
REPORTS
IN

INFORMATICS

ISSN 0333-3590

The Next Hundred
Diagrammatic Specification Techniques

— An Introduction to Generalized Sketches —

Uwe Wolter, Department of Informatics,
University of Bergen, Norway

Zinovy Diskin, Department of Computer
Science, University of Toronto, Canada

REPORT NO 358 July 2007
B

ERGENSI
S

U
NI

VERSITAS

Department of Informatics

UNIVERSITY OF BERGEN
Bergen, Norway

This report has URL http://www.ii.uib.no/publikasjoner/texrap/pdf/2007-358.pdf

Reports in Informatics from Department of Informatics, University of Bergen, Norway, is available at
http://www.ii.uib.no/publikasjoner/texrap/.

Requests for paper copies of this report can be sent to:

Department of Informatics, University of Bergen, Høyteknologisenteret,
P.O. Box 7800, N-5020 Bergen, Norway

http://www.ii.uib.no/publikasjoner/texrap/pdf/2007-358.pdf
http://www.ii.uib.no/publikasjoner/texrap/

Contents
1 Introduction and motivating discussion 1

2 Graphs and Diagrams 4

3 Generalized Sketches 6

4 Models of Generalized Sketches 11

5 Sketch Operations 14

6 Dependencies 17

7 Historical remarks, relation to other and future work 18

8 Conclusions 19

Abstract

Generalized sketches is a graph-based specification format that borrows its main ideas from both categorical
and first-order logic, and adapts them to software engineering needs. In the engineering jargon, it is a model-
ing language design pattern that combines mathematical rigor and appealing graphical appearance. The paper
presents a revised framework of basic concepts to make similarities with the traditional FOL specifications trans-
parent. 1 2 3

1 Introduction and motivating discussion
Diagrammatic specifications are widely spread in software (and other branches of) engineering. Dozens of them
were invented, raised, and forgotten, while many are still alive and prospering today. Amongst the latter are, for
example, Peter Chen’s entity-relationship (ER) diagrams, very popular in data modeling in the 70s, David Harel’s
statecharts, very popular in behavior modeling in the 80s, and message sequence charts (MSCs), very popular in
telecom scenario modeling in the 90s. About ten years ago, these and some other diagrammatic notations were
absorbed by an all-embracing industrial standard called UML and continue to dominate (either under the UML
title or separately) the modeling segment of the industrial market and the academic market serving it.

Until recently, diagrammatic notations were mainly used as a communication medium between business ex-
perts, software designers and programmers. The goal was to communicate ideas and concepts, whose precision
was (although very desirable) not a must. That explains the current situation with diagrammatic modeling, where
semantic meaning of a construct is usually approximate and fuzzy (reaching sometimes a completely meaningless
state, in which case the experts advise to consider it as a modeling placebo [RJB04]).

This is the state-of-the-art of the area, and there is a spectrum of reasons to be not entirely happy about it.
At one end, there are arguments to have the meaning of notational constructs clear and precise for either facili-
tating communication or just for satisfying an understandable intellectual attitude, which makes using a technical
langauge with unclear meaning quite uncomfortable. At the other end, there is a number of practical factors that
have recently emerged in software industry, which we will not consider in detail. They are all subsumed under the
titles of Model-Driven Engineering (MDE), or Model-Driven Development (MDD), or Model-Driven Architecture
(MDA): different names of basically the same movement aimed at making models rather than code the primary
artifacts of software development and at generating code directly from models [Sel06]. Needless to say that for
MDD and friends, having a precise formal semantics for diagrammatic notations they employ is an absolute must.
The industrial demand greatly energized building formal semantics for diagrammatic languages in use, and an
overwhelming amount of them was proposed. The vast majority of them employ the familiar first-order (FO) or
similar logical systems based on string-based formulas, and fail to do the job because of the following.

1Research partially supported by the Norwegian NFR project SHIP/VERDIKT.
2Supported by OCE Centre for Communications and Information Technology, IBM CAS Ottawa and IBM Eclipse Innovation Grant
3This paper is based on an invited talk at LSFA’06, September 17th 2006, Natal, Brazil and presents the material developed for a course on

Generalized Sketches in fall 2006 at the University of Bergen.

1

(b1) classical finite-limit sketch (b2) generalized sketch
(a) simple ER-diagram (b) Sketching the diagram

mm
•

date

Person

House

Oship Date

dd yy owner

property

[1-1]

[limit]

[integer]
mm

•

date

i

o

Person

House

Oship H×P Date

Integer

dd yy

H×P

Oship Oship
[limit]

[limit]

[limit]

definition of
the double

arrow i

p
id id

i i

owner

property

dd mm yy

Person

House

date
Owner-

ship

Oship

Figure 1: A sample of sketching a diagrammatic notation

Evidently, a necessary factor in a modeling language’s success is its capability to capture the important aspects
of the universe to be modeled and present them in as much direct and transparent as possible way.4 A key feature
of universes modeled in software engineering is their fundamental conceptual two-dimensionality (further referred
to as 2D): entities and relationships (ERDs), objects and links (static, UML class diagrams, and dynamic, UML
collaboration diagrams), states and transitions (statecharts), events and messages (MSCs), agents and interactions;
the row can be prolonged.5 Each of these conceptual arrangements is quite naturally represented by a graph –
a 2D-structure of nodes and edges; the latter are usually directed and appear as arrows. In addition, these 2D-
structures capture/model different aspects of the same whole system and hence are somehow interrelated between
themselves. (For example, events happen to objects when the latter send and receive messages over dynamic links
connecting them. These events trigger transitions over objects, which change their states). Thus, we come to
another graph-based structure on the metalevel: nodes are graphs that model different aspects of the system and
arrows are relations and interactions between them. The specificational system of aspects, views and refinements
can be quite involved and results in a conceptually multi-dimensional structure. However complicated it may
seem, this is the reality modern software engineers are dealing with (and languages like UML try to specify). Any
attempt to describe this multidimensional universe in terms of FO or similar logics based on string-based formulas
talking about elements of the domains rather than their relationships flattens the multi-level structure and hides the
connections between the levels. This results in a bulky and unwieldy specifications, which are difficult (if at all
possible) to understand, validate, and use.

A principally different approach to specifying structures, which focuses on relationships between domains
rather then their internal contents and hence is essentially graph-based, was found in category theory (CT). It was
originated by Charles Ehresmann in the 60s, who invented the so called sketches (see [Wel] for a survey); later
sketches were promoted for applications in computer science by Michael Barr and Charles Wells [BW95] and
applied to data modeling problems by Michael Johnson and Roberth Rosebrugh [JRW02]. The essence of the
classical sketch approach to specifying data idea is demonstrated by Fig. 1.

Figure 1(a) shows a simple ER-diagram, whose meaning is hopefully clear from the names of its elements:
we have a binary relation Oship over the sets House and Person, which also has an attribute date. In fact, the
ER-diagram describes a configuration of sets and mappings, which in the classical Ehresmann’s sketch framework
is specified in Fig. 1(b1). The “limit” label is hung on the arrow span (H × P, p, o) (note the double arc) and
declares the span to possess a special limit property specified in any CT-textbook and making the set H × P the
Cartesian product of House and Person (see, e.g., [BW95] for details). Similarly, the set Date is declared to be the
Cartesian cube of the set Integer of natural numbers. Finally, the separate limit diagram in the right upper corner
forces the arrow i to be injective by a standard categorical argument.

The limit predicate is only one amongst a family of the so called universal properties of sets-and-mappings
diagrams found in CT. This family of predicates, though compact, is extremely expressive and allows us to express
many properties of sets-and-mappings configurations appearing in practice, particularly, in semantic interpretations
of ER-diagrams.6 In this way we come to the sketch specification of ERD-semantics or, as we will say, sketching

4There are, of course, other crucial factors from cognitive and psychological to cultural and political, which are beyond the scope of this
paper.

5We are indebted to Bran Selic for bringing the conceptual two-dimensionality metaphor onto the stage.
6In fact, since formal set theories can be encoded by universal predicates (by mapping them into toposes [LS86]), we can say that any

2

ER-diagrams. It provides a powerful mathematical framework for formalization and analysis of their semantics,
where many useful results are obtained [JRW02, PS97]. The power of this framework is essentially based on a
principal idea of algebraic, particularly, categorical, logic: semantics is a structure-preserving mapping (morphism)
from a syntactical structure into a similarly structured semantic universe. Further we will refer to it as Semantics-
as-a-morphism (Saam) Principle. 7

Although mathematically elegant, the classical sketch approach has several inherent drawbacks in engineering
applications. For instance, in our example, in order to declare a simple fact that Oship is a binary relation, we
were forced to introduce a few auxiliary elements into our specification. Note also that while extensions of nodes
House and Person are to be stored in the database implementing the specification, extension of node H × P is
(fortunately!) not stored. On the other hand, some elements of the original diagrams (roles property and owner)
are not immediately seen in the sketch and can only be derived (by compositions of i with p and o). Thus, before
we assign a precise semantic meaning to ERD’s elements, we need to apply to the diagram some non-trivial
transformations, and only after that the Saam Principle can be used. From the view point of a software engineer,
these transformations look artificial, unnecessary, and misleading.

Fortunately, the deficiency of the classical sketch framework mentioned above can be fixed without giving
up the Saam Principle, and hence preserving all benefits that algebraic logic brings to the subject. The idea is
demonstrated in Fig. 1(b2). We still want to specify the type of Oship-elements externally via mappings rather than
internally (like it is done in FOL), but we do not want to introduce Cartesian product H ×P into the specification.
The crucial observation that allows us to do the job is well-known in CT: for a given span of mapping, e.g.,
S = (Oship, property, owner), its head Oship is isomorphic to a relation iff the leg mappings possess a special
property of being jointly injective or jointly [1-1] (see below in example 5). Thus, we declare the span S to be
jointly [1-1] and come to the specification shown in Fig. 1(b2). Note that in this specification, [Integer] is not the
name of the node but a predicate label declaring the extension of the node to be the set of integers. Thus, the
specification in Fig. 3(b2) presents a graph, in which three diagrams are marked by predicate labels taken from a
predefined signature. If Θ denotes the signature, we will call such specifications (generalized) Θ-sketches.

Note that the sketch in Fig. 1(b2) is visually similar to the ER-diagram. We can even consider the very ER-
diagrams as nothing but a visual representation of the sketch, in which the diamond node is just a special way to
visualize the declaration of [1-1]-injectivity predicate. In this way the generalized sketches treatment (sketching)
of ER-diagrams offers both (i) a precise formalization of their semantics and (ii) a framework that is visually
appealing and transparent; as our experience shows, it can be readily understood by a software engineer. Sketching
other notations used in software engineering can be approached in a similar way (see [Dis03] for a discussion).
This is a part of the two ongoing projects in the University of Bergen and the Queen’s University in Kingston, and
the results obtained so far look very promising. They provide a base for an ambitious thesis that any diagrammatic
notation in real practical use in software engineering is nothing but a specific visualization of the universal sketch
specification pattern.

On the other hand, the sketch formalism appears to be a good design pattern for diagrammatic language design.
It suggests that if one is thinking about designing a new language, one should answer, first of all, to the following
three questions: what is the interpretation of nodes, what is about arrows, and what is the signature of diagram
predicates that matter. The brevity, clear semantics and solid mathematical foundations can make this pattern really
helpful in practice. Moreover, an active promotion of modeling techniques into software industry and, particularly,
the rapid progress of the domain-specific languages sector (so called DSL), form an explicit industrial demand
to convenient and handy yet reliable language design techniques. We believe that the generalized sketch pattern
provides a promising theoretical supply to the demand. It would not be a big exaggeration to say that modeling
languages are designed daily in the modern software industry. Hopefully, the next one hundred of modeling
languages will be designed along the lines of the generalized sketch pattern.

Our goal in the paper is to present the very basic definitions of the theory in a well-structured way so that
similarities with the traditional FOL Specification Framework would become transparent. We also consider depen-
dance relations between (diagram) predicate symbols and explicitly model them by arrows between arity shapes.
On one hand, this is a graph-based analog of (universally quantified) implications of FOL, which are very impor-
tant for the latter. On the other hand, it makes the predicate signature a graph rather than a set and will allow us
to present Makkai’s multi-step procedure of building generalized sketches in a elegant way as a graph morphism.
Throughout the paper, we essentially use the concept of a category but hopefully in such a way that readers not
familiar with Category Theory [BW95, Fia05] can also grasp the content of the paper.

formalizable property of sets-and-mappings configurations can represented in the sketch language.
7In computer science this fundamental idea is known as denotational semantics.

3

We will only sporadically touch some details of applying sketches to formalizing semantics of ER- and UML-
class diagrams; the interested reader should consult [PS97, JRW02, DK03]. We omit also the important issue
of “good” (suggestive and user-friendly) visualization of sketches including the discussion of what is a good
visualization of a formal specification (some preliminary discussion can be found in [Gog98, Dis02, FB05]).

2 Graphs and Diagrams
The Generalized Sketch framework, as any other diagrammatic specification technique, is heavily based on the
concept of graph, thus we start with a formal definition of this concept and the other necessary concepts around.
Before we dive into technicalities, the following important remark is in order. In this paper we are concerned with
(at least) three different kinds of “diagrams”. To minimize potential confusion, we will try to distinguish between
them with the following terminology.

1. There is the general idea of a “picture” with (labeled) nodes and (labeled) edges. We will refer to those
pictures by the term pict-diagrams.

2. We have different specializations of this general idea for specification purposes like “ER diagrams”, “UML
class diagrams”, We will refer to those specializations as spec-diagrams.

3. Finally, we have a strict, formal mathematical definition of diagrams. We will call these diagrams math-
diagrams or simple diagrams.

We adapt the notation from [Fia05].

Definition 1 (Graph). A graph G = (G0, G1, sc, tg) is given by

• a collection G0 of nodes,

• a collection G1 of arrows,

• a map sc : G1 → G0 assigning to each arrow its source, and

• a map tg : G1 → G0 assigning to each arrow its target.

We usually write f : x→ y or x
f→ y to indicate that sc(f) = x and tg(f) = y.

A graph G = (G0, G1, sc
G, tgG) is subgraph of a graph H = (H0,H1, sc

H , tgH), G v H in symbols, iff
G0 ⊆ H0, G1 ⊆ H1, and scG(f) = scH(f), tgG(f) = tgH(f) for all f ∈ G1.

Remark 1 (Graphs). Graphs as defined in Definition 1 can be seen as many-sorted algebras with two sorts and
two unary operations. This algebraic concept of graph allows for “muliple arrows”. That is, between two nodes
there may exist no arrows, just one in either direction, or several arrows, possibly in both directions. Note, that in
case there is at most one arrow between any two nodes an arrow is uniquely determined by its source and target,
i.e., we can assume, in this case, G1 ⊆ G0 × G0 where sc and tg are given by the corresponding projections,
respectively.

Example 1 (Finite Graphs). Finite graphs are often visualized by pict-diagrams. The graph G with G0 =
{K,N,M},G1 = {z, s, p, π1, π2} and sc(z) = K, tg(z) = sc(s) = tg(s) = N , sc(π1) = sc(π2) = sc(p) = M ,
and tg(π1) = tg(π2) = tg(p) = N , for example, can be visualized by the pict-diagram

K
z // N

s
��

M
poo

π1

xx
π2

ff

Example 2 (“Big” Graphs). Beside finite graphs we consider also “very big” graphs as, e.g., the graph Set with
nodes all sets A and arrows all maps f : A → B. Later, we will make use of the fact that Set is a category, i.e.,
for any set A there is an identical map idA : A → A and for any two maps f : A → B, g : B → C there is
the composition f ; g : A → C defined by f ; g(a) = g(f(a)) for all a ∈ A. Composition is associative and the
identical maps are neutral w.r.t. composition.

More flexibility for defining semantics of Diagrammatic Techniques like ER diagrams is provided by the cat-
egory Par with nodes all sets A and with arrows all partial maps f : A # B where we denote the domain of

4

definition of f by dom(f) ⊆ A. The identities idA : A → A are the total identical maps and the composition
f ; g : A # C of two of two partial maps f : A # B and g : B # C is defined by

dom(f ; g)
def
= {a ∈ A | a ∈ dom(f), f(a) ∈ dom(g)} and f ; g(a)

def
= g(f(a)) for all a ∈ dom(f ; g)

Another useful example is sketching the semantics of UML class diagrams [Dis03]. It is given by the category
Pow with nodes all sets A and with arrows all maps f : A → P(B) where P(B) is the power set of B, i.e., the
set of all subsets of B. The identities idA : A → P(A) are defined by idA(a) = {a} for all a ∈ A and the
composition f ; g : A→ P(C) of two maps f : A→ P(B) and g : B → P(C) is defined by

f ; g(a) = g(f(a))
def
=

⋃
{g(b) | b ∈ f(a)} for all a ∈ A

By an abuse of notation we will use the same notation for a category and for its underlying graph.

Definition 2 (Graph Homomorphism). A graph homomorphims ϕ : G → H is a pair of maps ϕ0 : G0 → H0

and ϕ1 : G1 → H1 such that for each arrow f : x→ y of G we have ϕ1(f) : ϕ0(x)→ ϕ0(y) in H, i.e., we have
srH(ϕ1(f)) = ϕ0(srG(f)) and tgH(ϕ1(f)) = ϕ0(tgG(f)) for all f ∈ G1.

The composition ϕ;ψ : G → K of two graph homomorphisms ϕ : G → H and ψ : H → K is defined
component-wise

ϕ;ψ = (ϕ0, ϕ1); (ψ0, ψ1)
def
= (ϕ0;ψ0, ϕ1;ψ1).

Remark 2 (Category of Graphs). It is immediate to see that the composition ϕ;ψ : G → K is indeed a graph
homomorphism. Identical graph homomorphisms idG : G → G are defined by idG = (idG0 , idG1), and the
component-wise definition of identities and composition ensures that we inherit associativity and neutrality from
the category Set. In such a way, we obtain the category Graph of graphs and graph homomorphisms.

Note, that G v H iff the inclusion maps ini : Gi ↪→ Hi, i = 0, 1 define a graph homomorphism in =
(in0, in1) : G ↪→ H .

A first important methodological point for Diagrammatic Specification Techniques is that we have to distin-
guish clearly between the concept of a graph and the concept of a diagram.

Definition 3 (Diagram). Let G and I be graphs, A diagram in G with shape I is a graph homomorphism δ : I →
G.

Example 3 (Shapes). Some of the most simple shapes, that are used in nearly any application, are Node = (x),
Arrow = (x 1→ y), Span = (x 1← z

2→ y), Cospan = (x 1→ z
2← y), and the following three graphs Cell,

Circle, and Triangle, respectively:

x
1
((

2

66 y x
1
((y

2

hh x
1 //

3

44y 2 // z

Remark 3 (Parameter). In programming we have the concepts “formal parameter list” and “actual parameter
list”. Analogously, a shape can be seen as a “formal parameter graph” with variables for nodes (as in a “formal
parameter list”) and, in generalizing the concept of list, also with variables for arrows. A diagram assigns “actual
values” to the variables and can bee seen, in such a way, as an “actual parameter graph”. A crucial point is that
we can assign the same “actual value” to different variables thus in the “actual parameter graph” there maybe
different copies of the same “actual value” (see also Remark 4).

Remark 4 (Visualization of Diagrams). Pict-diagrams are traditionally also used to present diagrams δ : I → G.
The essential idea is to draw a picture with a separate “place holder node” for each element in I0 and with a
separate “place holder arrow” for each element in I1. And then we put into the “place holders” the corresponding
items from G according to the assignment δ. In such a way, we may have in the picture different copies of the same
item from G at different places. The following three pict-diagrams, for example,

A
f // A A A

f //foo A A
f // A A

foo

represent diagrams δ1 : Arrow → Set, δ2 : Span → Set, δ3 : Cospan → Set with the same “actual values” but
with different shapes.

5

A critical methodological point is, that the ordinary way of visualizing math-diagrams by pict-diagrams can
be ambiguous. From the following pict-diagram

N M
π1 //π2oo N

visualizing a diagram δ : Span→ G in the graphG from Example 1, we cannot deduce, for example, the following
information: does δ actually assign to 1 the arrow π1 or the arrow π2? This information may be irrelevant in this
special case, but it illustrates that some additional information may be required to extract the respective math-
diagram from a given pict-diagram, and a tool for drawing diagrams must handle those informations.

3 Generalized Sketches
In this section we present the concept of Generalized Sketches. Any (generalized) sketch S has an underlying “dia-
gram signature” Θ. And the overall idea/claim concerning the potential rôle of the Generalized Sketch framework
within the area of formal specification could be formulated as follows: For any (diagrammatic) specification for-
malism T we can find a “diagram signature” ΘT such that for each T-specification (T-diagram) D there is at least
one ΘT-sketch SD such that D can be seen as a (visual) presentation of SD. Thereby D appears to be ambigu-
ous if there are different ΘT-sketches represented by D. That is, in some cases the transition from ΘT-sketches
to T-specifications (T-diagrams) involves a loss of information. We will call the creative process of finding an
appropriate “diagram signature” ΘT for a specification formalism T the process of “sketching the formalism T”.

Definition 4 (Diagram Signature). A (diagram) signature Θ = (Π, α) is given by

• a collection Π of (predicate) labels or symbols and

• a function α : Π→ Graph0 assigning to each label P ∈ Π its arity (shape) α(P).

Remark 5 (Compound Labels). In many applications it may be more “user friendly” to allow to assign to a
predicate label P a set of possible arity shapes. We could, for example, have a label [prod] with different shapes
for empty, binary, ternary, . . . products, respectively. We decided not to allow for those sets of arity shapes in
the actual definition of signatures. This will provide us, for example, with more flexibility for defining signature
morphisms.

In examples and applications a “user” is, of course, free to define a “generic predicate label” P with a
corresponding set of arity shapes. But, this will be interpreted as a “user defined mechanism” to create compound
labels. In case of the above mentioned generic label [prod] we could use, for example, the compound labels
([prod], 0), ([prod], 2), ([prod], 3), Such a “user defined mechanism” to create compound labels will be also
helpful, for example, to create all the necessary labels with the same shape Arrow to reflect the potentially infinite
many different cardinality constraints for associations in UML class diagrams (see Example 8).

Specifications within the Generalized Sketch framework are meant to be

Definition 5 ((Generalized) Sketches). Given a diagram signature Θ = (Π, α) a Θ-sketch S = (GS ,S(Π))
consists of a graph GS and a Π-indexed family S(Π) = (S(P) | P ∈ Π) of sets of marked diagrams, i.e., for
every label P ∈ Π there is a (maybe, empty) set S(P) of diagrams (P, δ : α(P)→ GS) in GS marked by P .

A Θ-sketch S = (GS ,S(Π)) is Θ-subsketch of a Θ-sketch T = (GT , T (Π)), S v T in symbols, iff GS v GT

and S(P) ⊆ T (P) for all P ∈ Π.

Now we want to look at how some basic traditional specification techniques can be reflected by diagram
signatures and sketches.

Example 4 (Algebraic Signatures). Algebraic signatures Σ = (S,OP) declare a set S of sort symbols and a set
OP of operation symbols together with corresponding arity requirements op : s1 . . . sn → s. The only “semantic”
requirement in this “specification formalism” is that for any Σ-algebra A the sequence s1 . . . sn of sort symbols
has to be interpreted by the cartesian product A(s1) × · · · × A(sn) of the interpretations of the corresponding
single sort symbols. Therefore, the sketching of the formalism “algebraic signatures” may lead us to a diagram
signature ΘAS = (ΠAS, αAS) that defines infinite many labels

ΠAS = {([prod], 0), ([prod], 2), ([prod], 3), . . . , ([prod], n), . . .}

6

with aritiesαAS([prod], 0) = Node, αAS([prod], 2) = Span and for any n ∈ N with n > 2 the arityαAS([prod], n)
will be given by the following graph Spann

x
p1

{{ww
ww

ww
ww

w
pn

##H
HHHHHHHH

x1 • • • xn

A ΘAS-sketch SΣNat
that sketches the algebraic signature ΣNat with SNat = {N} and OPNat = {z : → N, s :

N → N, p : N N → N}, for example, is given by the graph G in Example 1 together with the two marked
diagrams SΣNat

([prod], 0) = {K}, SΣNat
([prod], 2) = {N π1←−M

π2−→ N}. All the other sets SΣNat
([prod], n)

will be empty for n > 2. Note, how the implicit assumption in ΣNat that the sequence N N of sort symbols has to
be interpreted by a product has been made explicit in the sketch SΣNat

.

Example 5 (First-Order Signatures). First-order signatures Σ = (S,OP, P) declare additionally to sort and
operation symbols also a set P of predicate symbols p together with corresponding arity requirements p : s1 . . . sn.
Thereby, for any Σ-model A the predicate A(p) is assumed to be a subset of the cartesian product A(s1)× · · · ×
A(sn). We could introduce now, additionally to the labels ([prod], n) a predicate label [inj] with arity shape
Arrow for marking a map as injective (mono). That is, we could start to define a traditional “limit sketch” [BW95]
where we would have to code the property “mono” by a “pullback requirement”. But, this would mean, that we
have to introduce in the corresponding sketch SΣ for each symbol p an auxiliary node s1 . . . sn as well as an
auxiliary pullback diagram, in order to reflect the “semantic picture”

A(p)� _

in

��
A(s1)× · · · × A(sn)

π1
vvnnnnnnnnnnnn

π2

((PPPPPPPPPPPP

A(s1) • • • A(sn)

Moreover, the projections πi : A(s1) × · · · × A(sn) → A(si) are not of primary interest, but the composed
projections in;πi : A(p)→ A(si), and they are still not present in the picture.

It is more appropriated to introduce infinite many labels

ΠFS = ΠAS ∪ {([1−1], 1), ([1−1], 2), . . . , ([1−1], n), . . .}

with arities Arrow, Span, . . . , Spann,. . . , to indicate that the corresponding multiple spans of maps, are “jointly
injective (mono)”. Two maps pA : R → A, pB : R → B, for example, are jointly injective iff pA(r1) = pA(r2)
and pB(r1) = pB(r2) implies r1 = r2 for all r1, r2 ∈ R.

Example 6 (Equational Specifications). An equational specification SP = (Σ, EQ) is given by an algebraic
signature Σ = (S,OP) and a set EQ of Σ-equations (t1 = t2) with t1 and t2 Σ-terms of the same sort. To reflect
the concept of terms the intended diagram signature ΘEQ has to include, besides the “product labels” ([prod], n)
from ΠAS, additional labels: A reasonable choice could be a label [comp] with arity Triangle to reflect the
compostion of maps, a label [=] with arity Cell to write equations, and compound labels ([tupl], n), n ≥ 2 with
arities given by the following diagrams Tupln

y

k

��r1

		

rn

��

x
p1

{{ww
ww

ww
ww

w
pn

##H
HHHHHHHH

x1 • • • xn

to reflect the tupling of terms. To describe equations with a multiple occurence of a single variable we introduce
further a label [id] with arity Arrow for indicating identical maps.

7

A ΘEQ-sketch SSPNat
that correponds to the equational specification SPNat = (ΣNat, EQNat) with a single

equation EQNat = {(p(x, s(y)) = s(p(x, y))}, for example, will be given by the graph G in Example 1 extended
by the following four arrows

N Ms(y)oo

s(p(x,y))

xx

p(x,s(y))

ff (x,s(y))
vv

There are no additional diagrams marked by product labels, i.e., we have SSPNat
([prod], n) = SΣNat

([prod], n),
for n = 0, 2, 3, The sets SSPNat

([tupl], 2) and SSPNat
([=]) are singleton sets visualized by the following

pict-diagrams

M
π1

~~}}
}}

}}
}} s(y)

 B
BB

BB
BB

B

(x,s(y))

��

N M

s(p(x,y))

xx

p(x,s(y))

ff

N M
π1oo π2 // N

SSPNat
([comp]) contains five diagrams. The first two diagrams arise from tupling and the other three from com-

position.

M

π1 !!B
BB

BB
BB

B
(x,s(y))// M

π1

��

M

s(y) !!B
BB

BB
BB

B
(x,s(y))// M

π2

��

M

s(y) B
BB

BB
BB

B
π2 // N

s

��

M

s(p(x,y)) B
BB

BB
BB

B
p // N

s

��

M

p(x,s(y)) !!B
BB

BB
BB

B
(x,s(y))// M

p

��
N N N N N

Another ΘEQ-sketch SSP ′
Nat

that correponds to the equational specification SP ′
Nat = (ΣNat, EQ

′
Nat) with a

single equation EQ′
Nat = {(x = p(x, x))} is given by the graph G in Example 1 extended by the following three

arrows

N

x

YY

p(x,x)

�� (x,x) // M

There are no additional diagrams marked by product labels, i.e., we have SSPNat
([prod], n) = SΣNat

([prod], n),
for n = 0, 2, 3, The sets SSPNat

([tupl], 2) and SSPNat
([=]) are singleton sets visualized by the following

pict-diagrams

N
x

~~}}
}}

}}
}} x

 B
BB

BB
BB

B

(x,x)

��

N N

p(x,x)

xx

x

ff

N M
π1oo π2 // N

SSPNat
([comp]) contains three diagrams. The first two diagrams arise from tupling and the third from composi-

tion.

N

x
 B

BB
BB

BB
B
(x,x) // M

π1

��

N

x
 B

BB
BB

BB
B
(x,x) // M

π2

��

N

p(x,x) B
BB

BB
BB

B
(x,x) // M

p

��
N N N

Note, that the ΘEQ-sketches SSPNat
and SSP ′

Nat
have to present explicitly all the subterms in the equations

(p(x, s(y)) = s(p(x, y)) and (x = p(x, x)), respectively. In traditional equational specifications this is not
necessary since the syntactical appearance of a term allows to reconstruct the inductive process of constructing
the term. This feature can be seen, somehow, as the essence of the concept of term. At the present stage the
Generalized Sketch framework has not incorporated such advanced possibilities to create syntactical denotations
(see also the discussion in Remark 11).

8

Example 7 (ER diagrams). Sketching ER diagrams with generalized sketches is discussed in detail in [DK03].
Here we want to discuss only some basic ideas and observations.

Firstly, it is appropriate to have in ΘER predicate labels [entity], [rel], [attr] with arity Node to distinguish
between nodes that stand for “entities”, “relation ships”, or “attribute values”, respectively. Since, it is usually
allowed to have partially defined attributes the category Par of partial maps would be the appropriate choice to
formalize the (static) semantics of ER diagrams. This means, that ΘER should contain a label [total] with arity
Arrow to mark the total maps.

The actual concept of a “relation ship” can be reflected by ([prod], n)-marked diagrams with arity Spann,
n ≥ 2. The arrows in Spann should be assigned to [total]-marked arrows only, and the node x in Spann should
be assigned to [rel]-marked nodes only (see the discussion of dependencies in Section 6). We will not allow for
“aggregations”, if we require additionally that the nodes xi are assigned only to [entity]-marked nodes.

To reflect the possibility that an entity can be the (disjoint) union of two or more other entities, it is appropriate
to have generic labels ([cover], n) and ([disj], n) with arity Cospann, n ≥ 2,

x1

i1 ##G
GG

GG
GG

GG
• • • xn

in{{vvvvvvvvv

x

where ([cover], n) indicates that the involved n maps with the same target are “jointly surjective”. A label
([cover], 1) with arity Arrow indicates that the corresponding arrow is surjective.

Note, that in ER diagrams the property “surjective” is usually visualized not by labeling the actual arrow but
the target node instead. And, the property “jointly surjective” is visualized not by labeling the family of arrows
as a unity but by labeling the single arrows instead. This kind of “immature visualization” cause some of the
ambiguities in ER diagrams.

Example 8 (Associations). Here we want to discuss shortly a simplified version of UML associations.8 We restrict
ourselves to a static viewpoint and consider semantics of a class to be a set. An association

A
g f

∗ ∗ B

describes then a relationship between two setsA andB. But, in contrast to first-order signatures and ER diagrams,
this relationship is thought of as a pair of multivalued functions (called association ends in UML), f : A→ P(B)
and g : B → P(A) rather than as a subsetR ⊆ A×B of the Cartesian product. However, both functions have the
same extension R ⊆ A×B so that f(a) = {b ∈ B | (a, b) ∈ R} for all a ∈ A and g(a) = {a ∈ A | (a, b) ∈ R}
for all b ∈ B. In other words, the two functions are inverse to each other in the sense of the following equivalence

b ∈ f(a)⇔ a ∈ g(b)⇔ (a, b) ∈ R for all a ∈ A, b ∈ B.

To specify this fact in the generalized sketch framework, we should introduce into ΘUML a label [inv] with arity
Circle. Note, that in a concrete UML class diagram there may be only one of the two ends to restrict access and
navigation.

UML offers a great freedom to restrict the cardinality of the association ends. The following diagram on the
left

A
g f

∗ 0..1
B A

g f

∗ 1..∗ B A
g f

n1..n2 m1..m2
B

expresses the restriction 0 ≤ |f(a)| ≤ 1 for all a ∈ A, i.e., f is “single valued” and can be seen as a usual partial
map. The restriction 1..∗ on f in the middle diagram above means 1 ≤ |f(a)| for all a ∈ A, i.e., f is “total”. Note
that this restriction on f entails that g is “covering”, i.e. surjective, in the sense that

⋃
{g(b) | b ∈ B} = A, since

f and g are inverse to each other. We could now introduce into ΘUML labels [single], [total], [cover] of arity
Arrow, but we could also create compound labels like ([card], (m1,m2)) and ([card], (n1, n2)) of arity Arrow to
describe arbitrary intervals for the cardinalities of f and g, respectively.

The difference between an association and an association class is that an association class represents explicitly
also the relation R. Therefore, we should include into ΘUML the label ([1−1], 2) with arity Span. We should also
add to the signature a label [graph] with arity Triangle to express that f or g represent the “graph” of R.

8The current version of the standard, UML2, defines a rather general and complex notion of associations, details and a formal semantics for
it can be found in [DD06].

9

In the process of a stepwise design we need to extend specifications, rename items, identify items. In this way
we produce a sequence of related specifications. Those relations are described by

Definition 6 (Sketch Morphisms). A Θ-sketch morphism f : S → S ′ between two Θ-sketches S = (GS ,S(Π))
and S ′ = (GS′ ,S ′(Π)) is a graph homomorphism f : GS → GS′ compatible with marked diagrams, i.e.,
(P, δ : α(P)→ GS) ∈ S(P) implies (P, δ; f : α(P)→ GS′) ∈ S ′(P) for all P ∈ Π.

α(P)

δ;f ""E
EE

EE
EE

E
δ // GS

f

��
GS′

Remark 6 (Subsketches). Note, that S v T iff the inclusion graph homomorphism in : GS ↪→ GT defines a
Θ-sketch homomorphism in : S ↪→ T .

Remark 7 (Category of Sketches). The associativity of the composition of graph homomorphisms ensures that
the composition of two Θ-sketch morphisms becomes a Θ-sketch morphism as well, and that the composition
of Θ-sketch morphisms is associative too. Further the identical graph homomorphism idGS = (idGS

0
, idGS

1
) :

GS → GS defines an identical Θ-sketch morphism idS : S → S that is neutral w.r.t. the composition of Θ-sketch
morphisms. In such a way, we obtain for any diagram signature Θ a category Ske(Θ).

Another situation, we often meet in “industrial” projects, is that we have to extend the specification formalism
because we realize that some relevant system aspects can not be specified by our formalism of choice, Or, even
worse, the “industrial partner” may force us to switch to another formalism for some “objective reasons”. If
the involved formalisms are described according the Generalized Sketch pattern (some of) those changes can be
reflected by signature morphisms.

Definition 7 (Signature Morphism). A signature morphism ϕ : Θ1 → Θ2 between two diagram signatures
Θ1 = (Π1, α1) and Θ2 = (Π2, α2) is a map ϕ : Π1 → Π2 such that α2(ϕ(P1)) = α1(P1) for each P1 ∈ Π1.

Based on the concept of signature morphism we can attack, describe, and investigate questions like relations
between different formalisms, translation of specifications, heterogeneous (multi-paradigm) specifications, inte-
gration of formalisms and so on. The re-labeling of diagrams provides a translation of specifications.

Proposition 1. Any signature morphism ϕ : Θ1 → Θ2 induces a functor ϕ∗ : Ske(Θ2)→ Ske(Θ1).

Proof. Any Θ2-sketch S2 = (GS2 ,S2(Π2)) can be translated into a Θ1-sketch ϕ∗(S2) = (GS2 , ϕ∗(S2)(Π1))

where ϕ∗(S2)(P1)
def
= S2(ϕ(P1)) for all P1 ∈ Π1, i.e., we have

(P1, δ) ∈ ϕ∗(S2)(P1) iff (ϕ(P1), δ) ∈ S2(ϕ(P1)).

This is well-defined since α2(ϕ(P1)) = α1(P1).
A Θ2-sketch morphism f : S2 → S ′2 is given by a graph homomorphism f : GS2 → GS′2 such that (P2, δ) ∈

S2(P2) implies (P2, δ; f) ∈ S ′2(P2) for all P2 ∈ Π2. This entails for any P1 ∈ Π1:

(P1, δ) ∈ ϕ∗(S2)(P1)
⇔ (ϕ(P1), δ) ∈ S2(ϕ(P1)) (def. of ϕ∗(S2))
⇒ (ϕ(P1), δ; f) ∈ S ′2(ϕ(P1)) (f is Θ2-sketch morphism)
⇔ (P1, δ; f) ∈ ϕ∗(S ′2)(P1) (def. of ϕ∗(S ′2))

This means, however, that the graph homomorphism f : GS2 → GS′2 defines also a Θ1-sketch morphismϕ∗(f)
def
=

f : ϕ∗(S2)→ ϕ∗(S ′2). Compatibility of ϕ∗ w.r.t. identities and composition follows immediately from definition.

For non-injective signature morphisms ϕ the functor ϕ∗ produces copies of diagrams with different labels. On
the other side, non-injective signature morphisms can be considered as a request to identify different labels. Such
a identification of labels induces a corresponding identification of diagrams.

Proposition 2. Any signature morphism ϕ : Θ1 → Θ2 induces a functor ϕ∗ : Ske(Θ1)→ Ske(Θ2).

10

Proof. Any Θ1-sketch S1 = (GS1 ,S1(Π1)) can be translated into a Θ2-sketch ϕ∗(S1) = (GS1 , ϕ∗(S1)(Π2))

where ϕ∗(S1)(P2)
def
=

⋃
{S1(P1) | P1 ∈ Π1, ϕ(P1) = P2} for all P2 ∈ Π2, i.e., we have

(P2, δ) ∈ ϕ∗(S1)(P2) iff there exists a P1 ∈ Π1 such that ϕ(P1) = P2 and (P1, δ) ∈ S1(P1).

This is well-defined since α2(ϕ(P1)) = α1(P1).
A Θ1-sketch morphism f : S1 → S ′1 is given by a graph homomorphism f : GS1 → GS′1 such that (P1, δ) ∈

S1(P1) implies (P1, δ; f) ∈ S ′1(P1) for all P1 ∈ Π1. This entails for any P2 ∈ ϕ(Π1) :

(P2, δ) ∈ ϕ∗(S1)(P2)
⇔ (P1, δ) ∈ S1(P1) for a P1 ∈ Π1 with ϕ(P1) = P2 (def. of ϕ∗(S1))
⇒ (P1, δ; f) ∈ S ′1(P1) for a P1 ∈ Π1 with ϕ(P1) = P2 (f is Θ1-sketch morphism)
⇔ (P2, δ; f) ∈ ϕ∗(S1)(P2) (def. of ϕ∗(S ′1))

For all P2 ∈ Π2 \ ϕ(Π1) we have ϕ∗(S1)(P2) = ∅, thus the morphism condition is trivially satisfied for all these
“new” predicate symbols. This shows, finally, that the graph homomorphism f : GS1 → GS′1 defines also a Θ2-

sketch morphism ϕ∗(f)
def
= f : ϕ∗(S1) → ϕ∗(S ′1). Compatibility of ϕ∗ w.r.t. identities and composition follows

immediately from definition.

The intuition of ϕ∗ and ϕ∗ being a kind of inverse constructions can be expressed formally.

Proposition 3. For any signature morphism ϕ : Θ1 → Θ2 the functor ϕ∗ : Ske(Θ1) → Ske(Θ2) is left-adjoint
to the functor ϕ∗ : Ske(Θ2)→ Ske(Θ1).

Proof. Unit: For any Θ1-sketch S1 = (GS1 ,S1(Π1)) and any P1 ∈ Π1 we have according our definitions

S1(P1) ⊆
⋃
{S1(P ′

1) | P ′
1 ∈ Π1, ϕ(P ′

1) = ϕ(P1)}
= ϕ∗(S1)(ϕ(P1))
= ϕ∗(ϕ∗(S1))(P1)

This ensures that the identical graph homomorphism idGS1 defines a Θ1-sketch morphism from S1 to ϕ∗(ϕ∗(S1)).

Ske(Θ1)
ϕ∗ //

Ske(Θ2)
ϕ∗

oo

(GS1 ,S1(Π1))
id

GS1 //

f **VVVVVVVVVVVVVVVVV
(GS1 , ϕ∗(ϕ∗(S1))(Π1))

f

��

(GS1 , ϕ∗(S1)(Π2))

f

��
(GS2 , ϕ∗(S2)(Π1)) (GS2 ,S2(Π2))

For any Θ2-sketch S2 = (GS2 ,S2(Π2)) and any Θ1-sketch morphism f : S1 → ϕ∗(S2) we can show that the
underlying graph homomorphism f : GS1 → GS2 provides also a Θ2-sketch morphism f : ϕ∗(S1) → S2: For
any P2 ∈ Π2 \ ϕ(Π1) we have ϕ∗(S1)(P2) = ∅, thus the morphism condition is trivially satisfied. For any
P2 ∈ ϕ(Π1) and any (P2, δ) ∈ ϕ∗(S1)(P2) there exists P1 ∈ Π1 such that ϕ(P1) = P2 and (P1, δ) ∈ S1(P1).
f a Θ1-sketch morphism implies (P1, δ; f) ∈ ϕ∗(S2)(P1). Due to the definition of ϕ∗(S2) this means, however,
(P2, δ; f) = (ϕ(P1), δ; f) ∈ S2(ϕ(P1)) = S2(P2) as required.

Finally, f : ϕ∗(S1) → S2 is uniquely determined since f is the only graph homomorphism such that
idGS1 ; f = f .

4 Models of Generalized Sketches
To define models of Θ-sketches we have first to decide for a “semantic universe”, i.e., we have to chose an
appropriate “big” graph U . In case of algebraic and first-order specifications we could chose, for example, the
graph Set. For ER-diagrams the graph Par and for UML class diagrams the graph Pow may be appropriated at the
beginning, i.e., as long as we are not concernd about the variation of “states” in time. (In [DK03], the semantic

11

universe of “variable sets” is presented that can be used to describe the dynamics of systems.) In a second step we
have to convert the graph U into a “semantic Θ-sketch” U = (U,U(Π)), i.e., for all labels P ∈ Π we have to give
a mathematical exact definition of the “property P ”, i.e., of the set U(P) of all “semantic diagrams” of arity α(P).
Then we can define models within this chosen “semantic universe”.

But, if we want to have also morphisms between models we need some more structure in the “semantic uni-
verse”. One possibility to define morpisms between models is to adapt the concept of “natural transformation”
[BW95, Fia05] and, in this case, it will be necessary that the arrows in the “semantic universe” can be composed.
That is, we have to assume that the graph U is actually a category. Moreover, it appears to be often necessary, in
practice, to allow only for a certain kind of arrows to relate the components of models, That is, we have to indicate
an appropriate subcategory of U .

Definition 8 (Semantic Universe). A semantic Θ-universe U = (U,U(Π),Um) is given by a category U which is
the underlying graph of a Θ-sketch (U,U(Π)) and by a subgategory Um of U such that Um

0 = U0. (In abuse of
notation we will denote the Θ-sketch (U,U(Π)) also by U .)

Example 9 (Semantic Universes). In case of algebraic specifications we can take as the semantic ΘAS-universe
the tripleAS = (Set,AS(ΠAS),Set). All singleton sets will be marked with the “empty product” label ([prod], 0),
and the labels ([prod], n), n ≥ 2 are marking not only the cartesian products of n sets, but also all respective iso-
morphic diagrams.

For first-order signatures we can extend this universe to a semantic ΘFS-universeFS = (Set,FS(ΠFS),Set)
by marking all injective maps and all jointly injective families of maps, respectively. Note, that “marking” means
here to give a precise mathematical description of the corresponding property.

For equational specifications we can extend AS to a semantic ΘEQ-universe EQ = (Set, EQ(ΠEQ),Set).
EQ([=]) is the set of all diagrams δ : Cell → Set with δ1(1) = δ1(2). EQ([comp]) is the set of all diagrams
δ : Triangle → Set with δ1(3) = δ1(1); δ1(2). EQ([tupl], n) is the set of all diagrams δ : Tupln → Set
with δ1(πi)(δ1(k)(e)) = δ1(ri)(e) for all e ∈ δ0(y), i = 1, . . . , n. And EQ([id]) is the set of all diagrams
δ : Arrow→ Set with δ0(x) = δ0(y) and δ1(1) = idδ0(x).

In case of partial algebras [Rei87, Wol90, WKWC94] we have to use the triple EQp = (Par, EQp(ΠEQ),Set)
since homomorphisms between partial algebras are given by total maps.

For ER diagrams a semantic ΘER-universe can be based on the category Par or on the category Pow for
those variants of ER diagrams where we allow for multiple attributes. And for UML class diagrams a semantic
ΘUML-universe should be based on the category Pow.

The requirement, that a predicate in a specification has to become true under a semantical interpretation can be
formulated now by means of the concept of sketch morphism.

Definition 9 (Models). An S-model of a Θ-sketch S in a semantic Θ-universe U is a Θ-sketch morphismm : S →
U , i.e., (P, δ : α(P)→ GS) ∈ S(P) implies (P, δ;m : α(P)→ U) ∈ U(P) for all P ∈ Π.

α(P)

δ;m
""E

EE
EE

EE
EE

δ // GS

m

��
U

An S-model morphism η : m1 ⇒ m2 between two S-models m1 : S → U and m2 : S → U is given by a map
η : GS

0 → Um
1 such that η(x);m2(f) = m1(f); η(y) for each f : x→ y in GS

1 .

x

f

��

m1(x)
η(x) //

m1(f)

��

m2(x)

m2(f)

��
y m1(y)

η(y) // m2(y)

Example 10 (Models). Models of ΘAS-sketches and ΘEQ-sketches correspond to Σ-algebras and the traditional
homomorphisms between Σ-algebras are reflected by model morphisms. We can define, for example, the “natural
numbers” as a SΣNat

-model nat : SΣNat
→ AS given by nat0(N) = N, nat0(M) = N × N, nat1(z) = 0,

nat1(s) = (+ 1), nat1(p) = (+), and two projections nat1(πi) : N × N → N, i = 1, 2. Since the

12

equation (p(x, s(y)) = s(p(x, y)) is satisfied for natural numbers this SΣNat
-model can be extended uniquely to

a SSPNat
-model.

“Binary digits” give rise to another SΣNat
-model bin : SΣNat

→ AS given by bin0(N) = 2 = {0, 1},
bin0(M) = 2 × 2, bin1(z) = 0, bin1(s) = (+ 1 mod 2), bin1(p) = (+ mod 2), and two projections
bin1(πi) : 2 × 2 → 2, i = 1, 2. Then the maps (mod 2) : N → 2 and (mod 2) × (mod 2) : N × N → 2 × 2
define a SΣNat

-model morphism from nat to bin.
Note, that models of ΘER-sketches and ΘUML-sketches, respectively, correspond to “system states” as long

as the corresponding semantic universes are based on Par or Pow, respectively. A well-known observation is
that “state transformations” can not be described by model morphisms. One possible way is to describe those
transformations by spans of model morphisms [JR01]. A detailed investigation of the possibilities to model “state
transformations” will be another point of future research.

In the same way as one can prove that functors and natural transformations constitute a “functor category” (see
[BW95]) we could prove the existence of a

Proposition 4 (Category of Models). The S-models m : S → U of a Θ-sketch S in a semantic Θ-universe U and
the S-model morphisms η : m1 ⇒ m2 : S → U define a category Mod(S,U).

The identical S-model morphisms idm : m ⇒ m are defined by idm(x)
def
= idm(x) for all x ∈ GS

0 . And
the composition η;µ : m1 ⇒ m3 of two S-model morphisms η : m1 ⇒ m2 and µ : m2 ⇒ m3 is defined by

(η;µ)(x)
def
= η(x);µ(x) for all x ∈ GS

0 .

x

f

��

m1(x)
η(x) //

m1(f)

��

m2(x)
µ(x) //

m2(f)

��

m3(x)

m3(f)

��
y m1(y)

η(y) // m2(y)
µ(y) // m3(y)

Remark 8 (Other Model Morphisms). The commutativity requirement in Proposition 4 may appear too strong in
some applications. To sketch, for example, “weak homomorphisms” between partial algebras [Rei87, Wol90] we
have to relax the equality into an inequality (η;µ)(x) ≤ η(x);µ(x) expressing that the definedness of operations
needs only to be preserved.

In other applications, it may be necessary to relate models by more general arrows. This variation, together
with all forthcoming results, can be simply obtained by requiring that U is a subcategory of Um.

Since all our concepts are defined in a clean categorical way we get, for example, different kinds of model trans-
formations for free. First, any “specification morphism” gives rise, just by pre-composition, to a transformation of
models into the opposite direction.

Proposition 5 (Forgetful Functor). For any Θ-sketch morphism f : S → S ′ we obtain a (forgetful) functor

Mod(f) : Mod(S ′,U) → Mod(S,U) where Mod(f)(m)
def
= f ;m for any S ′-model m : S ′ → U and

Mod(f)(η)
def
= f0; η for any S ′-model morphism η : m⇒ m′.

GS
f //

f ;m
!!B

B
B

B
B GS′

m

��

GS
0

f0 //

f0;η !!B
B

B
B GS′

0

η

��
U Um

1

At a certain point of a development it may be necessary that we have to extend our semantic universe to be able
to describe phenomena that can not be reflected within the given universe. We may want, for example, describe
the dynamic aspects of systems after we have clarified the static aspects. Those extensions or transformations of
semantic universes can be described by

Definition 10 (Transformation of Universes). A Θ-transformation T : U → U ′ between two semantic Θ-universes
U = (U,U(Π),Um) and U ′ = (U′,U ′(Π),U′m) is given by a functor T : U→ U′ with T (Um) ⊆ U′m that defines
a Θ-sketch morphism T : (U,U(Π))→ (U′,U ′(Π)).

Any transformation of universes induces a corresponding transformation of models by a simple post-composition:

13

Proposition 6 (Transformation of Models). A Θ-transformation T : U → U ′ between semantic Θ-universes

induces for any Θ-sketch S a functor Mod(S, T) : Mod(S,U) → Mod(S,U ′) where Mod(S, T)(m)
def
= m;T

for any S-model m : S → U and Mod(S, T)(η)
def
= η;T1 for any S-model morphism η : m1 ⇒ m2 : S → U .

GS

m

��

m;T

 @
@

@
@ GS

0

η

��

η;T0

!!C
C

C
C

U
T // U′ Um

1
T1 // U′m

1

How can we transform now a stepwise and structured design from one formalism (Θ1,U) to another formal-
ism (Θ2,U ′)? First, we need a signature morphims ϕ : Θ1 → Θ2. This allows us, on one side, to interpret
the Θ1-universe U as a Θ2-universe according to Proposition 2. That is, we obtain a Θ2-universe ϕ∗(U) =
(U, ϕ∗(U)(Π2),Um) and, by restricting ϕ∗ : Ske(Θ1) → Ske(Θ2) to Mod(S,U) we obtain for any Θ1-sketch
S a functor ϕ∗,S : Mod(S,U) → Mod(ϕ∗(S), ϕ∗(U)) that transforms S-models over U into ϕ∗(S)-models
over ϕ∗(U). In a second step, we have to adapt the models to the richer new universe. That is, we need a Θ2-
transformation T : ϕ∗(U) → U ′. The whole transformation from (Θ1,U) to (Θ2,U ′) can be described then for a
given Θ1-sketch S by a composition of functors

ϕ∗,S ;Mod(ϕ∗(S), T) : Mod(S,U)→Mod(ϕ∗(S),U ′).

The interested reader may check that we obtain, in such a way, for any Θ1-sketch morphism f : S1 → S ′1 a
commutative diagram

Mod(S ′1,U)
Mod(f) //

ϕ∗,S′1
;Mod(ϕ∗(S′1),T)

��

Mod(S1,U)

ϕ∗,S1 ;Mod(ϕ∗(S1),T)

��
Mod(ϕ∗(S ′1),U ′)

Mod(ϕ∗(f)) // Mod(ϕ∗(S1),U ′)

That is, we can not only transform the single specifications but also the structure of our design.

5 Sketch Operations
Sketch Operations provide a mechanism to extend sketches, in a well-defined constructive way, by deriving new
nodes, new arrows, and new marked diagrams. Such a mechanism allows us to reflect the construction of “algebraic
terms” or deduction rules within the Generalized Sketch framework [Mak97][Dis97b] and, for example, to define
the semantics of database query languages and view mechanisms [DK97]. Derived structures are also necessary to
relate specifications and to describe data and schema integration and other model management tasks [Dis05].

Definition 11 (Sketch Operation). A Θ-sketch operation ω : L ↪→ R is given by two Θ-sketches L = (GL,L(Π)),
R = (GR,R(Π)) such that L v R.

The left hand side L specifies under what conditions the sketch operation can be applied to a sketch S. The
idea is to add to S (a copy of) the items in R that are not contained in L. Analogously to programming, L can
be seen as a “formal parameter” where an “actual parameter” is obtained by assigning to the “variable items” in L
“actual items” from a given S. First, we describe how sketch operations can be used, on the “syntactic level”, to
extend specifications.

Definition 12 (Syntactic Sketch Operations). A match of a Θ-sketch operation ω : L ↪→ R in a Θ-sketch S =
(GS ,S(Π)) is given by a Θ-sketch morphism a : L → S.

The application of the Θ-sketch operation ω : L ↪→ R to a Θ-sketch S via a match a : L → S results in
a Θ-sketch ω(a) = (Gω(a), ω(a)(Π)) and in a Θ-sketch morphism a∗ : R → ω(a) such that S v ω(a) and
a;v=v; a∗.

L
v //

a

��

R

a∗

��
S

v // ω(a)

14

Thereby the underlying graph Gω(a) is defined as follows

G
ω(a)
i

def
= GS

i ∪ {(a, x) | x ∈ GR
i \GL

i } i = 0, 1.

scG
ω(a)

(f)
def
=


scG

S
(f) , if f ∈ GS

1

a0(scG
R

(g)), if f = (a, g), scG
R

(g) ∈ GL
0

(a, scG
R

(g)), if f = (a, g), scG
R

(g) /∈ GL
0

tgGω(a)
(f)

def
=


tgGS

(f) , if f ∈ GS
1

a0(tgGR
(g)), if f = (a, g), tgGR

(g) ∈ GL
0

(a, tgGR
(g)), if f = (a, g), tgGR

(g) /∈ GL
0

The graph homomorphism a∗ : GR → Gω(a) is given for i = 0, 1 by

a∗i (x)
def
=

{
ai(x), if x ∈ GL

i

(a, x), if x ∈ GR
i \GL

i

And for any P ∈ Π we have ω(a)(P)
def
= S(P) ∪ {(P, δ; a∗) | (P, δ) ∈ R(P) \ L(P)}.

Note, that a∗ : GR → Gω(a) defines indeed a Θ-sketch morphism a∗ : R → ω(a): For all (P, δ) ∈ L(P) we
have (P, δ; a∗) = (P, δ; a) due to the definition of a∗ and thus (P, δ; a∗) = (P, δ; a) ∈ S(P) ⊆ ω(a)(P) since
a : L → S is a Θ-sketch morphism. For all (P, δ) ∈ R(P) \ L(P) we obtain directly (P, δ; a∗) ∈ ω(a)(P) due to
the definition of ω(a)(P).

Remark 9 (Disjoint Union). To describe the disjoint union of S and R \ L we have used the mechanism of
“tagging” the added items with the corresponding match. This ensures, for example, that different applications
of the same sketch operation will produce different copies of R \ L. Of course, we can also adapt, in practical
applications, more advanced mechanisms to create names/labels for added items. See also the discussion in
Remark 11.

Remark 10 (Pushout). The attentive reader, familiar with Category Theory and Graph Transformations [EEPT06,
Hec06], will have noticed that the construction in Definition 12 is actually a pushout construction, i.e., can be
seen as a special simple version of a graph transformation. The specialization of the general theory of graph
transformations to this special case will be the subject of further research. Especially the sequential and parallel
composition of sketch operations will be of interest.

Example 11 (Term Construction). The inductive construction of Σ-terms over finite sets of variables can be
modeled by ΘEQ-sketch operations. The necessary operations are the operation [id〉 : L[id〉 ↪→ R[id〉 intro-
ducing identity requirements, the operation [comp〉 : L[comp〉 ↪→ R[comp〉 generating the composition of two
arrows, the operations ([prod〉, n) : L([prod〉,n) ↪→ R([prod〉,n) introducing products of n nodes, and the opera-
tions ([tupl〉, n) : L([tupl〉,n) ↪→ R([tupl〉,n) describing the tupling of n arrows.
L[id〉 is given by the discrete graph (x y) and R[id〉 is given by the graph Arrow and the [id]-marked diagram

idArrow.
L[comp〉 is given by the graph (x 1→ y

2→ z) and R[comp〉 is given by the graph Triangle and the [comp]-
marked diagram idTriangle.
L([prod〉,n) is given by the discrete graph (x1 . . . xn) and R([prod〉,n) is given by the graph Spann and the

([prod], n)-marked diagram idSpann
.

L([tupl〉,n) is given by the following graph Termn

y

r1

		

rn

��

x
p1

{{ww
ww

ww
ww

w
pn

##H
HHHHHHHH

x1 • • • xn

15

and the ([prod], n)-marked diagram inTerm
n : Spann ↪→ Termn. Finally,R([tupl〉,n) is given by the graph Tupln,

the ([tupl], n)-marked diagram idTupln
, the ([prod], n)-marked diagram inTupl

n : Spann ↪→ Tupln, and n [comp]-
marked diagrams δi : Triangle→ Tupln, i = 1, . . . , n with δi,0(x) = y, δi,0(y) = x, δi,0(z) = xi, δi,1(1) = k,
δi,1(2) = pi, and δi,1(3) = ri.

Remark 11 (Construction of Names). Example 11 sheds some light on a very important methodological point:
For many-sorted algebraic signatures we have the following induction rule for the construction of Σ-terms: For
all op : s1 . . . sn → s in OP

t1 ∈ T (Σ, X)s1 , . . . , tn ∈ T (Σ, X)sn ⇒ op(t1, . . . , tn) ∈ T (Σ, X)s.

In view of Generalized Sketches this means that we construct out of n arrows X → si with “names” ti and one
arrow s1 . . . sn → s with “name” op a new arrow X → s with the “compound name” op(t1, . . . , tn). That
is, traditional, “syntactic” oriented approaches to formal specifications, as algebraic specifications, are mainly
concerned about the construction of denotations (names) for new items out of the denotations (names) of given
items. The fact that also new “arrows” are constructed is reflected, if at all, by the “typing” of the new items.
In contrast, the Generalized Sketch framework is focusing on the construction of new nodes and new arrows.
There is no build-in mechanism to construct names for the new items. We are convinced that a practical useful
specification formalism has to combine both mechanisms. In Example 11 we could, for example, equip the ΘEQ-
sketch operations ([tupl〉, n) with a mechanism that creates for each match a : L([tupl〉,n) → S the new denotation
〈t1, . . . , tn〉 for the arrow a∗(k) if ti is the denotation for a(ri), i = 1, . . . , n.

The next thing we may want to have, in an application, is that any model of S in a semantic universe U can be
extended, in a unique way, to a model of ω(a) in U . One possibility to gain this is to have a fixed interpretation of
the sketch operation in the semantic universe U .

Definition 13 (Semantic Sketch Operations). For a Θ-sketch operation ω : L ↪→ R a semantic Θ-sketch operation
U(ω) in a semantic Θ-universe U = (U,U(Π),Um) assigns to any L-model m : L → U a R-model U(ω)(m) :
R→ U such that Mod(ω)(U(ω)(m)) = m, i.e., such that the following diagram commutes

L
v //

m
��@

@@
@@

@@
R
U(ω)(m)

��
U

Example 12 (Semantic Sketch Operations). We can define a semantics for the sketch operation [comp〉 in any se-
mantic universe U just be the composition in the underlying category U, i.e., for anyL[comp〉-modelm : L[comp〉 →
U we can define U([comp〉)(m)(3) = m(1);m(2).

Similar we can define a semantics for the sketch operation ([prod〉, n) in any semantic universe U with U
equals to Set, Par, or Pow by the cartesian product of sets, i.e., for any L([prod〉,n)-model m : L([prod〉,n) → U we
can define U([prod〉, n)(m)(x) = m(x1)× · · · ×m(xn).

Note, that we have to make a choice between all the isomorphic possibilities to define products. Note further,
that the cartesian product of sets is not the categorical product in Par or Pow, respectively.

Remark 12 (Partial Semantic Sketch Operations). The sketch operation [id〉 as defined in Example 11 will only
give rise to a partial semantic sketch operation in a given semantic universe U = (U,U(Π),Um). To repair this
we can define a new predicate label [id − node] with arity the discrete graph (x y) and with δ : (x y) → U in
U([id − node]) iff δ0(x) = δ0(y). If we extend then L[id〉 by the [id − node]-marked diagram id(x y) and R[id〉
by the corresponding [id − node]-marked diagram in : (x y) → Arrow, we can trivially define a total semantic
sketch operation U([id〉) by chosing U([id〉)(m)(1) = idm(x) for any L[id〉-modelm, i.e., for any sketch morphism
m : L[id〉 → U with m(x) = m(y).

If we have such a semantic Θ-sketch operation U(ω) available we can extend now any S-model m : S → U
to an ω(a)-model ω(a,m) : ω(a) → U since ω(a) is defined by a pushout construction. That is, ω(a,m) is the

16

unique mediating morphism from ω(a) to U such that v;ω(a,m) = m and a∗;ω(a,m) = U(ω)(a;m).

L
v //

a

��

R

a∗

�� U(ω)(a;m)

��

S
v //

m //

ω(a)

ω(a,m)
CC

C

!!C
CC

U

6 Dependencies
Dependencies between predicates are important for the theory and for the applications of Generalized Sketches.
Therefore, we want to touch on this topic in this last section. We can identify, at least, two kinds of dependencies
between predicates:

• Firstly, we have dependencies between single predicates as, for example, the dependency that the tupling of
terms requires the existence a corresponding product. Those dependencies, that can be expressed by graph
homomorphisms between the arities of predicates, may be called requirements and will be discussed in this
section.

• Secondly, we have more complex (logical) dependencies if the satisfaction of a certain set of predicates
entails the satisfaction of (sets of) other predicates. In UML, for example, the predicates [inv] for f , g and
[total] for f entail the predicate [cover] for g. This kind of dependencies will be a topic of future research.

Definition 14 (Requirements). Given a diagram signature Θ = (Π, α), a graph homomorphism r : α(P1) →
α(P2) with P1, P2 ∈ Π is called a Θ-requirement for P2.

Remark 13 (Requirements). If α(P1), α(P2) are discrete graphs, i.e., graphs P1 = (x1 . . . xm), P2 = (y1 . . . yn)
without arrows, then a requirement r : α(P1) → α(P2) can be interpreted, in logical terms, as an implication:
P2(y1, . . . , yn) ⇒ P1(r(x1), . . . , r(xm)). Note, that some variables yi may not appear in the conclusion, if r is
not surjective, and that some variables yi may appear at different places in the conclusion, if r is not injective.

We can pose now two questions: What does it mean that a requirement is valid in a sketch, and when does a model
satisfy a requirement?

Definition 15 (Validity, Satisfaction). A Θ-requirement r : α(P1)→ α(P2) is valid in a Θ-sketch S = (GS ,S(Π)),
S
Θ r in symbols, iff for all P2-marked diagrams:

(P2, δ : α(P2)→ GS) ∈ S(P2) ⇒ (P1, r; δ : α(P1)→ GS) ∈ S(P1).

α(P1)

r;δ $$H
HH

HH
HH

HH
r // α(P2)

δ

��
GS

A Θ-sketch model m : S → U of a Θ-sketch S in a semantic Θ-universe U satisfies a Θ-requirement r : α(P1)→
α(P2), m |=Θ r in symbols, iff (P1, r; δ;m : α(P1) → U)) ∈ U(P1) for all P2-marked diagrams (P2, δ :
α(P2)→ GS) ∈ S(P2).

α(P1)

r;δ $$H
HH

HH
HH

HH
r // α(P2)

δ

��

δ;m

!!D
DDDDDDD

GS m // U

The satisfaction of requirements can be semantically ensured by the choice of an appropriate semantic universe.

17

Proposition 7 (Satisfaction Semantically). For any Θ-requirement r : α(P1) → α(P2), any Θ-sketch S, any
semantic Θ-universe U , and any Θ-sketch model m : S → U of S in U we have:

U
Θ r ⇒ m |=Θ r .

Proof. For any P2-marked diagram (P2, δ : α(P2) → GS) ∈ S(P2) we have (P2, δ;m) ∈ U(P2) since m is a
Θ-sketch model. But, this implies (P1, r; δ;m) ∈ U(P1) since U
Θ r.

On the other side, satisfaction can be syntactically enforced.

Proposition 8 (Satisfaction Syntactically). For any Θ-requirement r : α(P1) → α(P2), any Θ-sketch S, any
semantic Θ-universe U , and any Θ-sketch model m : S → U of S in U we have:

S
Θ r ⇒ m |=Θ r .

Proof. For any P2-marked diagram (P2, δ : α(P2) → GS) ∈ S(P2) we have (P1, r; δ) ∈ S(P1) since S
Θ r.
But, this implies (P1, r; δ;m) ∈ U(P1) since m is a Θ-sketch model.

If we want, we can now incorporate requirements into our concept of signature thus we will be allowed to write
only specifications respecting these requirements.

Definition 16 (Requirement Signature). A requirement signature ΘΘΘ = (ΠΠΠ,ααα) is given by

• a graph ΠΠΠ with nodes called (predicate) labels and with arrows called (predicate) requirements

• a graph homomorphism ααα : ΠΠΠ → Graph assigning to each label P ∈ ΠΠΠ0 its arity (shape) ααα0(P) and to
each (predicate) requirement (d : P1 → P2) ∈ ΠΠΠ1 a ΘΘΘ0-requirement ααα1(d) : ααα0(P1) → ααα0(P2) where
ΘΘΘ0 = (ΠΠΠ0,ααα0) is the diagram signature part of ΘΘΘ.

Definition 17 (Requirement Sketch). Given a requirement signature ΘΘΘ = (ΠΠΠ,ααα) a ΘΘΘ-sketch S is a ΘΘΘ0-sketch such
that S
Θ ααα1(d) for all d ∈ ΠΠΠ1.

Remark 14 (Requirements in Tools). The use of requirement signatures ΘΘΘ in a tool for writing or drawing sketches
can be chosen to be restrictive or supportive: Restrictive means that we can only add a new P2-marked diagram
(P2, δ) after we have added before all the necessary P1-marked diagrams (P1,ααα1(d); δ). Supportive, however,
would mean that adding a new P2-marked diagram (P2, δ) generates also all P1-marked diagram (P1,ααα1(d); δ)
for all requirements (d : P1 → P2) ∈ ΠΠΠ.

In the same way requirement signatures may also help in visualising sketches since a visualization of a P2-
marked diagram (P2, δ) allows to drop the visualization of the depending P1-marked diagrams (P1,ααα1(d); δ).

Proposition 8 ensures that any ΘΘΘ0-sketch S-model m : S → U satisfies all the ΘΘΘ0-requirements ααα1(d) in
S, i.e., m becomes is indeed a model of the whole ΘΘΘ-sketch S. This indicates that there should be no principal
problems to extend the concepts, constructions and results from section 4 (and hopefully also from section 5) to
requirement signatures. For example, it is obvious how to extend the concept of signature morphism since the step
from “diagram signatures” to “requirement signatures” is simply modeled as a step from sets (of nodes) to graphs,

Definition 18 (Requirement Signature Morphism). A requirement signature morphism ϕ : ΘΘΘ1 → ΘΘΘ2 between
two requirement signatures ΘΘΘ1 = (ΠΠΠ1,ααα1) and ΘΘΘ2 = (ΠΠΠ2,ααα2) is a graph homomorphism ϕ : ΠΠΠ1 → ΠΠΠ2 such that
ααα2,0(ϕ0(P1)) = ααα1,0(P1) for each P1 ∈ ΠΠΠ1,0 and ααα2,1(ϕ1(d1)) = ααα1,1(d1) for each d1 ∈ ΠΠΠ1,1.

A detailed exposition of all these extensions has to be left for a forthcoming paper.

7 Historical remarks, relation to other and future work
Applications of categorical logic to data modeling were first described, probably, in [DJM92], with a major empha-
sis on commutative diagrams and less on the universal properties. In the same context of data modeling, machinery
of generalized sketches was developed and applied in a few industrial projects in Latvia in 1993-94, and the cor-
responding logic presented at Logic Colloquium’95 [Dis97b]. Even earlier, Michael Makkai came to the need to
generalize the notion of Ehresmann’s sketches from his work on an abstract formulation of Completeness Theo-
rems in logic. Makkai attributed the immediate impetus for him to work out these ideas to Charles Well’s talk at

18

the Montreal Category Theory Meeting in 1992. Well’s own work went in a somewhat different direction [BW97]
while Makkai’s work resulted in the notion (and the very term) of generalized sketch. Makkai also developed
a corresponding mathematical theory that was first presented in his several preprints circulated in 1993-94, and
summarized and published later in [Mak97].

Relations between generalized sketches as they are understood by Makkai and other generalization of the
Ehresmann’s concept are discussed in the introduction to [Mak97]. Formally speaking, the “Latvian” version
of the definition coincides with (or perhaps is slightly less general than) Makkai’s definition. The difference is
that the Latvian version stresses the parallelism between syntactical structures of ordinary FOL specifications and
generalized sketches as much as possible: the former can be seen as a logic of sketches over the base category
Set while the latter is a logic over Graph, the category of graphs. The most detailed presentation of the Latvian
interpretation is in [Dis97a]; unfortunately, it also involves a misleading attempt to include into the notion of
generalized sketch some issues related to visualization of sketches rather than to the logic as such.

Future work. A well-known observation is that state transformations can not be described by model mor-
phisms. One possible way to describe those transformations is by spans of model morphisms [JR01]. A detailed
investigation of different possibilities to model state transformations is needed.

The parallel and sequential composition of sketch operations has to be investigated and an appropriate concept
of “sketch term” and of “term substitution” has to be developed.

The whole topic of “sketch logic” has not been discussed in the paper. We have to address here logical con-
nectives and corresponding “derived predicate labels”, and a proper notion of substitution has to be defined. An
appropriate extension of the concept of signature morphism that would allow us to map predicate labels to “derived
predicate labels” will be also necessary in application domains. Finally, it will be interesting to study the relation
between Generalized Sketches and abstract concepts of logics as described in the Institution framework [GB92].

8 Conclusions
We have given a new restructured presentation of the basic concepts and results of the Generalized Sketch Frame-
work. We made especially apparent that Generalized Sketches appear as a natural generalization of FOL specifica-
tions, where there are “node” and “arrow” variables organized into a graph. Generalized Sketches offer a universal
format for defining syntax and semantics of diagrammatic specification techniques and for describing the transi-
tions between those techniques as well. This can be seen in analogy to the BNF that provides a universal format
for defining syntax of programming languages and transitions between them.

The sketch formalism appears to be a good design pattern for diagrammatic language design. It suggests that if
one is thinking about designing a new language, one should address the following three basic questions: what is the
interpretation of nodes, what is it for arrows, and what is the signature of diagram predicates that matter. Brevity,
clear semantics and solid mathematical foundations can make this pattern really helpful in practice. Moreover,
active promotion of modeling techniques into software industry and, particularly, the rapid progress of the domain-
specific languages sector (so called DSL), form an explicit industrial demand for convenient and handy yet reliable
language design techniques. We believe that the generalized sketch pattern provides a promising theoretical supply
to the demand.

It would not be a big exaggeration to say that modeling languages are designed daily in the modern software
industry. Hopefully the next one hundred modeling languages will be designed along the lines of the generalized
sketch pattern.

References
[BW95] M. Barr and C. Wells. Category Theory for Computing Science. Prentice Hall International Series in

Computer Science, 1995. 1, 1, 5, 4, 4

[BW97] A. Bagchi and C. Wells. Graph-based logic and sketches. In 10th Int.Congress of Logic,Methodology
and Philosophy of Science, Florence, 1995, Florence (Italy), 1997. Kluwer Acad.Publ. 7

[DD06] Z. Diskin and J. Dingel. Mappings, maps and tables: Towards formal semantics for associations
in UML2. In Proc. ACM/IEEE 9th Int.Conference on Model Driven Engineering Languages and
Systems, 2006. 8

19

[Dis97a] Z. Diskin. Generalized sketches as an algebraic graph-based framework for semantic modeling and
database design. Technical Report M9701, Faculty of Physics and Mathematics, University of Latvia,
1997. 33pp., http://www.cs.queensu.ca/ zdiskin/Pubs/ULReport-M97.pdf. 7

[Dis97b] Z. Diskin. Towards algebraic graph-based model theory for computer science. Bulletin of Symbolic
Logic, 3:144–145, 1997. Presented (by title) at Logic Colloquium’95. 5, 7

[Dis02] Z. Diskin. Visualization vs. specification in diagrammatic notations: A case study with the UML. In
Diagrams’2002: 2nd Int. Conf. on the Theory and Applications of Diagrams, Springer LNAI#2317,
pages 112–115, 2002. 1

[Dis03] Z. Diskin. Mathematics of UML: Making the Odysseys of UML less dramatic. In Ken Baclawski and
Haim Kilov, editors, Practical foundations of business system specifications, pages 145–178. Kluwer
Academic Publishers, 2003. 1, 2

[Dis05] Z. Diskin. Mathematics of generic specifications for model management. In Rivero, Doorn, and
Ferraggine, editors, Encyclopedia of Database Technologies and Applications, pages 351–366. Idea
Group, 2005. 5

[DJM92] C.N.G. Dampney, M. Johnson, and G.P. Monro. An illustrated mathematical foundation for ERA.
In C.M. Rattray and R.G. Clarke, editors, The Unified Computation Laboratory. Oxford University
Press, 1992. 7

[DK97] Z. Diskin and B. Kadish. A graphical yet formalized framework for specifying view systems. In
Advances in Databases and Information Systems, pages 123–132, 1997. ACM SIGMOD Digital
Anthology: vol.2(5), ADBIS’97. 5

[DK03] Z. Diskin and B. Kadish. Variable set semantics for keyed generalized sketches: Formal semantics
for object identity and abstract syntax for conceptual modeling. Data & Knowledge Engineering,
47:1–59, 2003. 1, 7, 4

[EEPT06] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of Algebraic Graph Transformations.
EATCS Monographs on Theoretical Computer Science. Springer, Berlin, 2006. 10

[FB05] F. Fondement and T. Baar. Making metamodels aware of concrete syntax. In ECMDA-FA, pages
190–204, 2005. 1

[Fia05] J. L. Fiadeiro. Categories for Software Engineering. Springer, Berlin, 2005. 1, 2, 4

[GB92] J. A. Goguen and R. M. Burstall. Institutions: Abstract Model Theory for Specification and Pro-
gramming. Journals of the ACM, 39(1):95–146, January 1992. 7

[Gog98] J. Goguen. An introduction to algebraic semiotics, with applications to user interface design. In
C. Nehaniv, editor, Computation for Metaphors, Analogy and Agents, pages II: 54–79. Univertsity of
Aizu, 1998. The latest version is available at http://ww-cse.ucsd.edu/users/goguen. 1

[Hec06] R. Heckel. Graph Transformation in a Nutshell. In Proceedings of the School on Foundations of
Visual Modelling Techniques (FoVMT 2004) of the SegraVis Research Training Network, volume 148
of ENTCS, pages 187–198. Elsevier, 2006. 10

[JR01] M. Johnson and R. Rosebrugh. View updatability based on the models of a formal specification. In
FME, pages 534–549, 2001. 10, 7

[JRW02] M. Johnson, R. Rosebrugh, and R. Wood. Entity-relationship-attribute designs and sketches. Theory
and Applications of Categories, 10(3):94–112, 2002. 1, 1

[LS86] J. Lambek and P. Scott. Introduction to higher order categorical logic. Cambridge University Press,
1986. 6

[Mak97] M. Makkai. Generalized sketches as a framework for completeness theorems. Journal of Pure and
Applied Algebra, 115:49–79, 179–212, 214–274, 1997. 5, 7

20

[PS97] F. Piessens and E. Steegmans. Proving semantical equivalence of data specifications. J. Pure and
Applied Algebra, (116):291–322, 1997. 1

[Rei87] H. Reichel. Initial Computability, Algebraic Specifications, and Partial Algebras. Oxford University
Press, 1987. 9, 8

[RJB04] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language Reference Manual. Second
Edition. Addison-Wesley, 2004. 1

[Sel06] Bran Selic. Model-driven development: Its essence and opportunities. In ISORC, pages 313–319,
2006. 1

[Wel] C. Wells. Sketches: Outline with references. Available under http://www.cwru.edu/artsci/math/wells/
pub/papers.html. 1

[WKWC94] U. Wolter, M. Klar, R. Wessäly, and F. Cornelius. Four Institutions – A Unified Presentation of
Logical Systems for Specification. Technical Report Bericht-Nr. 94-24, TU Berlin, Fachbereich
Informatik, 1994. 9

[Wol90] U. Wolter. An Algebraic Approach to Deduction in Equational Partial Horn Theories. J. Inf. Process.
Cybern. EIK, 27(2):85–128, 1990. 9, 8

21

	Introduction and motivating discussion
	Graphs and Diagrams
	Generalized Sketches
	Models of Generalized Sketches
	Sketch Operations
	Dependencies
	Historical remarks, relation to other and future work
	Conclusions

