carried out manually, demonstrates that our approach scales up on
problems of industrial strength.

Future work will include the implementation of the algorithms described
as well as further case studies on distributed computer applications. Another
direction of work is to consider a semi-deep encoding of CASL. In such a setting
the justification theorem which states that the relation eq is an equivalence
relation becomes specification independent.

Acknowledgement Thanks to Temesghen Kahsai for his work on decomposition
theorems for Csp-CASL refinement and also to Erwin R. Catesbeiana (jr) for his
valuable insights into the very nature of electronic payment systems.

References

[BFG'05] B. Badban, W. Fokkink, J.F. Groote, J. Pang, and J. van de Pol. Verifi-
cation of a sliding window protocol in uCRL and PVS. Formal Aspects of
Computing, 17(3):342-388, 2005.

[ep202] eft/pos 2000 Specification, version 1.0.1. EP2 Consortium, 2002.

[GP95] J.F. Groote and A. Ponse. The syntax and semantics of uCRL. In Algebra of
Communicating Processes ’94, Workshops in Computing Series, pages 26-62.
Springer, 1995.

[GRS05] A. Gimblett, M. Roggenbach, and H. Schlingloff. Towards a formal specifi-
cation of an electronic payment system in Csp-CAsL. In WADT 2004, LNCS
3423, pages 61-78. Springer, 2005.

[Hoa85] C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

[IRO5] Y. Isobe and M. Roggenbach. A generic theorem prover of CSP refinement.
In TACAS 2005, LNCS 3440, pages 108-123. Springer, 2005.

[IRO6] Y. Isobe and M. Roggenbach. A complete axiomatic semantics for the CSP
stable-failures model. In CONCUR’06, LNCS 4137, pages 158-172. Springer,
2006.

[MMLO7] T. Mossakowski, C. Maeder, and K. Liittich. The Heterogeneous Tool Set,
Hets. In TACAS 2007, LNCS 4424, pages 519-522. Springer, 2007.

[Mos02] T. Mossakowski. Relating CASL with other specification languages: the in-
stitution level. Theoretical Computer Science, 286(2):367-475, 2002.

[Mos04] P. Mosses, editor. CASL Reference Manual. LNCS 2960 (IFIP Series).
Springer, 2004.

[NPWO02] T. Nipkow, L.C. Paulon, and M. Wenzel. Isabelle/HOL. LNCS 2283.
Springer, 2002.

[ORS92] S. Owre, J.M. Rushby, and N. Shankar. PVS: A prototype verification sys-
tem. In CADE-11, LNAI 607, pages 748-752. Springer, 1992.

[Rog06] M. Roggenbach. CSP-CASL - A new integration of process algebra and
algebraic specification. Theoretical Computer Science, 354(1):42-71, 2006.

[Ros98] A.W. Roscoe. The theory and practice of concurrency. Prentice Hall, 1998.

Generalized Sketches and Model Driven
Architecture

Adrian Rutle!, Uwe Wolter?, and Yngve Lamo'

! Bergen University College, p.b. 7030, 5020 Bergen, Norway aru@hib.no yla®hib.no
2 University of Bergen, p.b. 7803, 5020 Bergen, Norway Uwe.Wolter@ii.uib.no

Abstract. The diversity and heterogeneity of modeling languages make
the need for formal model definitions and mechanisms for automatic
model integration and transformation more pressing than ever. These
mechanisms are the cornerstones in Model Driven Architecture, which is
a natural evolutionary step in raising the abstraction level of program-
ming languages. This paper provides an introduction to Model Driven
Architecture and to the various approaches that are central in the defi-
nition of models and model transformations. Then, a generic formalism,
Generalized Sketches, will be presented for use in specifying modeling
languages and their transformations. In addition, how concepts like in-
stances, models and metamodels correspond to the Generalized Sketches
formalism will be discussed.

1 Introduction

The rise of the abstraction level of programming languages was one of the most
important trends in software development in the second half of last century.
It started in the 50s with the replacement of raw machine code by assembly
languages, which in their turn were replaced in the 60s by procedural program-
ming languages. In the 80s object-oriented programming languages dominated
the field. These changes in programming paradigms were viewed with sceptism
by the programming communities. This sceptism was not without reason since
the compilers of the time were not very good. Thus, many programmers doubted
that the generated assembler code could be as efficient as handwritten code.
These changes in the programming paradigms affected the entire software
engineering discipline; for example, flowcharts came with assemblers and dia-
grammatic modeling followed the object-oriented languages. Currently, building
applications by first modeling them is considered one of the key evolutionary
steps in raising the level of abstraction of the software development process to
a higher level. Thus, models, model transformations, as well as automatization
of model transformations are key issues in the current approach of software de-
velopment process, which is standardized by the Object Management Group
(OMG) as Model Driven Architecture (MDA) [6]. Various approaches for for-
malization of models and transformation definitions are proposed. Some of these
approaches with features and shortcomings will be outlined in this paper. Then

http://www.ii.uib.no/publikasjoner/texrap/pdf/2008-367 .pdf

36 Adrian Rutle, Uwe Wolter, and Yngve Lamo

the potentials of the formalism, Generalized Sketches (GS) [8], in MDA will be
discussed.

The outline of the paper is as follows. Section 2 provides an introduction
to MDA with a short explanation of models, model transformations as well as
transformation definition languages. In Section 3, some OMG standards directly
related to MDA are explained. Finally, Section 4 provides a gentle introduction
to the theory of GS, a presentation of some generic approaches for model spec-
ification and transformation based on GS, as well as a comparison of the GS
methodology to some OMG standards. The last section concludes the paper by
summarizing the presented ideas, presenting the state-of-the-art of our project
and our future work.

2 Model Driven Architecture (MDA)

MDA is a software development methodology in which modeling, model trans-
formations and automatization of model transformations are important issues.
In MDA, the first step in building applications is to construct abstract, plat-
form independent models (PIM) of system properties and behavior. PIMs are
transformed into one or more platform specific models (PSM) which are used
by code generators to generate application code. In addition, PIMs can be used
as a common communication basis among software designers, programmers and
domain experts.

The advantages of MDA are many, including the fact that it enhances for
domain specificity and platform independence of models which in turn make pos-
sible the separation of business logic from the application technologies. Another
advantage is portability and cross-platform interoperability which facilitate the
integration of different systems. Moreover, MDA increases productivity by let-
ting the developers shift focus from code to models in which no platform-specific
details need to be designed and written down. Computing infrastructures are
expanding continuously and in every dimension, in response to business needs
and developments in implementation technologies. Using MDA-based standards,
business logic and application technologies can evolve independently of each
other and organizations are able to integrate present systems with systems that
will be built in the future [6].

2.1 The Development Process in MDA

The activities in the MDA development process (requirements specification, anal-
ysis, system design, implementation and coding, testing and deployment) are the
same as those in the traditional development processes (Figure 1). The main dif-
ference is in the artifacts that are produced during and after each activity. In
MDA, these artifacts are (formal) models — PIM, PSM and Code — while in the
traditional development processes most of these artifacts before the implemen-
tation and coding phases are informal diagrammatic and textual documents.

Generalized Sketches and Model Driven Architecture 37
These documents often lose their value quickly and are outdated soon after cod-

ing has started because of changes in the requirements, bug-fixing, evolution of
the application and programmers’ short cuts (the blue, dashed line in Figure 1).

Another difference is in Traditional MDA
the automatization of the -
steps in software development ﬂ

processes, from PIM to PSM
(right column in Figure 1.)

L
PSM

Diagrams
and text

Since this is not always a fea-
sible task, some human ac-
tivity and heuristics is often
needed in the first transfor-
mation processes.

The following three steps
in MDA raise the abstrac-
tion level of the activities in
the development process. The = _-T
steps outlined below and the "= ‘PIM: iatiorm Specine Model

PSM: Platform Specific Model
output models are defined by
OMG [6]: Fig.1: MDA vs Traditional development pro-

cess. Adopted from [5]

Diagrams
and text

1 Automatization

Code Code

Code

Platform Independent Model (PIM) The development process in MDA
starts with the specification of an abstract, diagrammatic model which is in-
dependent of the application’s platform. This kind of model is referred to as a
Platform Independent Model (PIM) [5,6]. In PIM, one can specify the business
logic of an application without restriction to a specific system design or imple-
mentation technology. Hence, PIM is a domain-specific model which is crucial for
developing software systems where application logic and domain logic are sep-
arated. In addition, PIMs can be reused easily in other applications since they
are not polluted with constructs from a specific implementation technology.

A PIM must be formal, unambiguous and consistent since it is used as input
to transformation tools. Writing PIMs is a human activity which cannot be
automated.

Platform Specific Model (PSM) The next step in the development process
in MDA consists of specifying the transformations for transforming the PIM into
a (set of) Platform Specific Model(s) (PSM). PSMs are also formal models, but
they are restricted to a specific application platform; for example, Enterprise
Java Beans (EJB,) .NET, Web Services or Relational Schemes. Since this trans-
formation process builds a more concrete model from the abstract PIM, it can
be considered as a refinement process.

Obviously, specifying transformations between PIM and PSM is not a minor
task. However, these transformations must be defined only once for the modeling
languages in which the PIMs and PSMs are written, then it can be used over
and over again (possibly with minor changes.)

38 Adrian Rutle, Uwe Wolter, and Yngve Lamo

Code Generation The last step consists of the automatic transformation of
the PSMs to application code. Considering the static aspects of software systems,
this step is usually straightforward because of the similarity between PSMs and
Code. In order to transform the dynamic aspects of a system automatically, both
the behavioral and structural aspects of the system must be modeled in PIMs and
PSMs. This task requires modeling languages (or specification formalisms) which
have formal definitions for constructs that can be used to model the dynamics of
software systems. At the time of writing, it’s possible to model only a fraction of
the dynamics of software systems formally using the existing modeling languages.

MDA includes the two development steps; PIM-to-PSM and PSM-to-Code,
rather than generating code directly from PIM in order to bridge the large ab-
straction gap between PIM and Code, to allow for the modularization of trans-
formations, as well as for debugging purposes [2].

2.2 Model Transformations

As mentioned above, the steps in MDA involve transformations between models,
i.e. the generation of a target model from a source model. These transformations
are carried out automatically by tools in transformation processes. Each trans-
formation process is described by a transformation definition, which in turn con-
sists of a set of transformation rules. The transformation definition is written in
a transformation definition language. The transformation rules define how (and
which) constructs from a source model are transformed to (which) constructs in
a target model.

Research in this field has established a set of features which the languages
used for writing transformation definitions should provide [5,6]. Some of these
features are the following:

— Tunability: applications of the transformation rules must be adjustable to
provide flexibility and more user control.

— Traceability: it should be possible to trace target model constructs back
to their counterpart construct(s) in the source model. During bug-fixing,
traceability will help the developers to find which part of the PIM is the
source of errors in the generated code.

— Incremental consistency: changes in the target model, for example hand-
written code, must persist in spite of re-transformation.

— Bidirectionality: the source model can be generated from the target model
by application of the inverse of the transformation. This feature is useful in
the case of reverse engineering, but it is difficult to achieve.

— Rule scheduling: transformation rules can be applied in a user-defined se-
quence. This feature is important for optimization purposes since it provides
facilities for adding a hierarchy or structure to the rules and the sequence in
which they are applied [2].

Generalized Sketches and Model Driven Architecture 39

Design and specification of transformation definition languages is a relatively
new field in software engineering. OMG’s initial request for proposals in 2002
on Query, Views and Transformations was the first call for a standardization of
transformation definition languages. A large number of approaches (for example;
GreAT, UMLX, VIATRA, ATL, QVTP etc) have been proposed in reply to
the OMG’s request, however, many of those proposals were already forced by
practical needs independent of the OMG’s proposal.

These approaches are categorized into two major categories: Model-To-Model
and Model-To-Code [2]. The latter can be considered a special case of the for-
mer where the target metamodel is the metamodel of a programming language.
Different approaches such as relational, graph-transformation-based and hybrid
are used in the Model-To-Model category.

The relational approach is a declarative approach in which the main con-
cepts are mathematical relations and mapping rules based on set-theory. Rela-
tions between element types from the source and target models are stated in
mathematical relations which are specified by constraints. This approach has
the advantage of a good balance between declarative expressiveness, flexibility
(rule scheduling) and simplicity [2].

The graph-transformation-based approach is also a declarative approach which
is ingpired by theoretical work on graph transformations between typed, directed
graphes [2]. In this approach, the models to be transformed are graphs. Graph
transformation rules define patterns in the source graph that will be transformed
to patterns in the target graph. This approach is extremely powerful and declar-
ative, but is also very complex [2].

Hybrid approaches where different concepts and paradigms are applied de-
pending on the application domain seem to be more useful. In the hybrid ap-
proach, users can combine the expressive power of graph-based transformations
with the flexibility of the relational approach to design their transformation
definitions.

Some examples of transformation definition languages — Query, Views and
Transformations (QVT) and ATLAS Transformation Language (ATL) — will be
outlined in the next sections.

3 MDA and OMG Standards

The challenges in MDA are to obtain a formalism for specifying the models and
choosing mechanisms for definition of (and automatically execution of) trans-
formations between these models. OMG has some standards that are directly
related to MDA and these challenges.

3.1 The Meta Object Facility

The OMG has defined a special language, the Meta Object Facility (MOF) to
describe all other languages specified by OMG. MOF is also reflective, which
means it is capable of describing itself. According to OMG, MDA compliant

40 Adrian Rutle, Uwe Wolter, and Yngve Lamo

languages must be MOF-based, i.e. instances of the MOF model in order to
enable automatic model transformations [6].

There are four layers of metamodeling defined by the OMG architecture
(Table 1). The My-level, an instance where one defines the running system, must
conform to a model. This model is at the Mj-level; it is a structure specifying
what instances should look like. This model, in its turn, must conform to a
metamodel, which is a model at the Ms-level, against which models can be
checked for validity, and which can also be used to specify models. Metamodels
correspond to modeling languages, for example UML and Common Warehouse
Model (CWM). The highest level of metamodeling which is defined by OMG is
the M;z-level, where MOF is located.

OMG levels|OMG Standards/examples

M3 MOF

Mo UML language

M, A UML model: Class "Person" with attributes "name" and "address"

My An instance of "Person'": "Ola Nordmann" living in "Sotraveien 1,
Bergen"

Table 1: OMG metamodeling levels

3.2 UML and the Object Constraint Language

OMG suggests UML, in combination with the Object Constraint Language
(OCL), as a language for writing PIMs. This approach involves combining the
text-based language OCL with the graphical language UML to formally describe
static aspects of software systems. In some cases, the dynamics of software sys-
tems can also be expressed using the UML-OCL combination — by pre- and
post-conditions on operations. In most cases, however, the body of the opera-
tions must be written manually in the PSM.

3.3 Query, Views and Transformations (QVT)

QVT is an OMG standard proposed for describing transformation definitions.
QVT is currently in the finalization phase. MOF 2.0 is used to define the abstract
syntax of QVT, and OCL is used for querying the models and implementing
the transformations. QVT is composed of three languages: Relations, Core and
Operational Mappings. The first two are declarative languages and the third is
imperative. Relations language is at a higher level of abstraction than the Core
language. The semantics of Relations language is described as a transformation
into the Core language, a transformation that may be defined in the Relations
language itself [4]. The semantics of the Core language is given in a semi-formal
set-theoretical notation [7]. The Relations language defines transformations as a
set of relations (each containing a set of patterns) among models.

The Operational Mappings language and the Black Box implementation ex-
tend the Relations and Core languages, and are mechanisms intended to define

Generalized Sketches and Model Driven Architecture 41

transformations that are difficult to express in the Relations language. Traceabil-
ity links are handled automatically by the Relations and Operational Mappings
languages, while these links must be handled manually in the Core language [7].
Rules in the Relations and Core languages are multidirectional, while they are
unidirectional in the Operational Mappings.

4 Generalized Sketches (GS)

Since models in MDA are not only for documentation, but are also used as
input to transformation tools, there is a tremendous need for a formal, generic
specification formalism which also supports the definition of transformations.
This section provides a gentle introduction to GS. Then the potentials of GS as
a generic approach for the specification of models and metamodels of modeling
languages as well as their transformations will be discussed.

GS is a graph-based specification format that borrows its main ideas from
both categorical and first-order logic, and adapts them to software engineering
needs [8]. The claim behind GS is that any diagrammatic specification technique
in software engineering can be viewed as a specific instance of the GS specifica-
tion pattern. GS is a pattern, i.e. generic, in the sense that we can instantiate this
pattern by a signature that corresponds to a specific specification technique, like
UML class diagrams, ER diagrams or XML. The technique in which a modeling
language is represented by a signature in GS is called "sketching" the modeling
language [3]. Signatures and sketches in the GS framework are defined as follows:

Definition 1. A signature X := (II,ar) is an abstract structure consisting of a
collection of predicate symbols II with a mapping that assigns an arity (graph)
ar(p) to each predicate symbol p € II.

Definition 2. A diagram (p,0) labeled with the predicate p in a graph G(S) is
a graph homomorphism 0 : ar(p) — G(S) where ar(p) is the arity of p.

Definition 3. A Y-sketch S := (G(S),S(I)), is a graph G(S) with a set S(II)
of diagrams in G(S) labeled with predicates from the signature X.

Definition 4. A Y —sketch morphism ¢ : S; — Sy between two X —sketches
S1 = (G(S1),51(IT)) and Sy = (G(S2),So(IT)) is a graph homomorphism ¢ :
G(S1) — G(S2) compatible with marked diagrams, i.e., (p,d : ar(p) — G(S1)) €
S1(IT) implies (p, ;¢ : ar(p) — G(S2)) € S2(II) for all diagrams (p,d) € S1(II).

Ske(X) is used to denote the category of all ¥'—sketches, where objects are
J-sketches and morphisms are Y'—sketch morphisms.

Table 2 shows signature X sz, which consists of the predicates [objectNode],
[valueNode], [cover] etc. These predicates allow to specify most of UML class
diagrams. The arities of the predicates are shown in the second column and the
third column shows a possible visualization of these predicates. In the fourth
column, the semantics of each predicate is specified.

Sematically, arrows are interpreted as multivalued functions f : A — p(B),
i.e. a constraintless arrow stands for an arbitrary multivalued function.

42 Adrian Rutle, Uwe Wolter, and Yngve Lamo
name arity visualization|semantic
[objectNode]| 1 Al set of objects
[valueNode] | 1 set of values
[total] 1 —2>2|@e—">B |[VacA:3IbeB|be f(a)
[key] 1—>2|@A ! [key Va,a' € A:a# a implies f(a) # f(a')
[singlevalued| 1 ——= 2 | [A] LS VaeA:|f(a) <1
[cover] 1—=2 |@A ! Vbe p(B):Jac A|be f(a)
z f
=\ N
[inverse] 1 2 |[@ line) B [Va€e A,Vbe B:be f(a)iff a € g(b)
N ~—
Y
[disjoint- |1 —">2 |A— >0 |U{fa)|aecA}nUlg(c)|ceC}=0
cover]| T \T
y g
3
[jointly- 1—=2| A& ! B |Va,a’ € A: a# a implies f(a) # f(a’) or
mono] or 9(a) # 9(a)
[1-1] y g
3

Table 2: Signature Xy pr.-

Ezample 5. The Xyprp-sketch S = (G(S), S(I)) in Figure 2a specifies the class

diagram of a simplified software system of persons, companies and employments.
The carrier graph G(S) is shown in 2b. Some of the diagrams in the set S(IT)

are:

[objectNode], 6y : (1) — (Person))

[objectNode], b2 : (1) — (Company))

[valueNode], o5 : (1) — ([String]))

[total], 64 : (1 —">2) (Personpﬂe[String]))

[total],ds5 : (1 ——=2) +— (Company hires, Person))
employee
[singlevalued], d : (1 ——=2) ~— (Employment P Person))

(
(
(
(
(
(
(

[singlevalued], 67 : (1 ——=2) (Employmenetmm Company))

employer

1—5=2 Employment —— Company
([1 - 1]’ 58 : \Ly = iemployee)
3 Person

In the class diagram in Figure 2a every person may work for zero or one

company, but every company must hire one or more persons. The first constraint

Generalized Sketches and Model Driven Architecture 43

[String] [String]
1 1
[key]
lp_name address |c_name [String] [String]
worksFor : name addre$s |c_nam¢
Person hires _+, Company "’ dd '
1 worksFor.
eW: Person s~ Company
e% f(y;
Employment
Employment
[start_date Jsalary
1 1 lstartﬁdate lsalary
[Date] [Int] [Date] [int]
(a) A X-sketch S (b) The carrier graph

G(5)

Fig.2: A sketch and its carrier graph

is set by the predicate [singlevalued] on the arrow worksFor. While the second
constraint is set by the predicate [total] on the arrow hires.

4.1 Models and Metamodels in GS

In GS, software models are represented by X —sketches where X' is the signa-
ture which represents the modeling language used to specify the model. In-
stances of models and the semantic interpretation of their signatures are ex-
plained /formalized in the next definitions.

Definition 6. The semantic interpretation of a signature X := (II, ar) is given
by a mapping that assigns to each p € II a set [p] of graph homomorphisms
7: O — ar(p) which are called valid instances of p, where O may vary over all
graphs.

Ezample 7. Consider the predicates [total] and [cover], both with arity 1 —>=2 .
A function f : {a1,a2} — {b1,b2} with f(a1) = f(a2) = by is represented by
a bipartite graph, i.e. as a graph homomorphism from the "graph of f" into
1 —=>2 . For example,

e1
ay —— b

T 74 —>(1*f>2)

a2 by
with 71(a1) = 11(az) = 1 and 71(by) = 71(b2) = 2. 71 € [[total]] since both
a1 and as are mapped to some elements of the set {b1, b2}, while 71 ¢ [[cover]]
since by is not in the image of any element from the set {aq,as}

Definition 8. An instance of a sketch S is a graph I together with a graph
morphism ¢ : I — G(S), where G(S) is the carrier graph of S, such that .* € [p],
i.e. t* is a valid instance of p, for each diagram 0 : ar(p) — G(S) where * is
given by the pullback diagram in Figure 3.

44 Adrian Rutle, Uwe Wolter, and Yngve Lamo
r(p) ——= G(S5)

[PB] TL
I

*—>

Thus, for I to be a valid instance of S, for each di- ar(p)
agram 0 in S(IT), the part of I related to the diagram
4, must be a valid instance of p. However, the meaning T
of being a valid instance of a predicate remains to be O
specified by the designer of the signature as explained

in Definition 6 and E le 7.
H Deltion b and Bxample Fig.3: Instance of

Sketch S
Ezxample 9. Figure 4 shows an example of an instance

of the sketch S (from Figure 2a)®. To verify this,

construct the pullback for each diagram (p,d) in S(IT). E.g. the pullback of
ar([1 = 1]) — G(S) « I will consist of ar([l1 — 1]) « O* — I (see Figure 3)
where t* : O* — ar([1 — 1]) is as in Figure 5. The set of the spans represents a
valid instance of the predicate [1-1] since the semantic of the constraint which is
set by the predicate is not violated. The constraint here is that every Employ-
ment element is uniquely identified by a pair of elements from the sets Person
and Company.

Per:Str Bergen:Str UiB:Str Qla:Str Bergen:Str HiB:Str Petra:Str
pnl:a’e_name al;adiress cnl:}_name Ipn2:p_name a2:adc’ress cn2:|_name pn3:[iname
wil:worksFor w2:worksFor w3:worksFor

p2:Person . hihires c2:Company pl:Person ._hzhires c1:Company ____ h3:nires _ p3:Person

|
:ij oyee //]/e;ployer e&ﬁ)loyee ﬁploye%ployer /A:ployee

e2:Employment el:Employment e3:Employment
sdl:ttartidate sl:ialary sdz:{tart_date sZ:ialary sd3:sttrt_date s3:ialary
01.01.2007 20000:Int 01.01.2006 30000:Int 01.01.2008 10000:Int
:Date :Date :Date

Fig.4: An instance, ¢ : I — G(S5), of the X-sketch S

c2:3 pl:2 cl:3 3:2

Fig.5: t* : O* — ar([1 — 1))

3 Notice that (pl : Person) is a "user-friendly" notation for the assignment (¢ : pl —
Person)

Generalized Sketches and Model Driven Architecture 45

Metamodeling is a mechanism for defining graphical modeling languages which
is used in the way grammars in Bakus Naur Form (BNF) are used to define text-
based languages such as programming languages [5]. A BNF grammar describes
which series of tokens are valid expressions in a language. In the same way, a
metamodel describes which graphs are valid models in a given modeling lan-
guage. A fundamental difference here is that the representation of the structure
of text-based languages is based on terms (abstract syntax trees,) while graph-
ical languages have a graph-like structure which makes it impossible to apply
BNF for their representation [1]. The metamodels of the graphical languages are
usually represented by typed graphs.

The concepts of models and instances of models are present in the GS formal-
ism. However, to complete the task of the formalization of modeling languages
it is also necessary to introduce the concept of metamodeling. This is because
signatures alone are not enough to set all restrictions on sketches. In other words,
if a modeling language L is represented by a signature X', then Ske(Xr) may
contain more Y'-sketches than intended to be modeled by L. In the proposed
formalization of modeling via GS, this means that for any signature X' a meta-
signature I's; and a I's-sketch My must be found such that the intended subset
of Ske(X) is described by the instances of Mx.

Definition 10. A signature I'ss = (IIs,ar) together with a I's—sketch My, =
(G(Ms),Mx(Ilx)) is the metamodel of Ske(X) iff for any instance ¢ : I —
G(Mzx) of My there exists a X-sketch S* = (I,S5"(IIx)).

The MDA vision of OMG suggests MOF as the metamodel for modeling
languages like UML and CWM (Section 3). This means to define a signature
I'njor such that I'sy,,,, € I'vor and a I's,,,,, -sketch Mx,,,,, (or Mp,,,,) such
that all Xy psp-sketches are instances of My, ,,,. Table 3 shows a comparison
of the four layers of metamodeling from the OMG architecture with the GS
methodology.

Instances of metamodels are defined in the same way as instances of models
as in definitions 6 and 8.

OMG levels OMG standards|GS methodology

M3 MOF FMOF where FEUML g F]\/[OF

M, UML A I's,,,.-Sketch Ms,,,,, representing the
metamodel of UML

M, A UML model An instance ¢ : G(S) — G(Msy,,,.) of
Msy g

M An instance Aninstance ' : I — G(S) of the Xy arr-sketch
S' = (G(5),5°())

Table 3: OMG metamodeling levels vs GS

It should be noted that in the OMG architecture, each metamodeling layer
is defined as an instance of the layer above itself. Thus, an instance of a UML
class model for example, is defined as ¢ : I — G(S), without taking 6(II) and
the pullback diagram in Figure 3 into consideration, which means that a valid
instance only needs to be valid syntactically.

46 Adrian Rutle, Uwe Wolter, and Yngve Lamo

4.2 Model and Metamodel Transformations in GS

Since models and metamodels are represented by sketches, both model and meta-
model transformations correspond to sketch morphisms (Definition 4).

Proposition 11. (Figure 6)If ¢ : S1 — So is a sketch morphism, and 15 : Is —
G(S2) is an instance of Sa, then ¢*(12 : Is — G(S2)) = 11 : [T — G(S1) is an
instance of S1, where ¢* is the reduct transformation of ¢ [8].

Proof. Having an instance I, a graph morphism ¢; : I; — G(S7) can be con-
structed by the pullback PBj, as shown in the right side of Figure 6. In addition,
since I5 is a valid instance of G(S2), we have ¢ € [P] for all §; ¢ where the span
ari(p1) <« O — I is a pullback of the sink ary(p1) — G(S2) < I. This ensures
the validity of I as an instance of G(S1) since we have ¢ € [P] and the pullback
PBs. We have the pullback PBy by a well-known result from CT; if the exter-
nal rectangle and the right square are pullbacks, then the left square is also a
pullback.

Definition 12. Inst(S) is the category of all instances v : I — G(S) of a sketch
S in which objects are instances ¢ and morphisms are commutative diagrams.

Theorem 13. Any sketch morphism ¢ : S1 — Sy defines a functor ¢* : Inst(Sz2)
— Inst(S1) which is called reduct transformation.

8¢
5 —— 5, () e G(81) — G(S)
TL [PBs)] TH [PB1] Tu
Inst(Sh) 5 Inst(Sh) o U I
e

Fig. 6: Generic Model Transformation

Some model transformations can be achieved by the reduct transformation.
However, most model transformations in software engineering are used for model
extension and thus require a morphism in the other direction, that is, a mor-
phism ¢° : Inst(S1) — Inst(S2) . In the case of conservative extension, this
arrow is persistent, i.e. ¢°;¢® = id,(s,). This constraint is too restrictive for
practical purposes, i.e. it does not cover all interesting model transformations.
The semantical conditions for model extensions will be a topic of a future work.

4.3 Generalized Sketches and MDA

Since GS can be used to specify modeling languages and transformations between
them, and since it is a generic specification format, the focus of this section will

Generalized Sketches and Model Driven Architecture 47

be on using GS to specify PIMs, PSMs and Code*, and the transformations
between them.

The metamodels of the languages of PIMs, PSMs and Code can be repre-
sented by sketches Sprnr, Spsy and Scoge respectively. As mentioned in sec-
tion 4.2 the transformations between PIMs, PSMs and Code are represented by
sketch morphisms. As evident from Figure 6, model transformations based on
their metamodel transformations can be achieved by defining sketch morphisms
between sketches, ¢1 : Sprys — Spsy and ¢o @ Spsyr — Scode- Then a sketch
morphism ¢y, o+ PIM — PSM will represent the transformation between
PIM and PSM, given that PIM € Inst(Spry) and PSM € Inst(Spsar) -
The same procedure can be applied to transform PSM to Code. The automati-
zation of the transformation is given by the automatic construction of the reduct
transformations of ¢, and ¢-.

In addition to the features mentioned in Section 2, transformation definitions
which are specified in GS will ensure compositionality of rules. Compositionality
is defined as follows. If the transformation ¢; transforms a model m; to my and
to transforms msy to mg, then the composition of the transformations, written
t1;te, must transform m; to mg. This property facilitates stepwise refinement,
simplifying the transformation by applying smaller, simpler transformations in
multiple steps. This feature also simplifies the verification of transformations
since each step will preserve correctness independent of its neighboring steps.
For example, for T = ty;ts;t3, if t1, to and t3 are correct, then T is also correct.
On the other hand, features that are providing mechanisms for rule scheduling,
in which transformation rules can be applied in a user-defined sequence, are not
needed since transformation rules correspond to mappings between diagrams
and the sequence of their execution is handled automatically.

5 Conclusion

GS may be considered a suitable specification formalism to define all other di-
agrammatic modeling languages with a strong mathematical foundation, first,
because models and metamodels in software engineering are graph-based, and
also because GS is based on Category Theory (CT), which is the mathematics
of diagrammatic notations.

Models which are specified using a specific specification technique will appear
as a (possibly ambiguous) visualization of a sketch which is parameterized by the
corresponding signature. Thus, the claim is that GS can be used as a standard
notation for representing both the syntax and the semantics of diagrammatic
specification languages, since the syntax and the semantics of GS are well-defined
and unambiguous.

The (meta)model transformation approach in GS is expressed by sketch mor-
phisms. The power of GS lies in its genericness, which makes it applicable to
all modeling languages and their transformations. This is because the relations

* By regarding programming languages as modeling languages.

48 Adrian Rutle, Uwe Wolter, and Yngve Lamo

between constructs from the source and target (meta)models can be expressed
as functors (morphisms between categories). Thus, unlike the OMG standards
which require MOF-compliance of modeling languages to enable transformation
between models, using GS makes possible to relate models written in any mod-
eling language.

At the time of writing, there was no implementation of QVT. The QVT
specification is so huge and complicated that it may not be possible for a single
tool to meet all the requirements in a reasonable time. In addition, as experience
with programming languages has shown, no single language can fit all applica-
tion domains. Modeling languages and transformation definition languages are
not exceptions of this rule. Rather than writing a standard specification for a
language that all tool vendors must implement in order to obtain interoperabil-
ity, therefore, we would suggest that a generic formalism for the specification of
transformation definitions based on CT and mappings between sets is a better
approach for standardization.

By developing tools that support GS as a generic pattern for specifying and
developing diagrammatic specification techniques, we can prove and exploit the
practical value of GS in all aspects of (meta)modeling and MDA, such as model
transformation and integration, as well as model decomposition and modular-
ization.

One major focus of our project is on developing tools which can be used to
design signatures corresponding to existing specification techniques, like UML
class diagrams, SQL Schemas and ER diagrams. Designing signatures for existing
modeling languages (the so-called "sketching") involves exhaustive exploration
of the syntax and semantics of those languages to identify a set of predicates —
for example, total, partial, jointly mono, disjoint-cover, etc — which are needed
to express all properties that can be expressed by them. Preferred graphical
notations (or visualizations) for the predicates can then be chosen. Diagrammatic
models can then be specified using the signatures/specification techniques. The
tool will also support the definition of relations between metamodels, which
correspond to transformation definition; as well as automatic construction of
pullback, which may be used to both construct and identify valid instances of
sketches.

In a future work, existing transformation languages like QVT and ATL as
well as concrete transformation rules specified by these languages will be studied.
In addition, the capabilities of GS to analyze constraints on rules, correctness
of transformations, as well as checking for ambiguities and contradictions in
transformation rules will be investigated.

References

1. Luciano Baresi and Reiko Heckel. Tutorial introduction to graph transformation: A
software engineering perspective. In ICGT, pages 431-433, 2004.

2. Krzysztof Czarnecki and Simon Helsen. Classification of model transformation ap-
proaches. In OOPSLA 2003, editor, Generative Techniques in the context of MDA,
2003.

Generalized Sketches and Model Driven Architecture 49

. Zinovy Diskin. Generalized sketches as an algebraic graph-based framework for
semantic modeling and database design. Research Report M-97, Faculty of Physics
and Mathematics, University of Latvia, August 1997.

. Frédéric Jouault and Ivan Kurtev. On the architectural alignment of atl and qvt. In
SAC ’06: Proceedings of the 2006 ACM symposium on Applied computing, volume
Model transformation (MT 2006), pages 1188 — 1195. ATLAS Group, INRIA and
LINA, University of Nantes, ACM Press, 2006.

. Anneke Kleppe, Jos Warmer, and Wim Bast. MDA Ezplained: practice and promise.
Addison-Wesley, 1 edition, April 2003.

. Object Management Group (OMG). Model Driven Architecture Guide. (1.0.1),
june 2003. http://www.omg.org/cgi-bin/doc?omg/03-06-01.

. Object Management Group (OMG). MOF Query, Views and Transformations.
Number 2.0, November 2005. http://www.omg.org/cgi-bin/doc?ptc/2005-11-01.

. Uwe Wolter and Zinovy Diskin. Generalized sketches: Towards a universal logic for
diagrammatic modeling in software engineering. 2007. Proceedings, ACCAT 2007,
ENTCS, Submitted.

Objects Versus Abstract Data Types:
Bialgebraically

Ondrej Rypacek

School of Computer Science, University of Nottingham, NG8 1BB, UK
oxr@cs.nott.ac.uk

Abstract. Algebraic data types and catamorphisms (generic folds) play
a central role in functional programming as they allow programmers to
define recursive tree-like data structures and operations on them uni-
formly by structural recursion. Likewise, in object-oriented programming
recursive hierarchies of objects play a central role for the same reason,
although the execution is quite different. There is a duality between these
two approaches which we formalise using a distributive law and define
a notion of behavioural equivalence of the dual functional and object-
oriented programs. In passing we also show how to put an algebraic
structure on an object hierarchy.

1 Introduction

Algebraic data types and catamorphisms (generic folds) [9] play a central role
in functional programming (FP) as they allow programmers to define recursive
tree-like data structures and operations on them uniformly by structural recur-
sion. Program development is often centered around data types, which are fixed
upfront while operations are defined later. Likewise in object-oriented program-
ming (OOP), recursive hierarchies of objects play a central role for the same
reason, although the realisation is quite different. Here, the operations are fixed
upfront and define a single common interface while the different kinds of data
that can appear in the data structure are defined as implementations of the
interface. Objects (instances of these implementations) are then linked in a tree-
shaped pattern where method calls are recursively propagated down the tree.
This is called the Composite pattern in object-oriented software engineering and
described informally in [5].

In this paper, we present a formalisation of this situation using the category-
theoretical notion of a bialgebra. We illustrate the idea informally in Section 2,
where we go through a simple example of a recursive data structure. We ob-
serve, and in Section 3 formalise, that the behaviour of (operations on) such a
data structure is often defined by a single natural transformation: a distributive
law of the functor representing the signature of the data-structure over the be-
haviour functor. This distributive law gives rise to two arrows: one corresponds
to the functional program — an abstract datatype — while its dual corresponds
to the object-oriented program. We give a direct computational proof of their
behavioural equivalence.

http://www.ii.uib.no/publikasjoner/texrap/pdf/2008-367 .pdf

52 Ondrej Rypacek

The example we start with in Section 2 is an instance of a strictly more
general situation, previously described in the context of bialgebraic semantics
[12,13], where one considers distributive laws between a monad freely generated
by the signature and a comonad cofreely generated by the behaviour. We intro-
duce this generalisation in Section 4. Moreover, we show how our proof of the
equivalence from the simplified setting generalises straightforwardly to the more
general monadic case. In Section 6 we conclude and sketch directions for further
work.

Our contribution is two-fold:

1. We contribute to understanding of the relation between functional and object-
oriented programming and formally connect two important phenomena in
both worlds: namely a large class of generalised folds and a large class of
instances of the Composite pattern. In passing we also show how to put an
algebraic structure on an object hierarchy.

2. We give an intuitive presentation of bialgebras from the programmers’ point
of view. We provide a very concise calculational proof of adequacy in the
sense of Turi and Plotkin [13]. Although this is not a new result, we believe
our presentation will appeal to many readers because of its straightforward
computational nature.

Throughout the text, we assume the reader to be conversant with basic cat-
egorical notions such as functors, natural transformations, adjunctions, monads
and algebras of a functor. Steve Awodey’s Category Theory [1] is an excellent
reference for the purpose.

2 Motivating Example

Consider the following object interface of a memory cell.

interface MemCell {
attribute get : () -> nat
method set : mnat -> ()
}

Here, in a hypothetical object-based language, MemCell is an object interface
and also a name for the type of objects with the given interface. Attribute get
is an observation of type nat on MemCells. As an attribute, it can’t change the
local state of the object it’s being invoked on. Method set is an operation with a
possible side-effect in the local state of the object. It is parameterised by a natural
number. Note that the interface doesn’t specify the behaviour of objects carrying
it, apart from the suggestive names of the operations. All implementations! with
the given signature are admissible. Following are two examples.

1 'We avoid the term class here, because a class in class-based languages defines both
a type and its implementation. We keep implementations and types separate.

Objects Versus Abstract Data Types: Bialgebraically 53

implementation SimpleMC {
var n : nat

get =n
set n” =do {n :=n’; return O;}
} : MemCell

implementation CompositeMC {
var 1 : MemCell
var r : MemCell

get = (l!'get + rl!get)
set n’ = do { 1l!set n’; r!set n’; return (); }
} : MemCell

SimpleMC is just a simple memory cell whose get attribute returns the current
value and its set method resets the cell to the number given. CompositeMC com-
bines two other (arbitrary) MemCells. Its get value is the sum of its components’
values, its set method sets both components.

In the above definitions, we use a variation of the Haskell do-notation for
monads in definitions of methods with local side-effects. Informally speaking,
it is assumed that the monad in question is a state monad where the state is
defined by var declarations in the definitions of the implementations: a single nat
and a pair of MemCells respectively. Also method calls, as in 1!set are assumed
to be monadic in that they update the local state of the calling object with the
new state of the called object.

The above example illustrates a standard approach to recursive data struc-
tures in OOP (c.f. Composite pattern in [5]). In functional programming, one
would typically model the same data and operations using an algebraic data
type and a pair of functions defined by induction on the data. The following is
a definition in Haskell.

data BTree = Val nat | Node BTree BTree (1)
getf : BTree — nat
getf (Nodelr) = (getfl)+ (getfr)
getf (Valn) =n
(2)
setf : nat — BTree — BTree
setf n (Node 1 r) = Node (setfnl) (setfnr)
setfn(Valm) =Valn

Function getf adds all numbers in a BTree and setf replaces all leaf values in
the tree with the given value.

Intuitively, we can “see” that the object-based and functional views on trees
of numbers with two operations get and set are just different models of the same
data structure. In the rest of this section we formalise this data structure as two
functors and a distributive law between them from which the two models can be
canonically derived. In the following sections, we generalise the construction.

54 Ondrej Rypacek

But first we must introduce a suitable formalism for objects. We adopt the
coalgebraic view of functional objects, where object interfaces are modeled as
interface endo-functors, and implementations are modeled as coalgebras of these
functors. See e.g. [11,7] for a gentle introduction, or [10] for a type-theoretical
view. In the following text, we introduce the required notions as we go along.
For simplicity, we work in the category SET of sets and total functions.

Interfaces of functional objects with local state induce so-called interface
functors, which are products of function types, one for each attribute or method
in the signature. For instance, the interface functor corresponding to MemCell is
the following.

MemCellF.X £ nat' x (1 xX)™ = natx X™ (3)

Here X is a placeholder for the type of the local state of the object, nat is a
constant. We use dot “.” for functor and function application whenever we feel
it improves readability.

In the above functor, the first component of the product corresponds to the
observation get; the second component, X", corresponds to the method set,
which produces a new value of the local state given a parameter of type nat.
An implementation of MemCell with local state of type A defines a MemCellF-
coalgebra 2: an arrow

@: A —nat x A"

The terminal MemCellF-coalgebra:
outpemcelr : MemCell — nat x MemCell"™"

corresponds to the abstract object type, MemCell, and a pair of message sending
functions:

A
send_get = 71 O OUtMemCellF
send_set £ 73 0 OUtMemCellF (4)
outMemcelr = { send_get, send_set)

Here, (f,g) denotes the tuple of f and g. As MemCellF is a polynomial functor,
its terminal coalgebra in SET exists and outmemcenr is an isomorphism.

The implementations SimpleMC and CompositeMC can now be rewritten as
coalgebras s : nat — natxnat™* and ¢ : MemCellx MemCell — natx (MemCell x
MemCell)nat

S
C

< idnata (7T2)* >
(plus o (send_get x send_get), P o (send_set x send_set))

> >

(®)
Here, * : Hom(X x Y, Z) = Hom(X, ZY) is the currying natural isomorphism so
that (m2)* has type nat — nat"* and @ is the obvious natural transformation

2 Throughout the text, we use the typewriter font for references to the example
source code; the sans-serf font is reserved for their formal categorical counterparts.

Objects Versus Abstract Data Types: Bialgebraically 55

of type (X") x (X"') = (X x X)". The function plus : nat X nat — nat is
addition of natural numbers.

The following diagram illustrates the current situation in SET. We are using
the anamorphism brackets, as in ['s Jmemcelir, to denote the unique arrow into a
final coalgebra from a coalgebra.

S)MemCellF C) MemCellF
nat ------- (*")]"?@f ******* - MemCeII*K")J"emf*" MemCell x MemCell
S OUtMemCellF c
nat x nat"®t ------------- * nat x MemCell™*<---- nat x (MemCell x MemCell)"*

Alternatively, when we introduce a functor BTreeF as:
BTreeF.X = nat+4 X? (6)

we can rewrite the two coalgebras s and c as one, with carrier of type BTreeF.MemCell =
nat + MemCell?:

K h] BTreeF

nat + MemCell? ~--------"-="== === ===~ > MemCell
s+c
nat x nat"™ + nat x (MemCell?)"at OUtMemCell
[nat x ¢1 ™" | nat x 19 "]
/ ,
nat x (nat + MemCell?)"2t -----—----o-—- > nat x MemCell™"*

nat X [(h JgTreer "**
where h : nat + MemCell> — nat x (nat + MemCell?)"t is the arrow:

nat

h £ [natx (1" nat x 5] o (s +c) (7)

Here [f, g] denotes the co-tuple of f and g defined by the universal arrow from
a binary sum; ¢; and ¢o are the left and right injections. Now, when we define
/\MemCeII as follows:

AMemCell 2 [nat x 172 o (idpat, (12)*), nat x 15 o (pluso (71)%, o (m)?)]

we get, by unfolding the definitions of s and ¢ and factorising outgTreer:

h = AMemcell © (BTreeF.outmemcelir)

56 Ondrej Rypacek

The following diagram illustrates the types in the definition.
nat + MemCell?

H 2
id + outmemcellF

nat + (nat x MemCell"**)?

|
(lidnat, (m2)*) + (plus o (m)%, P o (m2)?)

/

nat x nat" + nat x (MemCell?)"at

, nat X uo

/

nat x (nat + MemCell?)nat

at

[nat x ¢1 " nat]

Note that everything in Amemcen is natural, thus A is a natural transformation
A : BTreeF o MemCellF = MemCellF o BTreeF. The following diagram summarises
the current situation.

h
BTreeF MemCell - T JETE__ premcel
BTreeF.outmemcellr
BTreeF.MemCellF.MemCell h OUtMemCellF
>\MemCeII
Y Y
MemCellF.BTreeF.MemCell ---------- » MemCellF.MemCell

The careful reader will notice that BTreeF, which arose from the disjoint
union of states of implementations involved in our little system of memory cells,
corresponds to our intuition about its shape: it is the shape functor of data type
BTree.

BTree = puBTreeF

where p denotes the least fixed point. Thus we have, by careful analysis of the
object-oriented code, recovered the structure of the object system as a func-
tional data type together with behaviour of all its components. This behaviour
is defined by a A : BTreeF o MemCellF = MemCellF o BTreeF, which arose system-
atically from s and c. This construction also defines a simple operator on such
distributive laws. It will be defined formally in the next section.

Alternatively, one could have started from BTree in the first place, and di-
rectly defined two functions as in (2). These are both catamorphisms and thus

Objects Versus Abstract Data Types: Bialgebraically 57

correspond categorically to universal arrows out of the carrier of the initial
BTreeF-algebra, BTree. Remarkably, when we use the same A in their defini-
tion, everything else is forced and it is easy to verify that the result is equal the
original definition (2):

BTreeF.BTree ----------- > BTreeF.MemCellF.BTree
/\BTree
iNBTreeF j | MemCellF.BTreeF.BTree

MemCellF.ingTrecF

Y
BTree -------77---------- + MemCellF.BTree
GJ DBTreeF

In the diagram (j)Treer denotes the “catamorphism” of j, i.e. the universal
arrow out of the initial BTreeF-algebra: ingTyeeF-
Now, [h Jmemcelr is a BTreeF-algebra and thus implies a universal arrow

([h IMemceliF)BTreer : BTree — MemCell

Intuitivelly, this is a fold over a BTree of states of MemCells, turning inductively,
by the action of [h)memcelr, every leaf into a SimpleMC and every node with
two subordinate MemCells into a CompositeMC.

Dually, (] eTreer is a MemCellF-coalgebra and also implies a universal arrow

[(JDBTreer JMemcelF : BTree — MemCell

This is a constructor of a single object — an abstract data-type — with realisation
of type BTree whose two operations getf and setf are implemented via a fold
over the tree.

In the following text, we show that these two arrows are equal and there-
fore the two MemCells, constructed in either way, are observationally equivalent.
That is, either we are composing small objects into a large object where the
structure of this composition is given by induction on the intended datatype, or
we are programming functions directly on an algebraic datatype, as in functional
programming. This is formalised in Theorem 2 in the next section.

3 Object Systems Formally

In this section, we abstract from the motivating example and formalise object
systems of the kind introduced in Section 2. We start with a quick summary of
our coalgebraic understanding of objects.

58 Ondrej Rypacek

Definition 1. An interface functor (or simply interface) is a polynomial endo-
functor on SET of the form

147 < J[c; x—)"

iel jeJ
where all As , Bs , Cs and Ds are constant functors, — is the identity functor
and all products and exponents are lifted to functors. I and J are finite sets.

For an example of an interface functor, see (3). Given an interface functor
B, we can see coalgebras ¢ : X — BX as implementations of objects with
interface B. Examples of implementations are given in (5).

Carriers of the terminal B-coalgebra, vB, correspond to object-types, i.e.
types (sets) of objects with interface B.

Definition 2. An object system is a triple (B,{F;}icr,{\i}ic1) where B is an
interface functor, {F;} is a finite collection of endo-functors and each \; is a
natural transformation of type F; B = BF;, both indexed by a finite set 1

Ezxample 1. The correspondence to the motivating example in Section 2 is the
following: B = MemCellF, F; = nat, Fb = (—)%, A\ = (idpat, (m2)*), Ao =
< p|USO (771)27¢ @) (71'2)2 >

For an object system (B, {F;}icr, {\i}icr), the following is a collection of

B-coalgebras:
A;o Fyoutg : F;uB — BF,vB ,i€l

F 2 MF

Moreover, for

icl
and
A 2 [ByoMlier : FB= BF (8)
these can be combined into a single B-coalgebra as follows:
Ao Foutg : FvB — BFvB (9)

Now (9) is a B-coalgebra and implies a unique arrow
[()\VBOFOUtBjB : FvB — vB

which in turn is an F-algebra and thus implies a unique arrow from the initial
F-algebra:
(] K)\VB OFOUtBjB DF : ,uF — vB

Dually,
Bing o A\yrp : FBuF — BuF

is an F-algebra,
(Binp oA\yp|) : pF' — BuF (10)

is a B-coalgebra and implies an arrow:

((Binp oAy)r B : pF — vB

Objects Versus Abstract Data Types: Bialgebraically 59

Theorem 1. Let outg be the terminal B-coalgebra and pp be the initial F-
algebra. Let A\ : FB = BF. Then

(][()\VBOFOutBjBDF = KqBinFOA;AFDF]B

Proof. We show that the right-hand side, [(Binp o A, r) F) B, satisfies the uni-
versal property of the left-hand side:

[(/\VBOFOUtB]BOF[((]BinFO/\MFDF)]B = [(GBinFo/\Hp[)F)]BoinF (11)

The calculation is straightforward by a two-fold application of the following rule,
called “AnaFusion” in [9]:

(plpof =(v)s < ¢of = Bfoy (12)

The premise of the rule is precisely the statement that f is a B-coalgebra mor-
phism to ¢ from . The proof is immediate by compositionality of coalgebra
morphisms and uniqueness of the universal arrow. Using this rule we proceed as
follows:

[Ao Foutg g o F[(Bing oX)r B
= { By (12) and the following;:
Ao Foutp o F[(Binp o A)r)5
= { functor composition }
Ao F(outg o[(BinroA)r)B)
= {[...)B is a coalgebra morphism }
Ao F(B[(Bing o A)r)5 o (Bing o X))
= { Ais natural }
(BF[(Binr o A)r)5) oo F(BinpoA)r }
(Ao F(BinpoA)r s
= { By (12) and the following fact:
(Binp o A)r o inp
= {(...)r is a F-algebra morphism }
Binp oo F(BinpoX)r }

((BinpoA)r)poinp 0

The following is standard, here taken from [7].
Lemma 1. Let ¢ : A — GA and ¢ : B — GB be two G-coalgebras. Then two

elementsa:1 — A and b: 1 — B of their carriers are bisimilar if and only if

(dlgoca=[¢)godb : 1—vG

60 Ondrej Rypacek

The following fact will also be useful.
[outp)]s =id (13)

Theorem 2. Letoutg, upr and A be as in Theorem 1. Then for allt : 1 — uF,
t is B-bisimilar to ([Ayp o Foutg g |)rot.

Proof. Both (| Binp oAup) : pF — BuF, first mentioned in (10), and outp :
vB — BvB are B-coalgebras. By Theorem 1 and fact (13):

((Binp oAyrp)r ot =[outg]po([ApoFoutg)p)rot

The conclusion follows by Lemma 1. a

4 Lifting to Monads and Comonads

In the previous section, we considered distributive laws A : FB = BF for
functors F' and B. We showed a simple proof that the two arrows from the
initial F-algebra to the final B-coalgebra, defined by induction and coinduction,
are equal. In this section, we generalise the proof to distributive laws A between
a monad T and the comonad D. Often, T is free over a signature F' and D is
cofree over a behaviour functor B, but this does not play any role in the proof.
As distributive laws give definitions of dualisable data structures, a stronger
distributive law will allow us to express more, while still preserving the same
notion of duality.

We proceed by straightforward generalisation of the simple case. Simply put,
if we just write T instead of F' and D instead of B everywhere in the proof
of Theorem 1, everything works just fine. In the remainder of this section, we
carry out this lifting, which essentially consists of a verification that everything
makes sense in the monadic setting. We begin with reminding the reader of the
following standard definitions.

Definition 3. Let C be a category, let (T,n, u) be a monad on C. The category
of T-algebras, denoted CT, has as objects arrows o : TX — X in C such that
the following equations hold:

lx = aonx (14)
aopux = ao Ta (15)

Arrows f: (X, a) — (Y, 3) in CT are arrows f : X — Y in C such that
foa = BoTf

The notion of the category of D-coalgebras, Cp, for a comonad D is exactly
dual. This cuts all work down to a half.

Objects Versus Abstract Data Types: Bialgebraically 61

Lemma 2. Let 0 be the initial object in C. Then (T0, o) is the initial T-algebra
in CT. Dually, (D1,6,) is the final D-coalgebra.

Proof. The monad T' : C — C splits into the adjunction F' - U, where
U :CT — C is the underlying object functor and FX = (X, puy) (see [1] for
details). The conclusion follows from the fact that left adjoints preserve colimits
and the initial object is the colimit of the empty diagram. O

We have thus lifted induction and coinduction to monads and comonads,
respectively, and can give the following definition.

Definition 4. Let ¢ be a T-algebra. Then (¢) denotes the underlying arrow in
C of the unique morphism from the initial T-algebra. Dually, for a D-coalgebra

Y and (¢).

The fusion rule we used in Theorem 1 can be lifted as follows.

Lemma 3. For D-coalgebras o and (3:
(a)pof =(Blp <« aof=Dfop (16)
Proof. Immediate by uniqueness of the terminal morphism, as before. ad
The following is standard, here taken from [13].

Definition 5. Let (T,n, u) be a monad and (D, e,0) be a comonad in a category
C. A distributive law of T' over D is a natural transformation

A:TD= DT

satisfying the following:

Aonp = Dn (17)
Aopp = DuoApoTA (18)
erod = Te (19)
oroA = DAoApoTd (20)

Lemma 4. For all X in C, the arrow

Dux oArx : TDTX — DTX
is a T-algebra. Dually, the arrow

ApxoTéx : TDX — DTDX

is a D-coalgebra.

62 Ondrej Rypacek

Proof. We must verify that the two T-algebra laws (14) and (15) hold. This is
done by a simple calculation. We give here just the proof of (15), (14) is even
simpler. The dual part of the lemma follows by duality.

Dpo Ap o upr
— {by(18)}

Do Duy o Ap2 o TAr
= { monad laws }

Dpo DTpo Apz o TAp
= { A is a natural transformation }

DpoApoTDpuoTArp

O

At this point, we can rephrase Theorem 1 for the generalised monadic setting.

Theorem 3. Let (T,n, 1) be a monad and (D,n,0) be a comonad. Let
A:TD = DT be a distributive law of the monad T over D. Then the following
holds:

({Ap1oTé)phr = [((DpooAro)r)b

Proof. The proof has exactly the same structure as that of Theorem 1 except
that we have to check at all relevant places that the algebras and coalgebras in
question satisfy the additional properties (14) and (15) or their duals. All these
proofs are by straightforward application of the monad laws, properties (17) -
(20) of distributive laws and by naturality. We give the outline here but omit
the routine checks.

(ApoTé)poT[((DuoAr)r)p
= {By(16) }
(ApoT(DpoAr)r)p

= {By(16) }
((DpoAr)ripop

Theorem 2 now generalises in the obvious way.

5 Related Work

We are not aware of any similar treatment of the relation of FP and OOP we
describe. As for bialgebras per se, the key point of reference is Turi’s thesis [12]
and Turi and Plotkin’s joint paper [13] on the same subject. There, our FP side of

Objects Versus Abstract Data Types: Bialgebraically 63

the picture corresponds to denotational semantics and the OOP side corresponds
to operational semantics. Our behavioural equivalence of the dual functional and
object-oriented programs is adequacy of denotational and operational semantics.
However, any further correspondence, for instance of their operational rules (c.f.
[13],Section 3), is not quite clear and it is likely that in the different setting
different rule formats or additional structure will be useful.

Distributive laws of a functor over a functor (both possibly with additional
structure) [2] have recently enjoyed renewed interest in the research community.
Here we mention just a few most relevant contributions.

In the context of bialgebraic semantics, Fiore, Plotking and Turi have worked
on semantics of languages with binders in a presheaf category [4]. On the other
hand, Bartek Klin has worked on adding recursive constructs to bialgebraic se-
mantics. Both theoretical contributions could lead to a model of object structures
with cycles and sharing in our interpretation.

Bart Jacobs in [6] gives several simple examples of modular constructions on
distributive laws. This naturally links to modularity of programs as illustrated
in Section 3.

Tarmo Uustalu with various colleagues has been using distributivity laws
for recursion and corecursion schemes. Together with Varmo Vene and Alberto
Pardo in [14] they specify a generalised coinduction scheme where a distributivity
law specifies the pattern of mutual recursion between several functions defined
by coinduction. This seems to be related to coalgebraic OOP where all methods
in an interface are (possibly) mutually recursive.

6 Conclusions and Further Work

We demonstrated how distributive laws between a monad and a comonad arise
naturally from everyday programming practice. By abstraction from a simple
programming example we arrived at the same notion of adequacy Plotkin and
Turi originally coined for denotational and operational semantics. We gave an
alternative computational proof of equality of the two dual operational models
defined by induction and coinduction, respectively (c.f. Corollary 7.3 in [13]).
In our future work we want to tackle data structures with cycles and sharing
(pointers). This seems to be possible by introducing recursion and or signatures
with binders [8,4]. Another plausible direction is exploration of modularity of
distributivity laws so as to tackle modularity of programs. We have seen an
example of this in Section 3. This and a few other simple examples can be found
in [6], but other more intricate ways of combining distributive laws would allow
us to express more intricate patterns of mutual recursion between components.
This strand of research is also closely related to modular operational semantics.

7 Acknowledgements

The author would like to thank the referees for their constructive feedback. This
research has been funded by EPSRC grant EP/D502632/1.

64

Ondrej Rypacek

References

[\]

10.

11.

12.

13.

14.

. Steve Awodey. Category Theory. Clarendon Press, 2006.
. Jon Beck. Distributive laws. Lecture Notes in Mathematics, 80:119-140, 1969.
. William R. Cook. Object-oriented programming versus abstract data types. In

Proceedings of the REX School/Workshop on Foundations of Object-Oriented Lan-
guages, pages 151-178, London, UK, 1991. Springer-Verlag.

. Marcelo Fiore, Gordon Plotkin, and Daniele Turi. Abstract syntax and variable

binding. In LICS ’99: Proceedings of the 14th Annual IEEE Symposium on Logic
in Computer Science, page 193, Washington, DC, USA, 1999. IEEE Computer
Society.

. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley, 1995.

. Bart Jacobs. Distributive laws for the coinductive solution of recursive equations.

Inf. Comput., 204(4):561-587, 2006.

. Bart P. F. Jacobs. Objects and classes, coalgebraically. In B. Freitag, C. B. Jones,

C. Lengauer, and H. J. Schek, editors, Object-Orientation with Parallelism and
Persistence, pages 83—103. Kluwer Academic Publishers, Boston, 1996.

. Bartek Klin. Adding recursive constructs to bialgebraic semantics. J. Log. Algebr.

Program., 60-61:259-286, 2004.

. Erik Meijer, Maarten Fokkinga, and Ross Paterson. Functional programming with

bananas, lenses, envelopes and barbed wire. In Proceedings of the 5th ACM con-
ference on Functional programming languages and computer architecture, pages
124-144, New York, NY, USA, 1991. Springer-Verlag New York, Inc.

Benjamin C. Pierce and David N. Turner. Simple type-theoretic foundations for
object-oriented programming. Journal of Functional Programming, 4(2):207-247,
1994.

Horst Reichel. An approach to object semantics based on terminal co-algebras.
Mathematical Structures in Computer Science, 5(2):129-152, 1995.

Daniele Turi. Functorial Operational Semantics and its Denotational Dual. PhD
thesis, Free University, Amsterdam, June 1996.

Daniele Turi and Gordon D. Plotkin. Towards a mathematical operational se-
mantics. In Proceedings 12th Ann. IEEE Symp. on Logic in Computer Science,
LICS’97, Warsaw, Poland, 29 June — 2 July 1997, pages 280-291. IEEE Com-
puter Society Press, Los Alamitos, CA, 1997.

Tarmo Uustalu, Varmo Vene, and Alberto Pardo. Recursion schemes from comon-
ads. Nordic Journal of Computing, 8(3):366-77, Fall 2001.

A Relational Semantics for Distributive
Substructural Logics and the Topological
Characterization of the Descriptive Frames

Tomoyuki Suzuki

Dept.Computer Science, University of Leicester,*
Leicester, LE1 TRH, UK
E-mail: ts119@mcs.le.ac.uk

Abstract. In this paper, we will show the topological characterization
of descriptive DFL-frames and discuss the categorical duality between
the classes of DFL-algebras and descriptive DFL-frames, as in the case
of modal logic (eg. [1], [3] or [10]). Through these arguments, we can
consider DFL-frames as a natural extension of Kripke frames for intu-
itionistic logic. Plus, we will also introduce the quasi-description and
show the categorical duality. Then, we will obtain a deeper understand-
ing of these topological conditions.

1 Introduction

By a substructural logic, we understand an extension of the basic sequent cal-
culus FL - a sequent system obtained by deleting contraction, exchange and
weakening rules from Gentzen’s sequent calculus LJ. Substructural logics include
well-researched logics, such as many-valued logics, fuzzy logics, relevance logics,
superintuitionistic logics, etc. By the Lindenbaum-Tarski method, we usually de-
fine classes of residuated lattices having a constant 0, as algebraic counterparts
of substructural logics. Therefore, algebraic techniques are often used and have
generated several results (see [8]).

In modal logic, on the other hand, relational semantics introduced by Kripke
is also attractive with its intuitive character and connection with applied struc-
tures like automata or transition systems in computer science, although algebraic
counterparts, like classes of BAOs [1], also exist. Stone’s representation theorem
provides a bridge between algebraic semantics and relational semantics. For ex-
ample, it is known that relational completeness results for canonical modal logics
can be immediately proved using Stone duality (eg. [11]).

In author’s Master’s Thesis [15], a relational semantics for a large class of
substructural logics, namely distributive substructural logics (DFL logics), was
introduced via Stone duality. These logics are including well studied logics like

** Author has moved from Japan Advanced Institute of Science and Technology, 1-1
Asahidai, Nomi, Ishikawa, 923-1292 Japan

http://www.ii.uib.no/publikasjoner/texrap/pdf/2008-367 .pdf

66

Tomoyuki Suzuki

relevance logics or superintuitionistic logics which have their own relational se-
mantics, Routley-Meyer semantics or Kripke frames for intuitionistic logic, re-
spectively. They can be naturally seen as special cases of our relational semantics.

The main results we have obtained (including the results in author’s Master’s

Thesis) can be summed up as follows:

For all basic extensions of DFL, we identified corresponding frame conditions
and proved completeness results.

We have introduced p-morphisms and some specific conditions; embeddings,
surjection and isomorphisms. While some of them are standard in modal
logic, we also defined another type of these conditions to study the categorical
duality over distributive lattices from logical points of view.

We introduced two types of descriptive frames via the difference of p-morphism
conditions. Besides, we have studied the categorical duality between DFL-
algebras and these two types of descriptive frames.

Finally, we have found the topological characterization of descriptive frames.
This is a natural generalization of similar characterization for intuitionistic
[3] or relevance frames [14]: differentiation, tightness and compactness. More-
over, differentiation can be derived from tightness condition as well as in the
case of intuitionistic logic. Besides, we have also obtained that differentiation
generates the difference among descriptive frames.

Distinct points of our approach from other authors;

as opposed to [14] or [16], we focus on DFL logics. Besides, we research p-
morphism lemmas and duality between injections (surjection) and surjection
(embedding),

as opposed to [13], we introduce a more Kripke-like frame based on one
underlying set and one relation,

as opposed to [6] or [7], we focus on relational semantics and modal ap-
proach like p-morphism or descriptive frames. Although the author’s Kripke
completeness results [15] are almost same with their results, the author’s
results are now extending to Sahlqvist-type theorem and under preparation
for submission,

we compare our topological characterization with that of intuitionistic logic.
This gives us that our relational semantics is a natural extension of Kripke
semantics for intuitionistic logic.

in this paper, we introduce two types of descriptive frames, and show the
categorical duality and topological conditions. Through this study, we see
that differentiation restricts descriptive frames to anti-symmetric frames.

Hereafter, we will define distributive substructural logics (DFL logics) in

Chapter 2, algebraic semantics in Chapter 3, relational semantics (DFL-frames),
general frames (general DFL-frames) and frame morphisms in Chapter 4, de-
scriptive frames and topological characterization in Chapter 5, and finally, cat-
egorical duality in Chapter 6.

A Relational Semantics for Distributive Substructural Logics 67

2 Distributive Substructural Logics

Formulas are built up from propositional variables, four constants t,f,T,
F, and logical connectives. In this paper, small Roman letters p,q,r,... are
used for propositional variables (®: the set of all propositional variables), small
Greek letters ¢,1, x, ... are used for formulas, capital Greek letters I',), A, ...
are used for lists of formulas (Frm: the set of all formulas), and ¢ is used for a
list including at most one formula. As logical connectives, V, A, o, —, < are used.
Informally, we might use parentheses, but we save them as the priority of logical
connectives is given as usual; V. = A > o > — = «. Then, we define formulas
as follows:

pu=plt|f|T|F|oVe|oNd|dod|d—d|d—o.

To define distributive substructural logics, we firstly introduce the basic se-
quent calculus DFL. In this system, a sequent is defined as I" = ¢.

Definition 1 (Basic sequent calculus DFL)
Initial sequents:

o= ¢ PNV X) = (9AY)V(6AX)
I'="T I'F, Y=y =t f=

Cut rule:

I'= ¢ Yoo, ==
X IE=p

Rules for logical connectives:

A
i(tw) Fi(fw)
It,A=o Ir=ft
I, A= ¢ Iy, A=
LoV, A=

(V=)

I'= ¢ (= V1) I'=

S — (=V2)
I'= ¢V I'so¢vy

I'g, A= (AL =) Iy, A= o
Lony, A= ¢ Lonp, A=

(A2 =)

I'=¢ I'=y
I'=s oAy

(=A)

Lo d=e r=¢ A=y

(= o)
o, A= o A= g¢gov

68 Tomoyuki Suzuki

I'=¢ EMAﬁw(Hj) GI=v
ELo—¢, A=y I'sé—vy
Evsz(baFaAé(p qub{_d)

We say that a formula ¢ is provable, if the sequent = ¢ is provable. Before
introducing logics, we define structural rules and the corresponding sequents.

Definition 2 (Structural rules)

Contraction :
I'¢,0,A= ¢
¢=¢od — (=)
I, A=
Exchange :
I, A=
pop=1pog ————— (e =)
F? w7 ¢7 A j <p
Left-weakening :
A=
¢=t 2T (w =)
o, A= ¢
Right-weakening :
f=o¢ I= (= w)
I'=¢

Now, we define logics as sets of formulas (see [8]).

Definition 3 (Logic)
A set S of formulas is a logic, if S satisfies the following conditions;

. S includes all provable formulas in DFL,

.ifpand ¢ — 1 in S, then ¢y € S,

.ifp €S, then p At €S,

. if ¢ € S and ¢ is arbitrary formula, then ¢ — ¢ o and Y o p «— 4 in S,
. S is closed under substitution.

T W N~

The set of formulas which are provable in DFL is a logic, and we call it
the distributive substructural logic DFL. Moreover, we call the extensions of
DFL distributive substructural logics (DFL logics). Well-researched logics like
relevance logics, fuzzy logics or superintuitionistic logics are DFL logics (see
[12]). We use bold face letters for logics.

Definition 4 (Basic DFL logics)

DFLy is called basic, where X is a subset of {¢(Contraction), e(Exchange),
w(Left- and Right-weakening)}. DFLx is the set of provable formulas in DFL
plus X as initial sequents or equivalently inference rules.

A Relational Semantics for Distributive Substructural Logics 69

3 Algebraic Semantics for DFL logics

Algebraic counterparts of substructural logics are usually defined by classes of
residuated lattices with a constant 0, called FL-algebras (see [7], [8] or [12]).
Here, we will introduce algebraic semantics for DFL logics on the same line.

Definition 5 (DFL-algebra)

A tuple A = (A, V,A,-,\,/,1,0, T, L) is a DFL-algebra, if (A,V,A, T, 1) is a
bounded distributive lattice, (4,-,1) a monoid, 0 arbitrary element in A, and 2
satisfies the residuation law below.

a-b<c & b<a\c & a<c/b

Given a DFL-algebra 2 = (4,V,A,+,\,/,1,0, T, L), an assignment f is a

function from @ to A. Then, we inductively extend f to f : Frm — A as follows.

[
=
G

\'_/

|
SRR TR TR T TR T TR Th Ty
PRI

Il
e

I
il/\
=%

|
o > <Vv
< < |l

TeeeHEBES
2 :

<
T
&
[

|
A
[

Based on this, we define the truth relation |=;

- AE¢ < AU [E ¢, for any assignment f.

If A, f | ¢, we say that ¢ is true on 2 through an assignment f, and if 2 = ¢,
we say that ¢ is valid on 2. Moreover, given a class € of DFL-algebras and a set
S of formulas, € = 5, if A |= ¢ for each DFL-algebra 2 € € and for all formulas
¢ € S. Among DFL-algebras, we define homomorphism, injection, surjection and
isomorphism in the standard way (eg. [2]).

4 Relational Semantics for DFL logics

Relational semantics of some specific substructural logics has already been re-
searched by several authors (relevance logics [5], [14] or [16], superintuitionistic
logics [3], BCK logics [13]). Here, we introduce a relational semantics for DFL
logics which is a natural extension of the above relational semantics.

1 Although we use a binary relation < without the definition, this is the usual order
relation in Lattice theory [2]. i.e. a <b <= aAb=a <= aVb=">. We use this
relation without saying anything, when we consider algebraic contexts.

70 Tomoyuki Suzuki

Definition 6 (DFL-frame)

A tuple § = (W, W, Wy, R,) is a DFL-frame, if W is a non-empty set, W; a
non-empty subset of W, W; a subset of W, R, a ternary relation on W, and §
satisfies the following conditions;

1. there exist t1, to in Wy such that Ro(w,t;,w) and Re(w,w,ts),

2. if Ro(w,v,u), w X w', v 2 v and v’ < u, then R, (w',v',u'),

3. there exists € W such that R, (w, z, s) and Ro(z,v,u), if and only if, there
exists y € W such that R, (w,v,y) and Ro(y,u, s),

4. if w e W; and w < w’, then w' € W,

5. if w e Wy and w < w’, then w’ € Wy,

where we define a (order-like) binary relation < on W as an abbreviation as
below.

w < w <= there exists t € W; such that R, (w’,t,w) or Ro(w',w,t).

Given a DFL-frame § = (W, W, Wy, R,), a valuation V is a function from &
to Up(W), where Up(W) is the set of all <-upward closed subsets of W. Then,
given an element w € W and a formula ¢, we inductively define the truth relation
I as follows;

~EViwlkp <= we V(p),

—E Vit = we W,

- S Vwlkf < we Wy,

— 5, V,w - T always holds,

— §,V,w Ik F never hold,

- S ViwlkoVvy <= §ViwlkgorF, V,wl-,

—EVwlFdAY = . V,wlF¢and 3, V,w lF o,

— 5§ Vwlk ¢poty < there exist v,u € W such that Ro(w,v,u), §,V,vi- ¢
and 3, V,ulF o,

-FVwlk ¢ - ¢p < | for each v,u € W, if Ro(u,v,w) and §F,V,v |- ¢,
then §,V,u - 1,

-5 Vwlk ¢ — ¢ <, for each v,u € W, if Ro(u,w,v) and §,V,v Ik ¢,
then §, V,u - 1.

We can check that any valuation is extended to a function from Frm to
Up(W), straightforwardly (see [15]). Besides, we define §, V,w Ik ¢ as §, V, w IF
¢ and w € W;. Then, we call §,V,w Ik, ¢ that a formula ¢ is true at w on a
DFL-model §, V. Moreover, we define globally truth (§,V Ik ¢) as §,V,w I ¢
for any w € Wy and validity (F k¢ ¢) as §,V Ik, ¢ for each valuation V.

Based on this relational semantics, we introduce general frames as in the case
of modal logic (eg. [1]). Then, our DFL-frames are also considered as a special
case of the general frames.

Definition 7 (General DFL-frame)
A tuple & = (F, A) is a general DFL-frame, if § is a DFL-frame, and A a subset
of Up(W) satisfying the following conditions;

A Relational Semantics for Distributive Substructural Logics 71

1. Wy, Wy, W and 0 in A,
2. A is closed under U, N, *,\ and /,

where %, \ and / are defined below.
XY ={weW]|IveX, uecY[R(w,v,u)l}

X\Y ={weW|VYueW,Yve X.[Rs(u,v,w) =ueY]}
Y /X ={weW|VueW,Vu € X.[Ro(u,w,v) = u€eY]|}
We can prove that Up(W) is closed under these operators.

Given a general DFL-frame & = (F, A), an admissible valuation V is a func-
tion from @ to A. Moreover, we can extend it to the function from Frm to A as
in the case of DFL-frames. The truth relation I and the other terms are also
defined in the same way.

Next, we define p-morphisms between (general) DFL-frames. This definition
is different from modal logic’s one. That is, the conditions 5, 6 and 7 below are
defined by the inequality =<, not the equality =. This is because we can only
prove the inequality, when we consider the categorical duality, see Lemma 30 in
Section 6.

Definition 8 (P-morphism)

Let &1 = (Wi, Wi, Wy, Roq, A1) and &y = (W, Wiy, Wy, Roo, A2) be general
DFL-frames. A morphism p from &; to &4 is a p-morphism, if p satisfies the
following conditions;

. pis a function from W7 to Wo,

w € Wy <= p(w) € Wia,

we Wy, > plw) € Wiy,

- if Roy(w,v,u), then Roy(p(w), p(v), p(u)),

. if Roo(p(w), v, u), there exist v,u € Wy such that Roi(w,v,u), v < p(v)

and v’ < p(u),

6. if Rop(u',v', p(w)), there exist v,u € Wy such that Roi(u,v,w), v' < p(v)
and p(u) 2 o/,

7. if Rop(u/, p(w),v"), there exist v,u € Wy such that Roi(u,w,v), v' < p(v)
and p(u) < o/

8. for each X' € Ag, p~1(X') € A;.

O W N

Here, we define two types of embeddings; a quasi-embedding and an embed-
ding. Finally, this distinction will lead to a deeper understanding of descriptive
frames and their duality, see Table 1 in Section 5 and Theorem 34 in Section 6.

Definition 9 (Quasi-embedding)

Let &1 = (Wi, Wiy, Wy, Roq, A1) and &y = (W, Wiy, Wy, Rog, Az) be general
DFL-frames. A morphism p from &; to &5 is a quasi-embedding, if p is a p-
morphism from &; to &5 and satisfies 9 and 10.

9. For any X € 41, 1 (p(X)) :={w € Wy | Jw € X.[p(w) X w']} is in As.

72 Tomoyuki Suzuki

10. If p(w) = p(v), then w =< v.

Definition 10 (Embedding)

Let &1 = (W1, Wiy, Wy, Roq, A1) and &y = (W, Wiy, Wy, Rog, A2) be general
DFL-frames. A morphism p from &; to B, is an embedding, if p is a injective
p-morphism from &; to &5 and satisfies 9’.

9. For any X € A;, there exists Y € Ag, such that p(X) = p(W1)NY.

The reason we call quasi-embeddings is that the conditions 9 and 10 generate
the condition 9’. Moreover, if ®; and B, are anti-symmetric, the injectivity is
also derived from the condition 10. Hence, for anti-symmetric frames, quasi-
embeddings and embeddings coincide.

Definition 11 (Surjection)

Let &1 = (W1, W1, Wy, Roq, A1) and &y = (W, Wia, Wy, Roo, A2) be general
DFL-frames. A morphism p from &; to &, is surjective, if p is a p-morphism
from &; to &, and satisfies 11.

11. For any w’ € Wy, there exists w € Wy such that p(w) = w'.

We define an quasi-isomorphism as a surjective quasi-embedding.

Definition 12 (Isomorphism)

Let &1 = (W1, Wy, Wy, Roq, A1) and &y = (W, Wia, Wy, Roo, A2) be general
DFL-frames. A morphism p from &; to &, is an isomorphism, if p is a bijection
from & to &5 and satisfies,

1. we Wy < p(w) € Wy, for any w € Wi.

2. we Wy, <= p(w) € Wy, for any w € W.

3. Rol(wavau) — ROQ(,D(U)),,D(U),[)(U)) for any w, v, u € W1~
4. X € A] = p(X) € A,.

We can say that every isomorphism is a bijective p-morphism.

The reason we introduce both quasi-isomorphism and isomorphism is to discuss
both a usual descriptive frame like modal logic and our categorical duality or
the following p-morphism lemmas.

Then, we can show the following p-morphism lemmas. These are analogously
proved in the case of modal logics.

Lemma 13

Let &1 = (W1, Wy, Wy, Roy, A1) and &y = (W, Wia, Wy, Roo, A2) be general
DFL-frames. If there exists a p-morphism p from &; to &, satisfying 9 above, for
any valuation V; on &1, there exists a valuation V5 on &5 such that &, Vy, w I+
¢ <= By, Vo, p(w) I ¢.

Lemma 14

Let &1 = (Wi, Wiy, Wy, Roq, A1) and &y = (Wa, Wi, Wy, Roo, Az) be general
DFL-frames. Suppose that there exists a p-morphism p from &; to &5. The
following holds:

A Relational Semantics for Distributive Substructural Logics 73

1. if p is a quasi-embedding, &5 IF ¢ = &1 I ¢,
2. if p is surjective, &1 IF ¢ = &4 - ¢,
3. if p is quasi-isomorphic, &1 IF ¢ <= & IF ¢.

5 Topological characterization of descriptive frames

Hereafter, we consider a logic L as a DFL logic and L-algebras, L-frames or
general L-frames as DFL-algebras, DFL-frames or general DFL-frames validating
each formula in L, respectively. Here, we introduce descriptive frames for DFL
logics via Stone duality.

Stone duality for DFL logics are the following.

Definition 15 (Dual general frame)

Given a L-algebra %A = (A,V,A,-,\,/,1,0, T, L), the tuple 2, = (Pf(A),
PfL(A), Pfo(A),R., A) is the dual general frame, where Pf(A) is the set of all
prime filters over A, Pf,(A) the set of all prime filters containing 1, Pf,(A) the
set of all prime filters containing 0,

R.(Fy,F5, F;) < ifa € Fy,b€ F3, thena-b € Fy, for any a,b € A,
A:={a|ac A}, where a:={F € Pf(A)|ac F}.
If we introduce a binary operation on prime filters x defined as follows;
FixFy:={acA|Tbe F,3c € Frlb-c<al},

then R.(Fy, Fy, F3) can be seen as F» x F3 C Fy, and the abbreviation < can be
thought of the set inclusion C. Hereafter, we sometimes use this notation.

Definition 16 (Dual L-algebra)

Given a general L-frame & = (W, W, Wy, R,, A), the tuple &* = (A,U,
N, %, \, /, Wy, Wy, W,0) is the dual algebra, where U and N are the set union
and intersection, *, \, / defined in Definition 7.

The following two proposition 17 and 18 are proved by the author in his
Master’s Thesis [15].

Proposition 17
For any L-algebra, the dual general frame is a general L-frame.

Proposition 18
For any general L-frame, the dual algebra is a L-algebra.

Next, we define the two types of descriptive frames; a quasi-descriptive frame
and a descriptive frame.?

2 This difference comes only from the definition of embeddings; a quasi-embedding or
an embedding.

74 Tomoyuki Suzuki

Definition 19 (Quasi-descriptive frame)
A general L-frame & is quasi-descriptive, if & is quasi-isomorphic to the bidual
general frame (&*),.

Definition 20 (Descriptive frame)
A general L-frame & is descriptive, if & is isomorphic to the bidual general frame

(&%)

We introduce some conditions about general DFL-frames as in the case
of modal logic (eg. [1] or [3]). Given a general DFL-frame & = (W, W;, Wy,
R, A), we call it;

Differentiated for each w,v € W,
w=v <= VX ecAweX < velX]
Totally order disconnected for each w,v € W,
w=v <= VX e€Awe X =veX|
Tight for each w,v,u € W,
Ro(w,v,u) <= VX, Y € Afve X and u € Y imply w € X *Y],
Compact for each family X C Aand Y C A(:={W — X | X € A}),
N(XUY) # B, whenever X UY has the finite intersection property (see [1]).

In our settings, since < is defined by R,, totally order disconnectedness follows
from tightness. If we consider general DFL-frames as Priestley spaces with the
topology given by the base B = AU{W — X | X € A}, the above differentiation
and compactness correspond to the standard Hausdorffness and compactness
in the topological space. Moreover, = coincides with the order of the Priestley
spaces by totally order disconnectedness.

Before we prove the topological characterization theorem, some lemmas and
propositions are introduced.

The Squeeze lemma in [5] provides the following lemma.

Lerpma/gl
axb=a-b.

The following proposition is standard (see eg. [3]).

Proposition 22

For any general DFL-frame & = (W, W,, Wy, R,, A), ® is compact if and only
if every prime filter over A can be expressed by w for some w € W, where
w:={FecA|weF}.

Firstly, we show the standard topological characterization theorem for de-
scriptive L-frames.

Theorem 23 (Topological characterization)
A general L-frame & = (W, W;,W;, R,, A) is descriptive if and only if it is
differentiated, tight and compact.

A Relational Semantics for Distributive Substructural Logics 75

Proof
(=). We will prove that (&*), is differentiated, tight and compact. Suppose
6 = (6%),.

Differentiation The ’only if’ part is obvious. Let F; and F» be arbitrary ele-
ments of Pf(A). If F} # F», then there exists a € A such that either a € Fy
and a € Fy or a € Fy and a € F;. So, either I} € G and Fo € aor F1 & a
and I € a.

Tightness The ’only if’ part is very straightforward. Let Fy, Fy and F3 be
arbitrary elements of Pf(A). For arbitrary a,b € A, if a € F5 and b € F3,
then F, € a and F3 € b. By the assumption, F; € a * b. By Lemma 21,
F € CL/\b

Compactness Since & is isomorphic to (&*), and w:={X € A|we X} isa
prime filter over Pf(A) for any w € W, every prime filter can be represented
by some element of W as w(:={X € A | w € X}). By Proposition 22, (&*).,
is compact.

(«<=). We define a function fe from & to (&*), as fe(w) := & for any w € W.
Then, we will show that fg is a isomorphism (Definition 12). Firstly, it is obvious
that fe is well-defined. For any w € W, w € Wy <= @ € Pfy, (A) and
w € Wy <= @ € Pfy, (A) are obvious. By compactness and tightness,
Ro(w,v,u) <= R,(w,0,4) is trivial. By definition, X € A < X € A. If
w # v, then, by differentiation, there exists X € A such that either w € X and
v Xorw¢gX and v € X. So, w # 0. Therefore, if w0 = 0, w = v for each
w,v € W. By Proposition 22, fg is surjective, since & is compact.(Q.E.D)

Theorem 23 gives us that descriptive frames are topologically characterized
by three conditions: differentiation, tightness and compactness. This result is
precisely the same with modal logic’s one. However, in our settings, we can
obtain the following results;

Here, we introduce the anti-symmetry. For each (general) DFL-frame & =
(W, W, Ws, Ry, A) and w,v € W, if w v and v X w, w =v.

Proposition 24
For each DFL-algebra 2, the dual (general) DFL-frame 2, is anti-symmetric.

Proof
This is trivial, because, for each F,G € Pf(A), F <G < F C G.(Q.E.D)

Proposition 25
Every descriptive L-frame & satisfies the anti-symmetry.

Proof

Let f: & — (&*), be an isomorphism. For arbitrary w,v € W, if w < v and
v =X w, f(w) =2 f(v) and f(v) = f(w). By Proposition 24, f(w) = f(v). Since f
is injective, w = v.(Q.E.D)

76 Tomoyuki Suzuki

Lemma 26
Given a descriptive L-frame &, differentiation is derived from tightness.

Proof

By the anti-symmetry, it is straightforwardly obtained that any general DFL-
frame is differentiated, whenever it is totally order disconnected. Now, we derive
differentiation from tightness. The ’only if’ part is trivial. Conversely, assume
w A v. By the condition 1 of Definition 6, there exists t,, € W; such that
Ro(w, ty,w). By the assumption, neither R, (v,t,w) nor R (v, w,t) hold for each
t € W;. Surely, Ro(v,t,,w) does not hold. By tightness, there exist X,Y € A
such that ¢, € X, w € Y and v ¢ X *Y, while w € X *Y because of Ro(w, t,, w)
and tightness. (Q.E.D)

Corollary 27
Descriptive L-frames are characterized only by the tightness and compactness.

This result perfectly matches the topological characterization of descriptive
frames for intuitionistic logic (eg. [3]).

Next, we consider the topological characterization of quasi-descriptive L-
frames.

Theorem 28
For any general L-frame &, & is quasi-descriptive if and only if & is tight and
compact.

Proof
Analogous to the proof of Theorem 23.(Q.E.D)

As we see before, we can say that both quasi-descriptive L-frames and de-
scriptive L-frames are characterized by tightness and compactness. However, the
following proposition gives us the witness of the difference.

Proposition 29
If general L-frame is differentiated, it is anti-symmetric.

We can sum up these results as follows;

Table 1. Topological conditions

HQuasi-descriptive Descriptive

Differentiation May not Must
Totally order disconnected Must Must
Tightness Must Must
Compactness Must Must

Remark: This result says that if we topologically define descriptive frames
with differentiation, it sees every descriptive frame as anti-symmetric frames.

A Relational Semantics for Distributive Substructural Logics 77

6 Categorical duality for DFL logics

In this chapter, we will discuss the categorical duality between L-algebras and
descriptive L-frames like [1], [3], [10] or [14] and quasi-descriptive L-frames.
Let Ay be the category of L-algebras defined as follows:

1. objects are all L-algebras,
2. morphisms are all homomorphisms over L-algebras.

Let Dy, be the category of descriptive L-frames defined as follows:

1. objects are all descriptive L-frames,
2. morphisms are all p-morphisms over descriptive L-frames.

Let D} be the category of quasi-descriptive L-frames defined as follows;

1. objects are all quasi-descriptive L-frames,
2. morphisms are all p-morphisms over descriptive L-frames.

By definition, Dy, is a subcategory of DY.

Next, we define (-)* and (-). as functors between Ay and Dy, or DY. For
objects, these values are the dual objects defined in Definition 15 and 16. For
morphisms, we define h, and p* as the inverse images. In other words,

P (X) == p~ (X)

Then, we check the following lemmas.

Lemma 30
Let & and 8 be DFL-algebras. If h is a homomorphism from 2 to 98, then h, is
a p-morphism from B, to ..

Proof
Here, we check only the conditions 2 and 6 in Definition 8.

2. If F € Pf,_(B),then 15 € F. Since h is a homomorphism, 14 € h™*(1p) i.e.
14 € ha(F). Therefore, h.(F) € Pf,,(A). Conversely, if h.(F) € Pf,,(A),
then 14 € h.(F). Since h(14) = 1p, F' € Pf,_(B).

6. Assume R., (G1,Ga, h(F3)). Let T (h(G2)) be {b € B | Ja € Gz2[h(a) < 1]}
and | (h(A—Gy)) {b € B|3Ja € A—Gi[b < h(a)]}. We claim here that
((1 (h(G2))) x F3)N | (h(A—G1)) = 0. If not, there exist a € Ga,b € F3,c &
G such that h(a) -p b < h(c). By the residuation law, b < h(a\c) € F3.
Therefore, ¢ € G1, which a contradiction. So, by the prime filter theorem,
there exists a prime filter Fy such that (T (h(G2)) x F3 C Fy and FiN |
(h(A — G1)) = 0 i.e hi(F1) € G1. Moreover, by the squeeze lemma, there
exists a prime filter Fy such that 1 (h(G2)) C Fs i.e. Go C hy(F3) and
F2 X F3 - F1 i.e R.B(Fl,FQ,Fg). (QED)

78 Tomoyuki Suzuki

Lemma 31
Let &; and &5 be general DFL-frames. If p is a p-morphism from &; to &,
then p* is a homomorphism from 5" to &;*.

Proof

We here check only p*(X %2 V) = p*(X) %1 p*(V). w € p*(X % Y) if and
only if p(w) € X %o Y. By the definition, there exist v',u’ € Wy such that
Ros(p(w),v',u'),v" € X and v’ € Y. By Definition 8, there exist v, u € Wj such
that Roq(w,v,u), v < p(v) and v’ < p(u). Here, X and Y are <-upward closed
set. So, p(v) € X and p(u) € Y. Therefore, w € p*(X) %1 p*(Y). Conversely,
assume w € p*(X) #1 p*(Y). By the definition, there exist v,u € Wj such that
Roqi(w,v,u), v € p*(X) ie. p(v) € X and u € p*(Y) i.e. p(u) € Y. By Definition
8, Roo(p(w), p(v), p(u)). Therefore, w € p*(X %2 Y). (Q.E.D)

Proposition 32
For each L-algebras 2, 8 and each homomorphism A : 2 — B, (h.)*ofy = fyoh,

where fy is defined as fy(a) := a and fo (b) := b.

Proof —
For each a € A, we need to prove (h.)*(a) = h(a). G € (h«)*(ad) < h.(G) €

—

4 <= a€hG) <= h(a) € G <= G € h(a). (QED)

Proposition 33
For each descriptive L-frames &1, ®5 and each p-morphism p from &; to &,
(p*)x o fe&, = fe, o p, where fg is defined as fg, (w) := @ and fe,(w) := .

Proof o
For each w € Wi, we need to prove (p*).(w) = p(w). X € (p*)(0) <=

—

pr(X)ew <= wep"(X) < plw) e X <= X € p(w). (Q.ED)

From the above lemmas and propositions, we can prove the following theo-
rem.

Theorem 34
1. The category Ay is dually equivalent to the category Dy, by the contravariant
functors (-)* and (-)..
2. The category Dy, is a full reflexive subcategory of the category D} through
the reflector (left adjoint) R : DY — Dy, and the inclusion right adjoint
I : Dy, — DY. Moreover, the natural transformation 1pqLu — IR is the
collection of quasi-isomorphisms.

Finally, we show the following lemma.

Lemma 35
1. if a homomorphism h is injective, then h, is surjective,
2. if a homomorphism A is surjective, then h, is both a quasi-embedding and
an embedding,

A Relational Semantics for Distributive Substructural Logics 79

3. if a p-morphism p is a quasi-embedding or an embedding, then p* is surjec-

tive,

4. if a p-morphism p is surjective, then p* is injective.

Proof

1. For each prime filter G € Pf(A), we define 7 (h(G)) and | ((A—G@)). Since

h is injective, L g €1 (h(G)). Now, since T (h(G))N | (h(A)) 0, by the
prime filter theorem, there exists a prime filter F' such that 1 (h(G)) C
ie. G C hy(F) and Fn | (h(A —))—@.ForeachaGA,lfaEG,
h(a) € F <= a € h.(F). Therefore, G C h,(F). Conversely, suppose that
there exists a € h.(F) but a ¢ G. Then, a € A — G. Hence, h(a) € P and
h(a) €| (h(A — G)), which a contradiction.

. By Proposition 24, all we need to show is that h, is a quasi-embedding. For

each b € B, since h is surjective, there exists a € A such that h(a) = b. If
G €l (hi(b b)), there exists F' such that h,(F) C G and h,(F) € h,(b). So,
Feb — h(a) =b e F <= a € h.(F) = G € a. Conversely, if G € a,
G € h.(b). Suppose h,(F)Ch(2).be Fy < h(a) e i < ac

. The condition 9’ in Deﬁnition 10 directly derive surjectivity of p*. Moreover,

quasi-embeddings also satisfy the condition 9’.

. For each w’ € Wa, there exists w € Wi such that p(w) = w’. Assume

pr(X)=p"(Y), v €X <= pw) €X = wep(X)=p(Y) <
plw)eY <= w €Y. (QE.D)

Acknowledgements: The author would like to thank firstly Hiroakira Ono,

Tadeusz Litak and Alexander Kurz; they always encourage him well. He also
thanks the referees giving him a lot of fruitful comments. Finally, he thanks all
of CALCO, CALCO-jnr participants and organizers, and the beautiful nature
of Bergen.

References

1.

2.

P. Blackburn, M. D. Rijike, and Y. Venema. Modal logic, volume 53 of Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, 2002.

S. Burris and H.P. Sankappanavar. A course in universal algebra. Springer-Verlag,
1981.

A. Chagrov and M. Zakharyaschev. Modal logic, volume 35 of Ozford Logic Guides.
Oxford Science Publications, 1997.

B.A. Davey and H.A. Priestley. Introduction to lattices and order. Cambridge Uni-
versity Press, 1990.

M. Dunn. Relevance logic and entailment. In D. Gabbay and F. Guenthner, edi-
tors, Handbook of Philosophical Logic, volume III, chapter 3, pages 117-224. Kluwer
Academic Publishers, 1986.

M. Dunn, M. Gehrke and A. Palmigiano. Canonical extensions and relational com-
pleteness of some substructural logics. The Journal of Symbolic Logic, 70:713-740,
2005.

80 Tomoyuki Suzuki

7. N. Galatos. Varieties of residuated lattices. PhD thesis, Graduate School of Vander-
bilt University, May 2003.

8. N. Galatos, P. Jipsen, T. Kowalski, and H. Ono. Residuated lattices: an algebraic
glimpse at substructural logics, volume 151 of Studies in Logics and the Foundation
of Mathematics. Elsevier, 2007.

9. M. Gehrke, H. Nagahashi, and Y. Venema. A Sahlqvist theorem for distributive
modal logic. Annals of Pure and Applied Logic, 131:65-102, 2005.

10. R. Goldblatt. Mathematics of modality, volume 43 of CSLI Lecture notes. CSLI
Publications, 1993.

11. P.T. Johnstone. Stone spaces, volume 3 of Cambridge studies in advanced mathe-
matics, Cambridge University Press, 1982.

12. H. Ono. Substructural logics and residuated lattices - an introduction. Trends in
Logic: 50 Years of Studia Logica, 21:193-228, 2003.

13. H. Ono and Y. Komori. Logics without the contraction rule. The Journal of Sym-
bolic Logic, 50:169-201, 1985.

14. T. Seki. General frames for relevant modal logics. Notre Dame Journal of Formal
Logic, 44:93-109, 2003.

15. T. Suzuki. Kripke completeness of some distributive substructural logics. Master’s
thesis, Japan Advanced Institute of Science and Technology, March 2007.

16. A. Urquhart. Duality for algebras of relevant logics, Studia Logica, 56:263-276,
1996.

Limits and colimits in categories of institutions

Adam Warski

University of Warsaw, Poland
adam@warski.org

1 Introduction

The theory of institutions, first introduced by Goguen and Burstall in 1984
([GB83,GB92]), quickly gained ground and proved to be a very useful tool to
construct and reason about logics in a uniform way. Since then, it has found many
applications and has been widely developed. An institution is a formalization of
a logical system—for example, we can build an institution of equational logic or
first order logic.

There are two main ways of moving between institutions, using either institu-
tion morphisms or comorphisms. Informally, morphisms express how a “richer”
institution is built over a “simpler” one; comorphisms express a relation going
the other way round: how a “simpler” institution can be encoded in a “richer”
one. These intuitions hint at some duality between the two concepts. Various
properties of (co)morphisms are presented very thoroughly and systematically
in [GR02]. Taking morphisms or comorphism, we can build two categories: INS
and coINS, with institutions as objects.

In this article, I am going to analyse some of the relationships between limits
and colimits of diagrams built from institutions linked by morphisms and co-
morphisms, as well as show the constructions of those limits and colimits. Even
though morphisms and comorphisms may seem to be dual concepts at first, uni-
versal constructions associated with morphisms and comorphisms turn out to be
rather different.

The main motivation behind this work takes source in heterogeneous specifi-
cations [Mos02b,Tar00], which are built over a number of institutions linked with
morphisms or comorphisms. It is sometimes important to have the underlying
diagram of institutions represented in a uniform way, using only morphisms or
only comorphisms; hence the need to translate one into another. One way to
do that is by transforming a morphism into a span of (co)morphisms (or vice
versa), as introduced for example in [Mos02b]. Also, given such a diagram, it
may be useful to represent a family of models of a heterogeneous distributed
specification, or specifications themselves in an institution, which combines the
institutions involved. Limits/colimits of institutions haven’t proved to be the
best tool for “putting institutions together” (see for example [GB85,Paw95]),
however it may be suitable to use them as concise representations of institu-
tions diagrams. This approach is different from the one taken by, for example,
Mossakowski ([Mos02a,Mos06]) and Diaconescu ([Dia02]), where, given a dia-
gram, the corresponding Grothendieck institution is built. Using this technique,

http://www.ii.uib.no/publikasjoner/texrap/pdf/2008-367 .pdf

82 Adam Warski

institutions are put into one, essentially “side by side”, without much interac-
tion. We are after a more compact representation, where some combination of
signatures, models and sentences of the institutions involved takes place. One of
the constructions to consider, when pursuing such a goal, is the construction of
limits and colimits of diagrams of institutions.

Now comes the question: how do (co)limits of diagrams relate to (co)limits
of diagrams built by replacing each morphism by a span of comorphisms? (Or
each comorphism by a span of morphisms.) Here, we will show what the answer
is for the case of limits. When morphisms are replaced by spans of comorphisms,
the shape of the diagram changes. Hence the “procedure” for constructing limits
changes as well; even though the new morphisms are of a special form. In general
it seems there is no simple and straightforward way to translate between lim-
its/colimits of the two diagrams, which shows that morphisms and comorphisms
are not entirely dual.

All proofs of correctness of constructions and of theorems are left out. They
are available in [War07].

2 Definitions

This section presents definitions used later in the article: of institutions, institu-
tion morphisms and comorphisms and various institution categories. Examples
of these concepts can be found in [GB83], [GR02], [ST88] and many other papers
dealing with institutions.

Definition 1. An institution I = (Sign, Mod, Sen, =) consists of:

— a category Sign of signatures,

— a functor Mod: Sign®”? — Cat, which assigns to each signature a category
of models. Cat is a category of “all” categories and functors between them,
a functor Sen : Sign — Set, which assign to each signature a set of sen-
tences,

for each signature X € |Sign|, a satisfaction relation Ex C [Mod(X)| x
Sen(XY),

Such that for each signature morphism o: X — X', sentence p € Sen(X) and
model m’ € |Mod(X")|, the satisfaction condition holds (SC):

m' s Sen(o)(¢) <= Mod(o)(m') Ex ¢.
The following notations are used: o () stands for Sen(o)(¢) and m/|, stands

for Mod(o)(m’).
The satisfaction condition takes then the form:

m' s o(p) <= m/|;=x @

Definition 2. An institution morphism p: I — I, u = (D, «, 3), where I =
(Sign,Mod, Sen, |=) and I’ = (Sign’, Mod’, Sen’, =’} consists of:

Limits and colimits in categories of institutions 83

— a functor between signature categories @: Sign — Sign’
— a natural transformation between model functors a: Mod — (9°7);Mod’
— a natural transformation between sentence functors (3: ®;Sen’ — Sen.

Also here, the satisfaction condition must hold, for each signature X € |Sign|,
sentence ¢’ € Sen’(P(X)), and model m € |Mod(X)|:

m s Be(¢) <= as(m) Fpx) ¢

Note that the domain of the sentence functor is a “re-indexed” sentence
functor of the institution I’, and the codomain is the sentence functor of I.

Intuitively, the institution I is more complicated than the institution I'. A
morphism between them shows how I is built upon I'.

Definition 3. An institution comorphism p: I —., I, p = (P, o, B), where we
have I = (Sign, Mod, Sen, |=) and I’ = (Sign’, Mod’, Sen’, =') consists of:

— a functor ®@: Sign — Sign’
— a natural transformation a: ($°7);Mod’ — Mod
— a natural transformation (3: Sen — @;Sen’

such that for each signature X € |Sign|, sentence ¢ € Sen(X) and model m' €
|Mod'(®(X))| the satisfaction condition holds:

m' g5 Bo(p) <= as(m') Fx .

Intuitively, p is a representation of institutions—it shows, how a simpler
institution can be embedded into a richer one. Institution comorphisms were
first introduced under the name “simple maps of institutions” by Meseguer, and
as “representations” by Tarlecki in [Tar95].

Definition 4. Having institutions and morphisms between them, we can build
a category of institutions INS.

— Objects: institutions

— Morphisms: institution morphisms as defined in Def. 2.

— Identities: morphisms id = (idsign, {dMod, {dSen) -

— Composition: a composition of a morphism puy: 1 — I’ with a morphism
po: I — 1" is a morphism p = py;us: I — 17, where for uy = (@1, a1, 51),
o = (Pg, g, B2) we define p = (P, «,)

D = D1;D, : Sign — Sign”
a=a;((#77) - az) : Mod — (®1;$,)°?;Mod”
B=(P1-B2)if1 :P1;P2;Sen” — Sen

Here - is the horizontal composition of natural transformations, and ; is the
composition of functors or the vertical composition of natural transformations
(depending on context). It is easy to check that the definition of identities is
correct, that composition is associative, and that u is indeed an institution mor-
phism.

84 Adam Warski

Definition 5. Using comorphisms instead of morphisms we can also build an-
other category of institutions, coINS.

— Objects: institutions

— Morphisms: comorphisms of institutions, as defined in Def. 3.
Identities: comorphisms id = (idsign,; idMod; idsen) -

Composition: composition of a comorphism p1: 1 — 1 with a comorphism
po: I = 1" is a comorphism p = p1;p2: 1 — 1", where for p1 = (P1, a1, (1),
p2 = (P2, iz, Ba) we define p = (P1;Dq, B15(P1 - f2), (P17) - az);a1).

Again it is easy to check that coINS is a category.

Definition 6. Categories of institutions sINS and scoINS are full subcate-
gories of, respectively, INS and coINS, where objects are only those institutions,
in which signature categories are small (objects and morphisms of the signature
category form a proper set).

Definition 7. Categories of institutions INSg;gn and coINSg;gy, (with a fixed
signature category), where Sign € |Cat| is an arbitrary category are sub-
categories of, respectively, INS and coINS, where objects are all institutions
with a fized signature category Sign, and morphisms are all institution mor-
phisms/comorphisms, in which the functor between signature categories is an
identity.

Definition 8. The signature-projecting functor C: INS — Cat is defined as
follows
— C(I) = Sign, for each institution I = (Sign, Mod, Sen, =)
— C(p) = @, for each institution morphism p: I — I’ € INS, where p =
(D, a0, 3).
This is a functor which projects an institution on its signature category. We
can also define an analogous functor with domain coINS.

3 Limits in INS

As mentioned in the introduction, diagrams of institutions often appear in het-
erogeneous specifications [Mos02b,Tar00]. One way of compactly representing
such diagrams is by considering their limits.

Theorem 9. The category INS is complete.

This result is well-known, and the proof can be found for example in [Tar85].
However, the construction given there proceeds rather indirectly in several quite
involved steps. Instead, here we give an explicit construction directly in terms
of institutions and their morphisms in the diagram, thus offering a better “feel”
and direct handle on the result. Here we will describe the construction of arbi-
trary limits; to do that it is enough to construct products of an arbitrary family
of categories and equalizers of any two morphisms ([Mac71, Ch. V]). The con-
structions are easy and are done in a component-wise manner; the construction
of model categories and sentence sets on each signature doesn’t depend on the
overall structure of the signature category.

Limits and colimits in categories of institutions 85

3.1 Products in INS

For a given family of institutions, I, € |INS|, j € J, where J is a set of in-
dices and I; = (Sign;, Mod;, Seny, |=;), we define a product of this family, an
institution I = I;¢s1;.

— Sign = Il ;Sign; is a product of categories:

e objects are functions £: J — ;¢ ; [Sign,|, such that £(j) € [Sign;| for
jel.

e morphisms between ¢ and & are functions x : J — HjjeJ Sign;, such
that x(j): £(j) — €/(J) in Sign,.

— Mod(§) = IIje;Mod,(£(4)) for € € |Sign| (product of categories)

— Mod(x) = x™°¢, where the functor x™°¢: Mod(¢') — Mod(¢) is defined
as follows: x™°4(m’)(j) = Mod,(x(5))(m’(5)), for x: £ — ¢ in Sign, j € J
and m’ € [Mod(¢’)| (analogically for model morphisms).

— Sen(§) = W, Sen;(£(j)) (coproduct of sets, its elements are pairs (g, j),
where j € J and ¢ € Sen;(£(5))).

— Sen(x) = x°¢", where x*°" : Sen({) — Sen(¢’) is defined as follows:
X*"((p, 7)) = (Sen;(x(j))(#),), for x : & — ¢ in Sign, j € J and
o € Sen; (¢(7)).

— satisfaction relation |=¢ for { € |Sign|, m € |[Mod(¢)|, j € J and ¢ €

Sen;(£(5)): m ¢ (v,) <= m(j)):é(j) v

The projections 7;: I — I; for j € J are defined in a straightforward way,
™ = (Pj, a5, B5):

= 4(§) = €(7)
— a;(&)(m) = m(y), for m € Mod(¢)| and similarly for model morphisms
= Bi(€)(¢) = (#,4), for ¢ € Sen;(£())

Lemma 10. o and 3 are natural transformations and w; for j € J are institu-
tion morphisms.

Lemma 11. Il;c 1; with projections w; for j € J is a product of institutions
L forjeJ.

3.2 Equalizers in INS

Given two “parallel” institution morphisms puq, po : I1 — I, we define their
equalizer p: I — I, with domain I = (Sign, Mod, Sen, |=).

Sign is the subcategory of Sign,; such that X € |Sign| < ¢1(X) = $2(X)
and o € Sign(X,Y’) <= &1(0) = $2(0). The functor ¢: Sign — Sign, is the
inclusion. Hence, @ is an equalizer of 1, @o: Sign,; — Sign, in Cat.

For X' € |Sign|, Mod(X) is the subcategory of Mod;(®#(X)) = Mod;(XY),
such that

m € |[Mod(X)| <= a1(X)(m) = az(X)(m)
h € Mod(X)(m,m') <= a1(X)(h) = az(X)(h).

86 Adam Warski

For o: ¥ — X', Mod(0) = Mod; (0)|mod(x) (functor domain restriction).

For X' € |Sign|, let Sen(X) = Sen; (#(X))/=5x = Sen;(X)/=5, where =5,
is the smallest equivalence relation such that 81 (X)(¢) =5 B2(X)(p) for all
¢ € Seny(P1(X)). The full relation satisfies this condition, and an intersection
of two relations satisfying this condition also satisfies it, hence a smallest relation
exists.

For o: ¥ — X' and [¢]=,, € Sen(X), we define:

Sen(o)([¢]=5) = [Seny (2(0))(¥)]=,., = [Seny(0)(¥)]=,, -

Remark 12. The above definition is correct, that is, it does not depend on the
choice of .

Hence Mod(X) with inclusion a(X): Mod(X) — Mod; (X) is an equalizer
of functors a1 (X) and ay(X) between categories Mod; (X) and Modz (P4 (X))
(the choice of @1 or P, is not important, as ¢1(X) = $3(X) from the con-
struction of the signature category), and G(X) is a coequalizer of 31 (X)), B2(X):
Seny(P1(X)) — Sen; (X).

The satisfaction relation for X' € |Sign| is defined as follows:

m =y [Y]=, <= for each ¢/ € []=,.,m % 1.

Lemma 13. A morphism p: I — Iy defined as: p = (P, «, B), where (X)) =
]z, for X € |Sign| is an institution morphism.

Lemma 14. p is an equalizer of py and po.

4 Colimits in INS

Another way of combining institutions in a diagram is taking its colimit. Dually
to limits, to construct a colimit it suffices to show the construction of coproducts
and coequalizers (see [Mac71, Chap. V]). However, colimits of arbitrary diagrams
of institutions connected by morphisms do not always exist, because it is not
always possible to construct a coequalizer of two morphisms. A counter example
can be found in [GR02, Ex. 4.10].

However, the problems are purely set-theoretical. If we restrict our attention
only to institutions, in which signature categories are small (in typical examples
it is enough to restrict the alphabet of symbols used to build operation names),
we will get the following result.

Theorem 15. The category sINS is cocomplete.

This result is also not new, and is mentioned for example in [GR02] and
proved in [Ros99]. However again, no direct and explicit constructions are given
there.

Below the constructions of coproducts and coequalizers are briefly described.
It is relatively easy to construct coproducts (the construction is dual to the
construction of products in INS) but the construction of coequalizers is much
harder. Here, as opposed to limits, the constructions of model and sentence
functors heavily depend on the overall structure of the signature category.

Limits and colimits in categories of institutions 87

4.1 Coproducts in INS

For a given family of institutions I;, j € J, where J is a set of indices, we define
its coproduct, an institution I = W;e s1;.

— Sign = U icsSign; is a coproduct of categories:

. obJects are pairs (X, j), where j € J and X' € |Sign,|.

e morphisms are pairs (o, j): (X, j) — (X', j), where j € Jand o: ¥ — X’
is a morphism in Sign;; for j # j', there are no morphisms between
(Z.j) and (',).

~ for (¥} € [Sign|, Mod((X, j)) = Mod, (%), Sen((Z, j)) = Sen; (%)

— for (o, j) € Sign, Mod((o, j)) = Mod,(c)7 Sen((c,j)) = Sen;(o)
satisfaction relation: for a signature (Z’ 7, model m € |Mod({X,5))] =

|Mod;(X)| and sentence ¢ € Sen((X,j)) = Sen;(X), m s ;) ¢

m L e
The inclusions ¢;: I; — I, v; = ($;, oy, B;) for j € J, are defined as follows:

D;(X) = (X,7), aj(¥) = idmod, (x) and B;(L) = idsen,(x)-

Lemma 16. o and (8 are natural transformations and v; for j € J are institu-
tion morphisms.

Lemma 17. T with inclusions v; for j € J is a coproduct of institutions I, for
jed.

4.2 Coequalizers in sINS

Given two “paralle]” morphisms 1, po: I — Iy (I, Iy € [SINS|, we will define
their coequalizer p: Is — I. The following construction is inspired by [TBGI1,
Ch. 3, Ex. 4], and coincides with the construction of a left Kan extension in a
category of functors with a fixed codomain ([Mac71, Ch. X], [Ros99]).

Sign is the domain of a coequalizer of functors @1, @: Sign, — Sign,. The
construction of coequalizers in Cat can be found in [MB99]. It is a bit more
complicated then in Set, but they are roughly analogous. Objects in Sign are
equivalence classes of the smallest equivalence relation = C |Sign,| x |Sign,|
such that for all X' € |Sign,|, #1(X) = P2(X). Morphisms can be defined in a
similar way.

Let X' € |Sign| be an arbitrary signature. We define a graph Gy as follows:

— nodes:
o (X1, f,1), where ¥ € |Sign,|, f: ¥ — &(P1(X1)) in Sign (choosing
@1 or &5 does not matter, because from the construction of & we have
D1;P = $y;P).
o (X9, f,2), where X5 € [Sign,|, f: ¥ — @(X5) in Sign

— edges:
b
P
&(m)

P(X) P(X3)

88 Adam Warski

o m: (X, f,2) — (X}, f',2), where m: X} — X5 in Sign,, is such that
fh@(m) = f.

o (n;ym): (X, f,1) = (X5, f,2),i=1,2, m: X}, — &;(X) in Sign,, is
such that f/;®(m) = f. 0O

Informally, all of the above nodes are needed so that we can define the model
functor on signature morphisms. The first type of edges (“m”) is needed to ensure
that the resulting construction will be universal; and finally the “(n;,m)” edges
are there so that the construction will have the coequalizer property.

Remark 18. Note that only when the category Sign is small, we can be sure
that we will be able to define the graph G (with a set of nodes and edges). This
is provided by the fact that when both Sign, and Sign, are small categories,
Sign is also a small category.

Next, we define a diagram Dy : Gy — Cat as follows:

— Dx((Xs, f,2)) = Moda (%)
— Dx((&1,£,1)) = Mod, (%))
— Dy(m) = Mods(m)
— Dx((ni,m)) = a;(X1);Modz(m), where (n;,m): (X1, f,1) — (X5, f',2). O
o X — X
Mod(s) - — - -Modl) ,;7 Mod(%)
7
15 //
7y
gs / 9=
7y
s
7y

DE/:GLv—>Cat L» DE:GE—>Cat
“subgraph”

Let Mod(X) be a colimit of the diagram Dy in the category Cat. The in-
jection (functor) of Dx((X;, f,4)) into the colimit Mod(X) we will denote by
g7 h Mod, (%) — Mod(X), i = 1,2.

Let 0 : ¥ — X’ be an arbitrary morphism in Sign. We define Mod on
this morphism. Firstly, we build a cocone for the diagram Dy, with a vertex
Mod(X). Injections into this cocone will be denoted by kg,;’f’” : Mod; (X)) —
Mod(X). The graph G5 is a “subgraph” of G x: each node of the form (X7, f,)
in Gy has a corresponding node (X7, 0;f,7) in G x; moreover, the values of the
two nodes and of any edges between corresponding nodes (in Gy-) are identical
in diagrams Dy and Dy. Hence, if for an injection into the cocone’s vertex
from the value of a node (X!, f,i) we take k‘(EZ,;’f’Z> = ggzg’gf’l>, we will get a
cocone over Dy with a vertex in Mod(X). Let Mod(c): Mod(X') — Mod(X)

Limits and colimits in categories of institutions 89

be the unique morphism (which exists, as Mod(X") is a colimit of the diagram

D) such that for all nodes (X7, f,7) in Gy (and corresponding nodes in Gy):
X0 fi X fi Xioif i

g<217,f >;M0d(0)=k<2, f >:g<2 o >.

Lemma 19. Mod: Sign®” — Cat is a functor.

We then define the transformation a: Mods — #;Mod, let X5 € |Sign,|:
a(5) = g5 5 : Moda(£2) — Mod((53)).

The sentence functor Sen is defined in similar way; for X' € |Sign|, Sen(X)
is a limit of a diagram Eyx : GY¥ — Set, which is defined similarly as above.
Also, Sen is extended to a functor analogously. The projections on the value
of a node (X, f,i) in G$¥ will be denoted by hg"”cﬂ) : Sen(X) — Sen;(X;).
The transformation 3: #;Sen — Seny is defined on Y5 € |Sign,| as: B(X3) =

h(227idq>():2)72)
P(Z2))

Lemma 20. « and (3 are natural transformations.

The satisfaction relation in I is defined, for X € |Sign|, m € |[Mod(X)| and
¢ € Sen(XY), as follows:

Yo, f,2
m s o <= ms L b5 (),

where ms € |[Moda(X2)| is such, that g<222’f’2> (mg) =m.
Lemma 21. The required ms always exists, and the definition of the satisfaction
relation is independent of the choice of ms.

5 Limits and colimits in coINS

Similar results hold for the category coINS. The constructions are much like
the ones presented above. Like the results on completeness and cocompleteness
of INS and coINS, these theorems have also been known to be true before
([GR02,R0s99]), but I have not found explicit constructions. Again, the category
coINS is not cocomplete, for a reason analogous to INS not being cocomplete.

Theorem 22. The category coINS is complete.
Theorem 23. The category scoINS is cocomplete.

6 The categories INSg;e, and coINSgigy

Categories of institutions with a fixed signature category exhibit some interesting
properties. In particular, as the category of signatures does not change, there is
no significant difference between a morphism and a comorphism, and, moreover,
the construction of a colimit of a diagram is as easy as the construction of a
limit. Also, the constructions of limits and colimits in INSgjgn and coINSg;jgn
can be used to construct limits of diagrams in INS and coIINS.

90 Adam Warski

6.1 Limits and colimits

The construction of an equalizer of two morphisms in INSg;gn is exactly the
same as in Sect. 3.2, as it easily follows from that construction that the signature
category of the domain of an equalizer will be equal to Sign.

To construct products in INSgjgn, we need to make a slight change to the
construction presented in Sect. 3.1, by making a requirement that the signature
category of the product must be Sign, and not Sign x Sign. However it’s the
only change, and the rest of the construction remains the same.

Analogously, we can define products and equalizers in coINSgjgn. Thus, we
get:

Theorem 24. The categories INSsign and coINSgign are complete.

Moreover, let’s consider an arbitrary morphism p: I — I’ in INSg;gn, where
p = (idsign,, (). It is easy to check, that p: I' — I, p = (idsign, @, 3), is an
comorphism in coINSg;ey, (in fact, we can change a morphism into a comorphism
using such a technique whenever the functor between signature categories has a
left adjoint, see [AF95]). More formally:

Fact 25. pu: I — I, where 1 = (idsign, @,) is an institution morphism if and
only if p: ' — I, p = (idgign, @, 3), is an institution comorphism.

Corollary 26. INSg;gn = (coINSgign)?”.
It easily follows from Thm. 24 and Cor. 26 that:

Theorem 27. The categories INSgign, and coINSgign are cocomplete.

6.2 “Flattening” a diagram in INS to a diagram in coINS

Suppose we have a diagram D: G — INS, which has nodes I, I; for 4, j € |G/,
and morphisms p; ;: I; — I, for k € K; j, where K; ; is a set of indices. For
notational convenience, the coordinate k will be omitted.

Let Sign and morphisms @; : Sign — Sign, be a limit of the diagram
D;C: G — Cat (see Def. 8).

Given D, we build another diagram D’: G — INSgign, with nodes I'; and
morphisms between them pj ;: I'; — T';.

Each node I; = (Sign,, Mod;, Sen;, |=;) in diagram D we change to a node
I’; in D’ with the signature category Sign in the following way:

I'; = (Sign, &;”;Mod;, §;;Sen;, b;;="),

where ®;;=" is a relation that for X' € |Sign| is equal to):Z‘bi(x)'
It is easy to check that the satisfaction condition in I’; holds.
A morphism p; ; = (P j, v j, Bi,;) in D is changed to a morphism in D":

1 5 = (id, &7 - i j, Qi - Bi 5)-

Limits and colimits in categories of institutions 91

This definition is correct, as from the construction of Sign we have ¢;;9; ; = @;,
hence:

op ... POP. . oD .HOP. . — HOP. .
B - a1 B Mod; — 770" Mod; = $?”;Mod,,

and similarly for 8. The satisfaction condition for that morphism holds, which
follows immediately from the satisfaction condition for p; ;.

For the diagram D": G — INSgign we can construct a limit, as it is described
in Sect. 6.1, which will be denoted as I = (Sign, Mod, Sen, =), where Mod :
Sign? — Cat, Sen: Sign — Set. We also get projections p} = (id, o, 5;) :
I — I’;, with natural transformations «; : Mod — Mod’; and (3;: Sen’; — Sen.

6.3 Translating a limit of the “flattened” diagram to a limit of the
original diagram
Having a limit I of D’ it is easy to construct a limit of D:

I = (Sign,Mod, Sen)

wh={(id,ci,B:) (id,aj,B5) =

, . op (id D7 i . Bi-Bis) . .
I'; = (Sign, #;";Mod;, ¢;;Sen;) —————————— (Sign, #;";Mod;, §;;Sen;) =T';
4

I = (Sign,Mod, Sen)

wi=(Pi,ai,f:) (Pj,05.05)=p;

. Di, i 5,0
I, = (Sign;, Mod;, Sen;) — opeigBig) (Sign;, Mod;, Sen;) = I;

For each node, we get a morphism p; : I — I; by taking a functor project-
ing Sign on Sign, and natural transformations from the projections in D’: p; =
(D;, i, ;). From the definitions of “flattening” a node the natural transforma-
tions a; and f3; are such, that: a;: Mod — @7”;Mod; and £3;: &;;Sen; — Sen.
It is easy to check, that p; is an institution morphism. It is not quite trivial to
verify that I with projections p;: I — I; is in fact a limit of D.

Theorem 28. The institution I with projections u;: 1 — 1; is a limit of diagram
D.

A construction similar to the one presented above can be found for example
in [TBGI1, Ch. 4, Lem. 2].

7 Changing morphisms into comorphisms

When examining the definitions of morphisms and comorphisms (2, 3), one can
see some duality between the two concepts. It would also be useful to have a way

92 Adam Warski

of representing morphisms as comorphisms and vice versa. Also, in specific dia-
grams morphisms and comorphisms may coexists, and it is easier to reason about
a diagram if it has only one type of morphisms. One way, described for example
in [Mos02b,Mos06] is to replace a morphism with a span of comorphisms. It is
also possible to represent a comorphism as a span of two morphisms. However
below we will concentrate on the former, as the category coINS appears to be
the most suitable for investigating the properties of heterogeneous specifications
([Mos02b]).

7.1 Spans of comorphisms

Suppose we have an institution morphism: pu: Iy — I = (P, «, 3). We define an
“intermediary” institution I’ = (Sign,, #°?;Mods, $;Sen,, ;=2), which con-
sists of a category of signatures from the first institution, and sentence and
model functors from the second institution (here, ®;=? is a relation, which for
XY € |Sign,| is equal to):é(z)).

It is easy to check that this definition is correct. We can also define two
morphisms, g1 : I1 — I’ and ps : I' — I, where pu; = (id,«,8) and ps =
(D,4id,id), which are such that pi;ue = p.

Morphism, in which the functor between signature categories is an identity,
can be easily changed to comorphism (Fact 25). Moreover, starting with a mor-
phism, in which the natural transformations between model and sentence func-
tors are identities, we can easily build a comorphism: it will consist of exactly
the same parts (but with the identity natural transformations considered in the
“opposite” direction). The domain or codomain of the morphism doesn’t change
either. Hence, having a morphism, we can build a span of two comorphisms.

Thus, if we have a morphism: I (28 I, we can change it to a pair of mor-

) (id,a,B) -, (®,id,id) . . .
phisms: I; " —3"T " =" Iy and next to a pair of comorphisms, “reversing”

id,or, &,id,id
the first, and leaving the second without any changes: I; SO 2.8 T <—1>éo) L.

Informally, a span of comorphisms expresses “the same” relation between insti-
tutions, as the original morphism.
In a very similar way we can change a comorphism into a span of morphisms.

8 Constructing limits of diagrams with each morphism
replaced by a span

Having a way of representing morphisms as spans of comorphisms, it is natural
to ask, how do (co)limits of diagrams of institutions correspond to (co)limits of
diagrams, in which each morphism has been changed into a span of comorphisms.
As the comorphisms used in the spans that replace institution morphisms are
quite specific (contain many identities), in the case of limits there exists an easy
way to construct them for diagrams obtained in such a way.

Consider a diagram D: G — INS of institutions and their morphisms./

Limits and colimits in categories of institutions 93

8.1 “Flattened” diagrams and spans

Suppose we “flatten” D to a diagram D’ as in Sect. 6.2, where also the category
Sign is defined. We construct new diagrams:

— diagram coD: coG — coINS, is a diagram D, in which each morphism has
been changed to a span of comorphisms

— diagram D”: G°? — coINSg;jgy, is a diagram D’, in which each morphism
has been changed to a comorphism (as in fact 25); its vertices are institutions
I, (“flattened” institutions I;).

The institution that is the vertex of the limit of the diagram D" will be
denoted by I” = (Sign,Mod”,Sen”, =), with projections p/ : I — I'; =
(id, o, B for i € |G.

From a limit of the diagram D’ we can easily get a limit of the diagram coD:

1” = (Sign, Mod”, Sen”)

(id, D i ;B3 Bi) §
I'; = (Sign, #;";Mod;, ¥;;:Sen;) +=———————= (Sign, 27" Mod;,®;;Sen;) =T';

¢

1" = (Sign, Mod”, Sen”)

(el 5) NP5l 8 =ps

co

I, = (Sign;, Mod;, Sen;) (Sign;, Modj, Sen;) = I;
co co
(idai j8:.5) (@.id,id)

co
(Sign;, @f’; :Mod,;, ®; j;Sen;),

where we put p;: 1" — I, = ($;, o, 3, for i € |G|.

Theorem 29. The institution and comorphisms constructed above are a limit
of the diagram coD.

8.2 Relations between limits of diagrams and limits of diagrams of
spans

So, we can construct a limit of a diagram of institutions and institution mor-
phisms, and a limit of a diagram, in which each morphism has been replaced
by a span of comorphisms. The natural question is how much the two limits are
related. Informally, the limit of the original diagram in INS is an institution
that is “richer” than all the institutions in the diagram, while the limit of this
diagram in coINS is “poorer” then all institutions in the diagram. Moreover, an
institution morphism “represents” a richer institution in a simpler one, so, if a
relation exists, it can be in the form of a morphism from I to I” (or a comorphism
from I"” to I).

94 Adam Warski

It is the case that such a morphism always exist, and in some diagrams there
can be many of them. We can build one morphism from I to I” for each node
of the diagram, but morphisms built for vertices connected by any path in the
graph turn out to be the same. Hence, we can build one morphism for each
connected component of the graph. Of course, some of them may turn out to
coincide—but only in specific cases.

Fact 30. For each node i € |G|, (id, ;o , 3750;) : I — 1" is an institution
morphism. Moreover, from fact 25, for each node i € |G|, (id, a0, B0
I — 1 is an institution comorphism.

Fact 31. For vertices i,j € |G| connected by any path in the graph we have:
<Zd7 ai;a;/a z,/’/Bl> = <Zd7 aj;ag‘lv ;/7/8]>

9 Conclusions and further work

In this paper, the constructions of limits and colimits in categories of institu-
tions have been presented; the results on completeness and cocompleteness of
these categories have been known before, however the proofs did not show direct
constructions. Explicit constructions are needed when these theorems are to be
apllied to a specific diagram of institutions.

Moreover, as the constructions of limits and colimits turn out to be rather
different, it seems that institution morphisms and comorphisms are not dual
concepts, as a first intuition may suggest.

The properties of diagrams of institutions with a fixed signature category
are also presented, as well as means of translating an arbitrary diagram to a
diagram with a fixed signature category, and the relations between the two dia-
grams. The final part of the article describes some connections between limits of
diagrams with morphisms, and limits of diagrams in which each morphism has
been changed into a span of comorphisms.

What remains to be investigated, is the possible relation between (co)limits
of diagrams of institutions and corresponding Grothendieck institutions, as well
as how these results apply to specification theory.

References

[AF95] M. Arrais and José Luiz Fiadeiro. Unifying theories in different institutions.
In Haveraaen et al. [HOD96], pages 81-101.

[Dia02] Razvan Diaconescu. Grothendieck institutions. Applied Categorical Struc-
tures, 10(4):383-402, 2002.

[GB83] Joseph A. Goguen and Rod M. Burstall. Introducing institutions. In Ed-
mund M. Clarke and Dexter Kozen, editors, Logic of Programs, volume 164
of LNCS, pages 221-256. Springer, 1983.

[GB85] Joseph A. Goguen and Rod M. Burstall. A study in the functions of program-
ming methodology: Specifications, institutions, charters and parchments. In
Pitt et al. [PAPRR6], pages 313-333.

[GB92]
[GR02]

[HOD96]

[MacT1]
[MBYY]

[Mos02a]

[Mos02b]

[Mos06]

Limits and colimits in categories of institutions 95

Joseph Goguen and Rod Burstall. Institutions: abstract model theory for
specification and programming. J. ACM, 39(1):95-146, January 1992.
Joseph A. Goguen and Grigore Rosu. Institution morphisms. Formal Asp.
Comput., 13(3-5):274-307, 2002.

Magne Haveraaen, Olaf Owe, and Ole-Johan Dahl, editors. Recent Trends
in Data Type Specification, 11th Workshop on Specification of Abstract Data
Types Joint with the 8th COMPASS Workshop, Oslo, Norway, September
19-23, 1995, Selected Papers, volume 1130 of LNCS. Springer, 1996.
Saunders MacLane. Categories for the Working Mathematician. Number 5
in Graduate Texts in Mathematics. Springer-Verlag, 1971.

Wiesaw Pawlowski Marek Bednarczyk, Andrzej Borzyszkowski. Generalized
congruences. Theory and Applications of Categories, 5(11):266—280, 1999.
Till Mossakowski. Comorphism-based Grothendieck logics. In Krzysztof
Diks and Wojciech Rytter, editors, MFCS, volume 2420 of LNCS, pages
593—-604. Springer, 2002.

Till Mossakowski. Foundations of heterogeneous specification. In Martin
Wirsing, Dirk Pattinson, and Rolf Hennicker, editors, WADT, volume 2755
of LNCS, pages 359-375. Springer, 2002.

Till Mossakowski. Institutional 2-cells and Grothendieck Institutions. In
Kokichi Futatsugi, Jean-Pierre Jouannaud, and José Meseguer, editors, Es-
says Dedicated to Joseph A. Goguen, volume 4060 of LNCS, pages 124—149.
Springer, 2006.

[PAPRS86] David H. Pitt, Samson Abramsky, Axel Poigné, and David E. Rydeheard,

[Paw95]

[Ros99]
[STSS]

[Tar85]
[Tar95]

[Tar00]

[TBGO1]

[War07]

editors. Category Theory and Computer Programming, Tutorial and Work-
shop, Guildford, UK, September 16-20, 1985 Proceedings, volume 240 of
LNCS. Springer, 1986.

Wiesaw Pawlowski. Context institutions. In Haveraaen et al. [HOD9G6],
pages 436-457.

Grigore Rosu. Kan extensions of institutions. J. UCS, 5(8):482-493, 1999.

Donald Sannella and Andrzej Tarlecki. Specifications in an arbitrary insti-
tution. Inf. Comput., 76(2-3):165-210, 1988.

Andrzej Tarlecki. Bits and pieces of the theory of institutions. In Pitt et al.
[PAPRRSG6], pages 334-365.

Andrzej Tarlecki. Moving between logical systems. In Haveraaen et al.
[HODY6], pages 478-502.

Andrzej Tarlecki. Towards heterogeneous specifications. In D. Gabbay and
M. de Rijke, editors, Frontiers of Combining Systems 2, Studies in Logic and
Computation, pages 337-360. Research Studies Press, 2000.

Andrzej Tarlecki, Rod M. Burstall, and Joseph A. Goguen. Some funda-
mental algebraic tools for the semantics of computation: Part 3: Indexed
categories. Theor. Comput. Sci., 91(2):239-264, 1991.

Adam Warski. Granice i kogranice w roznych kategoriach instytucji (Limits
and colimits in various categories of institutions). Master’s thesis, University
of Warsaw, 2007. in Polish.

Author Index

Hasuo, Ichiro 1 Roggenbach, Markus 17
Rutle, Adrian 35

Isobe, Yoshinao 17 Rypacek, Ondrej 51

Jacobs, Bart 1 Sokolova, Ana 1

Suzuki, Tomoyuki 65
Lamo, Yngve 35

Warski, Adam 81
O’Reilly, Liam 17 Wolter, Uwe 35

