REPORTS
IN
INFORMATICS

ISSN 0333-3590

A Branch-and-Reduce Algorithm for Finding a
Minimum Independent Dominating Set in
Graphs

Serge Gaspers and Mathieu Liedloff

REPORT NO 344 January 2007

Department of Informatics

UNIVERSITY OF BERGEN
Bergen, Norway

This report has URL
http://www.ii.uib.no/publikasjoner/texrap/pdf/2007-344.pdf

Reports in Informatics from Department of Informatics, University of Bergen, Norway, is available at
http://www.ii.uib.no/publikasjoner/texrap/.
Requests for paper copies of this report can be sent to:

Department of Informatics, University of Bergen, Hgyteknologisenteret,
P.O. Box 7800, N-5020 Bergen, Norway

http://www.ii.uib.no/publikasjoner/texrap/pdf/2007-344.pdf
http://www.ii.uib.no/publikasjoner/texrap/

A Branch-and-Reduce Algorithm for Finding a
Minimum Independent Dominating Set in Graphs

Serge Gaspers™ Mathieu Liedloff"

Abstract

An independent dominating set D of a graph G = (V, E) is a subset of vertices such
that every vertex in V' \ D has at least one neighbour in D and D is an independent
set, i.e. no two vertices in D are adjacent. Finding a minimum independent dominating
set in a graph is an NP-hard problem. Whereas it is hard to cope with this problem
using parameterized and approximation algorithms, there is a simple exact O(1.4423")-
time algorithm solving the problem by enumerating all maximal independent sets. In this
paper we improve the latter result, providing the first non trivial algorithm computing
a minimum independent dominating set of a graph in time O(1.3575™). Furthermore,
we give a lower bound of £2(1.3247™) on the worst-case running time of this algorithm,
showing that the running time analysis is almost tight. Finally we show that for the class
of c-dense graphs (graphs respecting |E| > ¢|V|? for a constant ¢, 0 < ¢ < 1/2) an
O(1.3575™Y1=2¢)time algorithm solves the problem.

1 Introduction

During the last years the interest in the design of exact exponential time algorithms has been
growing significantly. Nice surveys have been written on this subject. In one due to Woegin-
ger [24], the author emphasizes the major techniques used to design exact exponential time
algorithms. We also refer the reader to the recent survey of Fomin et al. [10] discussing
some new techniques in the design of exponential time algorithms. In particular they discuss
Measure & Conquer and lower bounds.

The problem MINIMUM INDEPENDENT DOMINATING SET (MIDS) is also known as
MINIMUM MAXIMAL INDEPENDENT SET, since every independent dominating set is a max-
imal independent set. This problem asks for a set of minimum cardinality that is both inde-
pendent and dominating. Whereas MAXIMUM INDEPENDENT SET and MINIMUM DOMI-
NATING SET have been studied very deeply in the field of exact algorithms, the best known
exact algorithm for MIDS trivially enumerates all maximal independent sets.

Known results. A setZ C V of a graph G = (V| E) is independent if no two vertices in
7 are adjacent. The problem of finding a Maximum Independent Set (MIS) of a graph was
among the first problems shown to be NP-hard [12].

It is known that a MIS of a graph on n vertices can be computed in O(1.4423™) time by
combining a result due to Moon and Moser, who showed in 1965 [[18]] that the number of
maximal independent sets of a graph is upper bounded by 3™/, and a result due to Johnson,
Yannakakis and Papadimitriou, providing in [16] a polynomial delay algorithm to generate
all maximal independent sets. Moreover many exact algorithms for this problem have been
published, starting in 1977 by an O(1.2600™) algorithm by Tarjan and Trojanowski [23]]. The
best known algorithms for MIS until now are an O(1.2108™) algorithm by Robson [20] in

*Department of Informatics, University of Bergen, N-5020 Bergen, Norway. serge .gaspers@ii.uib.no
TLaboratoire d’Informatique Théorique et Appliquée, Université Paul Verlaine - Metz, 57045 Metz Cedex 01,
France. liedloff@univ-metz.fr

1986, a very long algorithm of running time O(1.1889™) by Robson [21] in 2001 and a very
simple algorithm with running time O(1.2210™) by Fomin et al. [8] in 2006.

A set D C V of a graph G = (V, E) is dominating if every vertex in V' \ D has at least
one neighbour in D. The problem of finding a Minimum Dominating Set (MDS) of a graph is
well known to be NP-hard [[12].

Until recently, the only known exact exponential time algorithm to solve MDS asked for
trivially enumerating the 2™ subsets of vertices. The year 2004 saw a particular interest in
providing some faster algorithms for solving this problem. Indeed, three papers with ex-
act algorithms for MDS were published. In [L1]] Fomin et al. present an O(1.9379™) time
algorithm, in [19] Randerath and Schiermeyer establish an O(1.8899™) time algorithm and
Grandoni [14]] obtains an O(1.8026™) time algorithm.

By now, the fastest published algorithm is due to Fomin et al. [9]. They use the Measure
& Conquer approach to obtain an algorithm with running time O(1.5263™) and using poly-
nomial space. By applying a memorization technique they show that this running time can be
reduced to O(1.5137™) when allowing exponential space usage.

A natural and well studied combination of these two problems asks for a subset of vertices
of minimum cardinality that is both dominating and independent. This problem is called
MINIMUM INDEPENDENT DOMINATING SET (MIDS).

It is known that a Minimum Independent Dominating Set (M I D.S) can be found in poly-
nomial time for several graph classes like interval graphs [3]], chordal graphs [7]], cocom-
parability graphs [17] and AT-free graphs [2], whereas the problem remains NP-complete
for bipartite graphs [4] and comparability graphs [4]. Concerning inapproximability results,
Halldérsson established in [15]] that there is no constant € > 0 such that MIDS can be ap-
proximated within a factor of n'~¢ in polynomial time, assuming P # NP. The same
inapproximation result even holds for circle graphs and bipartite graphs [J]].

To the best of our knowledge, the only exact exponential time algorithm for MIDS has
been observed by Randerath and Schiermeyer [19]. They use the result due to Moon and
Moser [18]] as explained previously and an algorithm enumerating all the maximal indepen-
dent sets to obtain an O(1.4423™) time algorithm for MIDS.

Recently, the problem has also been considered in Parameterized Approximability. Downey
et al. have shown in [[6] that it is W[2]-hard to approximate k-INDEPENDENT DOMINATING
SET within a factor g(k), for any computable function g(k) > k. This means that, unless
W[2] = FPT, there is no algorithm with running time O(f(k) - n°)) (where f(k) is any
computable function independent of n) which either asserts that there is no independent dom-
inating set of size at most k for a given graph G, or otherwise asserts that there is one of size
at most g(k), for any computable function g(k) > k.

Our results. In this paper we present an O(1.3575™) time algorithm for solving MIDS us-
ing the Measure & Conquer approach to analyze its running time. As the bottleneck of the
algorithm in [[19] are the vertices of degree two, we develop several methods to handle them
more efficiently such as marking some vertices and a sophisticated reduction rule described
in section @ Combined with some elaborated branching rules, this enables us to lower
bound shrewdly the progress made by the algorithm at each branching step, and thus to ob-
tain an algorithm which improves the best known result from O(1.4423™) to O(1.3575™).
Furthermore, we obtain a very close lower bound of €2(1.3247™) on the running time of our
algorithm, which is very rare for non trivial exponential time algorithms. We also show that
the algorithm can be improved when the input graph has many edges and give an algorithm
in time 0(1_357571\/1—7%) for MIDS on c-dense graphs.

This paper is organized as follows. In section 2, we introduce the necessary concepts
and definitions. Section 3 presents the algorithm for MIDS on general graphs. We prove its
correctness and an upper bound on its worst-case running time in section 4. In section 5,
we establish a lower bound on its worst-case running time, which is very close to the upper
bound. An algorithm for MIDS on c-dense graphs is given in section 6 and we conclude with

section 7.

2 Preliminaries

Let G = (V, E) be an undirected and simple graph. For a vertex v € V' we denote by N (v)
the neighbourhood of v and by N[v] = N(v) U {v} the closed neighbourhood of v. The
degree d(v) of v is the cardinality of N(v). For a given subset of vertices S C V, G[S]
denotes the subgraph of G induced by S, N(S) denotes the set of neighbours in V' \ S of
vertices in S and N[S] = N(S) U S. We also define Ng(v) as N(v) N S and dg(v) (called
the S-degree of v) as the cardinality of Ng(v). In the same way, given two subsets of vertices
S CVand X CV, wedefine Ng(X) =N(X)NS.

A clique is a set S C V of pairwise adjacent vertices. A graph G = (V, E) is called
bipartite if V admits a partition into two independent sets. A bipartite graph G = (V, E) is a
complete bipartite graph if every vertex of one independent set is adjacent to every vertex of
the other independent set. A connected component of a graph is a maximal subset of vertices
inducing a connected subgraph.

In a branch-and-reduce algorithm the current problem is divided into smaller ones such
that an optimal solution, if one exists, occurs in at least one subproblem. If the algorithm
considers only one subproblem in a given case, we refer to a reduction rule, otherwise to a
branching rule.

Consider a vertex u € V of degree two with two non adjacent neighbours v; and vs.
In such a case, a branch-and-reduce algorithm will typically branch into three subcases when
considering u: either u or v or ve are in the solution set. In the third branch, one can consider
that v; is not in the solution set as this is already considered by the second branch. In order
to memorize that v; is not in the solution set but still needs to be dominated, we mark v;.

Definition 1. A marked graph G = (F, M, E) is a triple where F' U M denotes the set of
vertices of GG and E denotes the set of edges of G. The vertices in F’ are called free vertices
and the ones in M marked vertices.

Definition 2. Given a marked graph G = (F, M, E), an independent dominating set D of G
is a subset of free vertices, i.e. D C F, such that D is an independent dominating set of the
graph G' = (FU M, E).

Remark. 1t is possible that such an independent dominating set does not exist in a marked
graph, namely if a marked vertex has no free neighbours.

Finally to close this section we introduce the notion of an induced marked subgraph.
Definition 3. Given a marked graph G = (F, M, E) and two subsets S,T C (F'U M), an

induced marked subgraph G[S, T is the marked graph G’ = (S, T, E’) where E’ C E are
the edges of G with both end points in S U 7.

Note that notions like neighbourhood and degree in a marked graph G = (F, M, E) are the
same as in the corresponding simple graph G = (F U M, E).

3 Computing a M 1DS on Marked Graphs

In this section we present an algorithm solving MIDS on marked graphs.

From the previous definitions it follows that a subset D C V is a MIDS of a graph
G’ = (V,E) if and only if D is a MIDS of the marked graph G = (V, (), E). Hence the
algorithm of this section is able to solve the problem on simple graphs as well.

Given a marked graph G = (F, M, E), consider the graph G[F] induced by its free
vertices. In the following subsection we introduce a reduction rule which deletes a connected
component of G[F| which is a clique.

3.1 Eliminating Cliques in G[F]

Consider the function RedClique. Given a marked graph G = (F, M, E) and a clique C C
F, this function removes N[C] from G and adds some marked vertices such thata M 1DS of
this new graph union one vertex from C equals a M IDS of G.

Function RedClique(G = (F, M, E),C C F)
Input: A marked graph G = (F, M, E) and a clique C' C F such that C'is a connected
component of G[F].
Output: A marked graph G’ = (F’, M’, E’) s.t. G’ has the properties defined in Lemmald}
if |C| = 1 then
| G~ GI[F\C,M\N(O)];
else
if Jv € C s.t. Nyr(v) = 0 then
| G’ — RedClique(G[F — {v}, M],C — {v})
else
let N(C) = {hl,hg, PN hk}
H—0
fori — 1tok —1do
for j «— i+ 1tokdo
L if No(hi) N Ne(hj) = 0 then
| add to [anew marked vertex h; ;

G =(F,M ,E)—G[F\C,M\ N(C)]
M —~M UH
foreach h; ; € H do
foreach v € Np(N[C]) s.t. {v,h;} € Eor{v,h;} € E do
L L E' —F'uU {’U7hi,j}

return G’

Lemma 4. Let G = (F, M, E) be a marked graph and C' a connected component of G|F|

which is a cliqgue. The function RedClique computes in polynomial time a marked graph
G' = (F',M', E’) such that:

(i) the size of a MIDS of G is equal to the size of a MIDS of G’ plus one, if G admits an
independent dominating set,

(i) F'=F\C,

(iii) no edge of E' — E has both end points in F', i.e. the function adds no edge between two
free vertices.

Proof. First, note that whenever there is a clique component C' in G[F], every independent
dominating set contains exactly one vertex of C'. Indeed, at least one vertex of C' has to be
taken in the independent dominating set to dominate C' and at most one vertex in C' can be
taken because the solution has to be an independent set.

If |C| = 1, the unique vertex in C' must be part of the MIDS. So, the function just
deletes C' and its neighbourhood (since these vertices are dominated). By now we assume
that |C| > 2.

If there is a vertex v € C' with no marked neighbour, then we will not choose this vertex
inthe MIDS. As a matter of fact, every vertex in C' dominates C'. So, a vertex in C' which
also dominates some marked vertices is always a better choice than a vertex that does not.

Consequently, the function just deletes v and calls itself recursively on the clique component
C — {v}.

Assume now that |C| > 2 and that every vertex in C' has at least one neighbour in M.
Then, the function will create one new marked vertex h; ; for every two vertices h;, h; €
N(C) that do not share a same neighbour in C. It replaces N[C] by these new marked
vertices. A vertex h; ; will be adjacent to a vertex v € F'\ C iff h; or h; was adjacent to v.
So, when all vertices h; ; will be dominated by vertices in F' \ C'in G’, at least all the vertices
in N(C) except the neighbours of one vertex u € C' are dominated in G. It is then clear
among which vertices of C' to choose the vertex to include in the M IDS. And whenever a
vertex h; ; is not dominated in G’, no vertex of C' can dominate all undominated vertices in
N(C)inG.

Remark that, once all these new marked vertices are dominated, it is possible to determine
in polynomial time which vertex of the clique C' must be added to the solution in order
to obtain a M IDS for the initial marked graph. Note that there can be several equivalent
choices.

As NJ[C] is deleted from the original graph, we have F’ = F' — C. The function does
not create new edges between two free vertices because the only new edges created during
the computation join free and new marked vertices. It is not hard to see that RedClique has
polynomial running time. O

3.2 The Algorithm

In this subsection, we give the algorithm ids computing the size of a M IDS of a marked
graph (see next page). The branching rules are quite complicated but it is fairly simple to
check that the algorithm computes the size of a M IDS (if one exists). It is not difficult to
transform ids into an algorithm that actually outputs a M IDS. In the next section we prove
the correctness and give a detailed analysis of ids.

4 Correctness and Analysis of the Algorithm

Intuitively, marked vertices do not make the instance of the problem more difficult: they
cannot be taken in the M ID.S and the only thing they are good for is to put restrictions on
their free neighbours. Moreover, free vertices having only marked neighbours can be handled
without branching. So, it is an advantage when the F-degree of a vertex decreases. We will
therefore assign different weights to the free vertices according to their F'-degree.

Let n; denote the number of free vertices having F'-degree i. For the running time analysis
we consider the following measure of the size of G:

i>0

where the weights w; € [0,1]. In order to simplify the running time analysis, we make the
following assumptions:

o wy =0,

e w; =1fori > 3,

o wy < wa,

o Aw; > Aws > Aws where Aw; = w; — w;—1,1 € {1,2,3}.

Theorem 5. Algorithm ids solves the minimum independent dominating set problem in time
O(1.3575™).

Algorithm ids(G)
Input: A marked graph G = (F, M, E).
Output: The size of a M IDS of G.

if F = M = () then

| return O 0)
else if Ju € M s.t. dr(u) = 0 then
| return oo D

else if Ju € M s.t. dp(u) = 1 then
L let v be the unique free neighbour of «

return 1 + ids(G[F' \ N[v], M \ N(v)]) (2
else if 3C C F s.t. Cis a clique N Nr(C) = () then
| return 1 + ids(RedClique(G, C)) ()]

else if 3B C F' s.t. B induces a complete bipartite graph N N (B) = () then
let B be partitioned into two independent sets X and Y

return min{ |X|+ids(G[F\ N[X],M \ N(X)));)
Y[+ids(G[F\ N[Y], M\ N(Y)])}

elseif 3C C F s.t. Cisacligue N |C| >3 A3l € C s.t. dp(v) > |C| then
return min{ 1+ ids(G[F \ N[v],M \ N(v)]);)
ids(GIF \ {v}, M U {v}, B])}

else

choose u € F' of minimum F'-degree with a neighbour in F' of maximum F'-degree

if dp(u) = 1 then

return 1+ min{ ids(G[F \ N[u], M \ N(u)]); (6)
ids(G[F \ N[Nr(u)], M \ N(Nr(u))))}

else if dr (u) = 2 then

let NF(U) = {U1, 1}2}

return 1+ min{ ids(G[F \ N[u], M \ N(u)
ids(G[F \ N[vi], M \ N(
ids(G[F \ (N[v2] U {01})

D; @
v1)));
s (M U{v1}) \ N(v2)l}

el;e

choose v € F' of maximum F'-degree

return min{ 1+ ids(G[F\ N[v], M \ N(v)]); 8)
ids(G[F'\ {v}, M U{v}])}

Proof. Let P[k] denote the number of subproblems recursively solved to compute a solution
for an instance of size k. As the time spent in each call of ids, excluding the time spent by the
corresponding recursive calls, is polynomial, it is sufficient to show that for a valid choice of
the weights, P[k] = O(1.3575™).

We will analyse the nine cases of algorithm ids one by one. Cases (0) to (3) are reduction
rules and the other cases correspond to branching rules.

case (0) If the set of vertices is empty, the algorithm returns O since no vertex can be
added to the independent dominating set any more.

case (1) If there is a marked vertex u having no free neighbour, u has no possibility to
be dominated and thus the algorithm returns oo, meaning that there is no solution for this
subproblem.

case (2) If there is a marked vertex u with only one free neighbour v, the only possibility
for u to be dominated is to add v to the MIDS. Consequently, N[v] is deleted from the
graph.

case (3) If there is a clique C of free vertices which are not adjacent to any other free
vertices, we use the function of Lemma [4] to remove C'. Since the number of free vertices
decreases by |C| and no new edges are added between any two free vertices, the F'-degrees of

the remaining free vertices do not increase. Thus the measure k does not increase. (Note that
the number of marked vertices and their F-degree can increase by this reduction, but these
parameters do not occur in our measure.)

Note that, in cases (2) and (3), the number of free vertices strictly decreases. This means
that the number of consecutive applications of these reduction rules to a subproblem is at
most n. Moreover, the measure of the problem instance does not increase in these cases.
Thus, P[k] can at most increase by a linear factor due to these reduction rules and cases (2)
and (3) do not contribute to the exponential factor in P[k].

case (4) If there is a subset B of free vertices such that G[B] induces a complete bipartite
graph and no vertex of B is adjacent to a free vertex outside B, then the algorithm branches
into two subcases. Let X and Y be the two maximal independent sets of G[B]. Then a
MIDS contains either X or Y. In both cases we delete B and the marked neighbours of
either X or Y. The smallest possible subset B satisfying the conditions of this case is a P,
i.e. a path of three vertices, as any smaller complete bipartite component in F' is handled by
case (3). Since we only count the number of free vertices, we obtain the following recurrence:

This means that the algorithm solves two subproblems in this case and in each of them, at
least two vertices of degree at least one and one vertex of degree at least 2 are removed. It
is clear that any complete bipartite component with more than three vertices would lead to a
better recurrence.

case (5) If there is a subset C' of at least three free vertices which form a clique and
only one vertex v € C has free neighbours outside C', the algorithm either includes v in the
solution set or it excludes this vertex by marking it. In the first case, all the neighbours of v
are deleted (including C'). In the second case, v is marked and the C' — {v} clique component
appears in G[F|. Then C — {v} will be deleted by the reduction rule of case (3). In both
cases, C is deleted and in the first case, the neighbours of v outside C' are also deleted (at
least one free vertex of F'-degree at least one). So we have:

P[k]§P[k:fw172w27w3]+P[k:72w27w3]. (2)

case (6) If there is a free vertex u such that dp(u) = 1, a M IDS either includes u or its
free neighbour v in the solution. Vertex v cannot have F'-degree one because this would have
been handled by case (3). For the analysis, we consider two cases:

1. dp(v) = 2. Let = denote the other free neighbour of v. Note that dp(z) # 1 as this
would have been handled by case (4). We consider again two subcases:

(a) dp(x) = 2. When u is chosen in the independent dominating set, v and v are
deleted and the degree of = decreases to one. When v is chosen in the independent
dominating set, u, v and x are deleted from the marked graph. So, we obtain the
following recurrence for this case:

(b) dr(x) > 3. Vertices u and v are deleted in the first branch, and u, v and x are
deleted in the second branch. The recurrence for this subcase is:

Plk] < Plk — wy — wa] + Plk — w; — we — ws).)

2. dp(v) > 3. At least one free neighbour of v has F-degree at least 2. Otherwise case
(4) would have been applied. Therefore the recurrence for this subcase is:

P[k:]SP[k‘—wl—w3]+P[k—2w1—w2—w3]. ®))

case (7) If there is a free vertex u such that dr(u) = 2 and none of the above cases apply,
the algorithm branches into three subcases. Let v; and vy be the two free neighbours of w.
Either u belongs to the M IDS, or vq is taken in the M ID.S, or v; is being marked and vy is
taken in the M 1DS. We distinguish two cases:

1. dp(v1) = dr(vy) = 2. In this case, due to the choice of the vertex u by the algorithm,
all free vertices of this connected component 7" in G[F| have F-degree 2. T cannot
be a Cy, i.e. a cycle of 4 vertices, as this is a complete bipartite graph and would have
been handled by case (4).

(a)

(b)

()

(d)

Suppose that 7" is a C5. Let the vertices of 1" be ordered (u, v1, x1, 2, v2). When
u is taken in the M I DS, u, vy, v are deleted and in the next recursive call, case
(3) is applied for the clique {x1,z2} and thus, x; and x5 will also be deleted.
When v, is taken in the M ID.S, three vertices are again deleted and case (3) will
be applied for {vo, 2 }. When v5 is taken in the M ID.S, Nvs] is deleted and vy
becomes marked. In the next recursive call, 7 will be taken in the M IDS by
case (2). In every recursive call, 7" is entirely deleted:

P[k] < 3P[k — 5ws). (6)

Suppose that 7" is a Cs. Let the vertices of T be ordered (u, v, x1,y, T2, v2).
When w is taken in the M IDS u, vy, vy are deleted and in the next recursive
call, case (4) will be applied for {z1,y, x>} and thus, the algorithm will branch
into two subcases, both deleting x1, y and 5. When v; is taken in the MI1DS,
three vertices are again deleted and case (4) will be applied for {vq, 22, y}. When
vg is taken in the MTDS, N[vs] is deleted and v; becomes marked. In the next
recursive call, z; will be taken in the M I DS by case (2). Finally in each of the 5
recursive calls, 7" is entirely deleted, thus:

P[k] < 5P[k — 6ws). (N

Suppose that T is a C7. Let the vertices of T be labeled (u, v1, z1, y1, Y2, T2, V2)
in clockwise order. When w is chosen in the MI1DS u, v, vo are deleted and
the F'-degrees of =1, x5 decrease by one. We obtain a similar situation when
branching on v;: three vertices are deleted and the F'-degrees of two vertices
decrease to one. When the algorithm chooses vy in the M I1D.S, vy is marked and
21 must be added to the M ID.S by case (2) and yo will then be added by case (3).
Consequently, the algorithm deletes the C~ entirely and we obtain the recurrence:

P[k] < 2P[k + 2wy — bws] + P[k — Tws)]. 8)

Suppose now that T"is a Cy, [> 8. Using the same arguments as in the previous
cases, it is not hard to check that we obtain the following recurrence:

2. Without loss of generality, suppose now that dr(v1) > 3. We analyze two subcases:

(a)

dr(ve) = 2. In this subcase, v1 and vy are not adjacent, otherwise case (5) could
have been applied. Let z3 denote the other neighbour of vs. Recall that due to
the choice of w by the algorithm Yy € F, dp(y) > dp(u). If dp(zs) = 2, as
previously we branch on u, v; and ve, and we get the following recurrence:

PU{] < P[k—|—w1—3w2—w3]—|—P[k—|—w1—4w2—w3]+P[k—3w2—w3]. (10)

Andif dp(z3) > 3, let ¢ denote the number of vertices in N (v;) with F'-degree
at least 3. In the worst case ¢ < 3 and branching on u, v; and vy, we obtain the
following recurrence for ¢ € {0,1,2}:

Pkl < Plk+2-q@ui— (4 —qwz —ws] + an
Plk+w; — (4 — Qws — (1 + qQQws] + Plk — 2wy — 2ws).

(b) dp(vz) > 3. If v1 and vy are not adjacent, branching on u, v; and v, leads to the
following recurrence:

Plk] < Plk — wa — 2ws] + Plk — 3we — w3] + Plk — 3ws — 2ws]. (12)

However if v, and vo are adjacent, let 1 € Np(v1) \ {u,v2}. We consider two
possible cases:

i. if dp(z1) = 2, we obtain:
P[k} SP[kJr’LUl — 2wsy —2w3]+2P[k—2w2 72103}. (13)
ii. if dF(Jfl) > 3. Letaxy € NF(’UQ) \ {u,vl}. Ifdp(xg) = 2, then:

Plk] < Plk+w; —2ws — 2ws] + Plk + wy — 2we — 3ws] +

However if dp(x2) > 3 we get the following recurrence:
P[k:]SP[k:—wg—2w3]+2P[k‘—w2—3w3]. (15)

case (8) In this case the algorithm either takes v in the M I D.S or marks it, i.e. v does not
belong to the M IDS. We consider two cases:

1. dr(v) = 3. In this case, regarding the previous rules handled by the algorithm, ev-
ery free vertex has degree three. Np[v] cannot be a clique, otherwise case (3) would
have been applied. So, at least two vertices in N (v) have a neighbour outside Nr[v]
(remark that this could be the same vertex). This implies that if the algorithm takes v
in the MIDS, the F-degree of at least two free vertices decreases to two in the worst
case (if [Np(Np[v])] = 1 then the decrease of the measure would be higher since
Awsy + Aws > 2Aws because of the conditions on the weights). If the algorithm
marks v, then three free vertices get F'-degree two. The recurrence for this case is:

PU{] < P[k+2w2 —611)3] +P[k+3w2 —411}3]. (16)

2. dp(v) > 4. When v is taken in the M I DS, at least five free vertices are deleted. When
v is marked, the measure decreases by ws. Thus we have this recurrence:

Plk] < Pk — 5ws] + P[k — ws]. a7

Finally the values of weights are computed by a random local search for minimizing the
bound on the running time. Using the values w; = 0.8588 and wo = 0.9630 for the weights,
one can easily verify that P[k] = O(1.3575™). O

The tight recurrences of the latter proof (i.e. the worst case recurrences) (I3) and (16)
correspond to cases where there are many vertices of ['-degree 3 in the local structure the
algorithm considers.

A%

(NG

Figure 1: graph G

S A Lower Bound on the Running Time of the Algorithm

In order to analyze the progress of the algorithm during the computation of a MI1DS, we
used a non standard measure. In this way we have been able to determine an upper bound
on the size of the subproblems recursively solved by the algorithm, and consequently we
obtained an upper bound on the worst case running time. However the use of another measure
could provide a “better upper bound” without changing the algorithm but only improving the
analysis.

How far is the given upper bound of Theorem 5| from the best upper bound we can hope
to obtain? In this section, we establish a lower bound on the worst case running time of our
algorithm. This lower bound gives a really good estimation on the precision of the analysis.
For example, in [9] Fomin et al. obtain a O(1.5263™) time algorithm for solving the domi-
nating set problem and they exhibit a construction of a family of graphs giving a lower bound
of 2(1.2599™) for its running time. They say that the upper bound of many exponential time
algorithms is likely to be overestimated only due to the choice of the measure for the analysis
of the running time, and they note the gap between their upper and lower bound for their
algorithm. However, for our algorithm we have the following result:

Theorem 6. Algorithm ids solves the minimum independent dominating set problem in time
0(1.3247™).

To prove Theorem [6]on the lower bound of the worst-case running time of algorithm ids,
consider the graph G; = (V}, E;) (see Fig. [1)) defined by:

o Vi={u;v;:1 <0<},
o Ep = {uy,vi} U{{u, vi}, {wisuima b, {vi,vima b {ug, v} 1 2 < i < 1)

We denote by G} = (V, 0, E) the marked graph corresponding to the graph G; = (V, E).

For a marked graph G = (F, M, E) we define §p = miny e |dp(u)| and MinU = {u €
Fs.t. dp(u) = dp} as the set of free vertices with smallest F-degree.

We denote the highest F'-degree of the free neighbours of the vertices in MinU by
AMazV = max {|dp(v)| : v € Np(MinU)}.

Let CandidateCase7 = {u € MinU : Jv € Np(u)s.t. dp(v) = AMazV} be
the set of candidate vertices that ids can choose in case (7). W.l.o.g. suppose that when
|CandidateCaseT| > 2 and ids would apply case (7), it chooses the vertex with smallest
index (e.g. if CandidateCase7 = {uy, v;}, the algorithm would choose uy).

Lemma 7. Let G be the input of algorithm ids. Suppose that ids only applies case (7) in
each recursive call (with respect to the previous rule for choosing a vertex). Then, at each
call of ids where the remaining input graph has more than four vertices, one of the following
two properties is fulfilled:

(1) CandidateCase? = {uy,v;} for a certaink, 1 <k <1 —1, and

(i) the set of vertices | J, ;. {us, vi} has been deleted from the input graph, and

10

(ii) all vertices in | J, -, .;{u;,v;} remain free in the input graph.
(2) CandidateCase7 = {vy, v} for acertaink, 1 <k <1—1, and

(i) the set of vertices {ur} U J;<;{ts, vi} has been deleted from the input graph,
and -

(ii) all vertices in {vg} U U< {us, vi} remain free in the input graph.

Proof. We prove this result by induction. It is not hard to see that CandidateCase7 =
{u1,v;} for G} and that property (1) is verified.

Suppose now that property (1) is fulfilled. Then there exists an integer k, 1 < k <[— 1,
such that CandidateCase7 = {uy,v;}. Since ids applies case (7) respecting the rule for
choosing the vertex in CandidateCase7, the algorithm chooses vertex uy. Then we branch
into three sub-problems:

(bl) take ug, in the M IDS and remove N[uy], thus the remaining free vertices are {vg1}U
Ukt 1<i<i{ti, vi} whereas all other vertices are removed. Moreover for this remaining
sub-problem, we obtain CandidateCase7 = {viy1,v;}. So property (2) is verified.
(Note also that [N [ug] N Uy <;<;{uwi, vi}| = 3.)

(b2) take vy in the M 1DS and remove N[vk]: ;4 o<i<;iti, vi} is the set of the remaining
free vertices and all other vertices are removed. For the remaining sub-problem we
obtain CandidateCase7 = {uj12,v;} and property (1) is verified. (Note also that

INToe] N Up<ici{uir vit] = 4)

(b3) take w41 inthe M1D.S and remove N[uy1]: the remaining free vertices are {vj12}U
Ukt2<i<i{ui, vi} and all other vertices are removed. For this remaining sub-problem
we obtain CandidateCase7 = {vj.y2,v;} and property (2) is verified. (Note also that

IN[ugt1] 0 Up<icp{wis vit| = 5.

If we suppose now that property (2) is fulfilled, branching on a vertex vy gives us the
same kind of subproblems. O

We prove now that computing a M 1D.S of the graph (G; using algorithm ids involves to
apply case (7) as long as the remaining graph has “enough” vertices.

Lemma 8. Given the graph G as input, as long as the remaining graph has more than four
vertices, algorithm ids applies case (7) in each recursive call.

Proof. We prove this result also by induction. First, when the input of the algorithm is the
graph (7}, it is clear that neither of cases (1) to (6) can be applied. So, case (7) is applied since
CandidateCaseT # () according to Lemma 7}

Consider now a graph obtained from G} by repeatingly branching using case (7). By
Lemma(7} the remaining graph has no marked vertices (this excludes that case (1) and (2) are
applied). It has no clique component induced by the set of free vertices since the graph is
connected and there is no edge between u;_; and v; (this exclude case (3)). The free vertices
do not induce a bipartite graph since {v;_1,u;,v;} induces a Cj5 (this excludes case (4)).
There is no clique C' such that only one vertex of C' has neighbours outside C': the largest
induced clique in the remaining graph has size 3 and each of these cliques has at least two
vertices having some neighbours outside the clique (this excludes case (5)). Also, according
to Lemma [/| the remaining graph has no vertex of degree 1 (this excludes case (6)) and
CandidateCaseT # (). Consequently, the algorithm applies case (7). O

Figure [2] gives a part of the search tree illustrating the fact that our algorithm recursively
branches in three sub-problems with respect to case (7).

11

\
\Vy
\

L \
N TS
\ \ \
5 '\V5 / '\u6/
Y T T\

Figure 2: a part of the search tree

Proof of Theorem[6] Consider the graph G} and the search tree which results of branchings
using case (7) until k vertices, 1 < k < 2I, have been removed from the given input graph G
(G has 21 vertices). Denote by L[k| the number of leaves in this search tree. It is not hard to
see that this leads to the following recurrence (see the notes in the proof of lemma[7):

L[k] = L[k — 3] + L[k — 4] + L[k — 5]

and therefore L[k] > 1.3247%. Consequently 1.3247" is a lower bound of the maximum
number of leaves that a search tree for ids could contain given an input graph having n
vertices. O

6 An algorithm for c-dense graphs

Several problems are known to be NP-complete on graphs having a large number of edges
[13L22]]. Some of them are Dominating Set, Independent Set, Hamiltonian Circuit and Hamil-
tonian Path. A convenient technique to prove that a problem is NP-hard on c-dense graphs,
foracwith 0 < ¢ < 1/2, is to construct a graph G’ by adding a (sufficiently) large component
to G such that G’ is c-dense.

Theorem 9. For any constant ¢, 0 < ¢ < 1/2, the problem to decide whether a c-dense
graph has an independent dominating set of size at most k is NP-complete.

Proof. Let ¢ be a constant such that 0 < ¢ < 1/2. Tt is well known that the decision
problem Independent Dominating Set is in NP, and thus Independent Dominating Set on
c-dense graphs is also in NP. We provide a polynomial many-one reduction from Indepen-
dent Dominating Set to Independent Dominating Set on c-dense graphs. Let G = (V, E)
be a graph and k be an integer. We construct now a c-dense graph G. = (V,, E.) with
|E.| > c-|V.|?. The graph G.. is obtained from G by adding a clique C of size [(1+ 4¢|V|+
V1+8c[V[(1+ |V]) +8]E|(2c — 1))/(2 — 4c)] to G. Note that the number of edges of
G. is greater than ¢(|V| + |C|)?, and hence G, is a c-dense graph. It remains to show that
G has an independent dominating set of size at most £ is and only if G. has an independent
dominating set of size at most k£ + 1.

First, assume that D is an independent dominating set of G of size at most k. Since the
clique C' in G, has no neighbour in V, the vertices in C still need to be dominated. By
adding only one vertex u of C' to D, the set D U {u} is an independent dominating set of G
respecting |[DU {u}| < k+ 1.

Conversely, suppose that D is an independent dominating set of G, = (V U C, E..) of
size at most k. Since C'is a connected component of GG, which induces a clique we have that
DN C| = 1. As a consequence D \ C is an independent dominating set of G = (V, E) of
size at most k — 1.

12

Thus, the problem of deciding whether a c-dense graph has an independent dominating
set of size at most k is NP-complete. O

In the rest of this section, we provide an exponential time algorithm solving MIDS on
c-dense graphs. The main idea of the algorithm is to find a large subset of vertices of large
degree, to branch on these vertices and then to use the algorithm described in section

Lemma 10. For some fixed 1 < t < n, 1 < ¢ < n—1, any graph G = (V, E) with

t—1)(n—1 —t+ 1)t -1
|E| > 1+()(n)Jr(; + 1)) has a subset T C V such that

(i) |T| >t
(ii) for each vertexv € T, d(v) > t'.

Proof. Let1 <t <n,1 <t <n-—1,anda graph G = (V, E) such that there is no subset
T with the properties stated in the lemma. Then for any subset 7" C V of size at least ¢,
Jv € T such that d(v) < t’. Then a such graph can only have at most k = k; + ko edges
where : k1 = (t — 1)(n — 1)/2 which corresponds to ¢ — 1 vertices of degree n — 1 and
ke = (n —t + 1)(t' — 1)/2 which corresponds to n — (¢ — 1) vertices of degree ¢’ — 1.
Observe that if one of the n — (¢ — 1) vertices has a degree greater than ¢ — 1 then the graph
has a subset T" with the required properties, a contradiction. O

Lemma 11. Every c-dense graph G = (V, E) has a set T C V such that

(i) |T\21—|—n—\/2—n—|—n2—26n2,

(ii) for each vertexv € T, d(v) > n — \/2 —n+n? —2cn?

Proof. We apply Lemma with # = ¢t — 1. Since we have a dense graph, |E| > cn?. Using
inequality 1 + ((t — 1)(n — 1) + (n — t + 1)(t — 2))/2 > cn? we obtain that in a dense
graph the value of ¢ in Lemmais suchthat 1 +n —vV2—n+n2—2m2 <t <n <
14+n++vV2—n+n2—2en2. O

The next theorem establishes that the independent dominating set algorithm for general
graphs can be improved when the input graph has a large number of vertices of high degree.

Theorem 12. Let t > 0 be a fixed integer. For any graph G on n vertices such that |{v €
V:dw)>t—1} >t a MIDS of G can be found in time O(1.3575"~%).

Proof. Lett > 0be aninteger and G = (V, E) a graph fulfilling the condition of the theorem.
LetT = {v € V: d(v) >t —1}; thus |T| > t. Clearly, for every minimum independent
dominating set D of G either at least one vertex of 7" belongs to the set D, or none of the
vertices in T belongs to D, i.e. TN'D = ().

This permits to find a minimum independent dominating set of G using the following
branching into two types of subproblems: “v € D” foreachv € T, and “TND = (”. In
both cases we shall apply the minimum independent dominating set algorithm of section
to solve the subproblem.

If you observe closely Theorem [5] of section 4] and particularly the part of the proof
corresponding to the analysis of the running time, it is shown that the running time of our
algorithm is O(1.3575%(%)) < O(1.3575™) where k(G) is a non standard measure on the
size of G. Precisely, if G = (F, M, F) is a marked graph, our algorithm can find a M IDS
(with respect to Deﬁnition of G in time O(1.3575F1) since k(G) < |F| < n.

Consequently the running time for a subproblem will be O(1.3575™%), where x is the
number of vertices eliminated from the original set of free vertices.

Consider now the two types of subproblems. Concerning the first one: for each vertex
v € T, we choose v in the minimum independent dominating set and we run the ids algorithm

13

presented in section3.2Jon an instance of size at most n— (d(v)+1) < n—(t—141) = n—t.
Indeed, we remove from the set of vertices all vertices of N[v]. Concerning the second
type of branching, we “discard the set 7. In that case we have an instance of size at most
n — |T| = n — t since for every v € T' we put v in the set of marked vertices. O

Theorem 13. MIDS is solvable in time O(1.3575"V1=2¢) on c-dense graphs.

Proof. Combining Theorem [I2]and Lemma [IT| we obtain an algorithm for solving the Mini-
mum Independent Dominating Set problem in time

1.35757 (tn—v2=n+n?=2en?) _ | 35o5vI-ntn®—2en-1

< 1.3575V 2 (1=20)
= 0(1.3575"V172),

7 Conclusions and Open Questions

In this paper we presented the first non trivial algorithm solving the minimum independent
dominating set problem. Using a non standard measure on the size of the considered graph,
we proved that our algorithm achieves a running time of O(1.3575™). Moreover we showed
that 2(1.3247™) is a lower bound on the running time of this algorithm by exhibiting a family
of graphs for which our algorithm has a high running time.

A natural question here is: is it is possible to obtain a better upper bound on the running
time of the presented algorithm by considering another measure or using other techniques.
Or is it possible that this upper bound is tight?

We have also provided a faster algorithm for INDEPENDENT DOMINATING SET on c-
dense graphs. Moreover it is quite straightforward to use the technique of [13], a result
of Alber and Niedermeier [1]], and Theorem [12]|to obtain an algorithm in time O(1.3401™)
and exponential space for MIDS on circle graphs. For which other graph classes where the
problem remains NP-complete can one design faster exponential-time algorithms?

References

[1] Alber, J. and Niedermeier, R. Improved Tree Decomposition Based Algorithms for
Domination-like Problems, Proceedings of LATIN 2002, LNCS 2286, (2002), pp. 613—
628.11

[2] Broersma, H., T. Kloks, D. Kratsch, and H. Miiller, Independent sets in Asteroidal
Triple-free graphs, SIAM Journal on Discrete Mathematics, 12, (1999), pp. 276-287.
[

[3] Chang, M.-S., Efficient algorithms for the domination problems on interval and circular-
arc graphs, SIAM Journal on Computing, 27, (1998), pp. 1671-1694.

[4] Corneil, D.-G. and Y. Perl, Clustering and domination in perfect graphs, Discrete Ap-
plied Mathematics, 9, (1984), pp. 27-39.

[5] Damian-lordache, M. and S. V. Pemmaraju, Hardness of Approximating Independent
Domination in Circle Graphs, Proceedings of ISAAC 1999, LNCS 1741, (1999), pp. 56—
69. 0

14

[6] Downey, R. G., Fellows, M. R., and McCartin, C., Parameterized Approximation Prob-
lems, Proceedings of INPEC 2006, LNCS 4169, (2006), pp. 121-129. 1]

[7] Farber, M., Independent domination in chordal graphs, Operation Research Letters, 1,
(1982), pp. 134-138.1]

[8] Fomin, F. V., F. Grandoni, and D. Kratsch, Measure and Conquer: A Simple O(20-2887)
Independent Set Algorithm, Proceedings of SODA 2006, (2006), pp. 18-25.

[9] Fomin, F. V., E. Grandoni, and D. Kratsch, Measure and conquer: Domination - A case
study, Proceedings of ICALP 2005, LNCS 3380, (2005), pp. 192-203. E], E]

[10] Fomin, F. V., F. Grandoni, and D. Kratsch, Some new techniques in design and analysis
of exact (exponential) algorithms, Bulletin of the EATCS, 87, (2005), pp. 47-77.

[11] Fomin, F. V., D. Kratsch, and G. J. Woeginger, Exact (exponential) algorithms for the
dominating set problem, Proceedings of WG 2004, LNCS 3353, (2004), pp. 245-256. (1]

[12] Garey, M. R. and D. S. Johnson, Computers and intractability. A guide to the theory of
NP-completeness. W.H. Freeman and Co., San Francisco, 1979.

[13] Gaspers, S., D. Kratsch, and M. Liedloff, Exponential Time Algorithms for the Min-
imum Dominating Set Problem on Some Graph Classes, Proceedings of SWAT 2006,
LNCS 4059, (2006), pp. 148-159. 6l [7]

[14] Grandoni, F., A note on the complexity of minimum dominating set, Journal of Discrete
Algorithms, 4, (2006), pp. 209-214.

[15] Halldérsson, M. M., Approximating the Minimum Maximal Independence Number, In-
formation Processing Letters, 46, (1993), pp. 169-172. E]

[16] Johnson, D. S., M. Yannakakis, and C. H. Papadimitriou, On generating all maximal
independent sets, Information Processing Letters, 27, (1988), pp. 119-123.

[17] Kratsch, D., and L. Stewart, Domination on Cocomparability Graphs, SIAM Journal on
Discrete Mathematics, 6, (1993), pp. 400-417. E]

[18] Moon, J. W., and L. Moser, On cliques in graphs, Israel Journal of Mathematics, 3,
(1965), pp. 23-28.

[19] Randerath, B., and 1. Schiermeyer, Exact algorithms for Minimum Dominating Set,
Technical Report zaik-469, Zentrum fur Angewandte Informatik, Koln, Germany, April
2004. [

[20] Robson, J. M., Algorithms for maximum independent sets, Journal of Algorithms, 7,
(1986), pp. 425-440.

[21] Robson, J. M., Finding a maximum independent set in time 0(2”/ 4), Technical Report
1251-01, LaBRI, Université Bordeaux I, 2001.

[22] Schiermeyer, I., Problems remaining NP-complete for sparse or dense graphs, Discus-
siones Mathematicae. Graph Theory 15, (1995), pp. 33-41. [f]

[23] Tarjan, R. E., and A. E. Trojanowski, Finding a maximum independent set, SIAM Jour-
nal on Computing, 6, (1977), pp. 537-546.

[24] Woeginger, G. J., Exact algorithms for NP-hard problems: A survey, Combinatorial
Optimization - Eureka, You Shrink!, LNCS 2570, (2003), pp. 185-207.

15

	Introduction
	Preliminaries
	Computing a MIDS on Marked Graphs
	Eliminating Cliques in G[F]
	The Algorithm

	Correctness and Analysis of the Algorithm
	A Lower Bound on the Running Time of the Algorithm
	An algorithm for c-dense graphs
	Conclusions and Open Questions

