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Abstract In this paper we extend the results obtained for a class of finite kernel functions by Y.Q. Bai M. El
Ghami and C.Roos published in SIAM Journal of Optimization, 13(3):766–782, 2003 [3] for linear optimization
to semidefinite optimization. We show that the iteration bound for primal dual methods is O(

√
n log n log n

ε ), for
large-update methods andO(

√
n log n

ε ), for small-update methods. The iteration complexity obtained for semidef-
inite programming is the same as the best bound for primal-dual interior point methods in linear optimization.

Keywords. Interior-point; semidefinite optimization; primal-dual method.

AMS Subject Classification: 90C22 90C31

1 Introduction

A semidefinite optimization problem (SDO) is a convex optimization problem in the space of symmetric matrices.
We consider the standard semidefinite programming problem

(SDP ) p∗ = inf
X
{Tr(CX) : Tr(AiX) = bi(1 ≤ i ≤ m), X � 0} ,

and its dual problem (SDD)

(SDD) d∗ = sup
y,S

{
bT y :

m∑
i=1

yiAi + S = C,S � 0

}
,

where C and Ai are symmetric n × n matrices, b, y ∈ Rm, and X � 0 means that X is symmetric positive
semidefinite and Tr(A) denotes the trace of A (i.e., the sum of its diagonal elements). The matrices Ai are further
assumed to be linearly independent (without loss of generality). Recall that for any two n× n matrices, A and B

Tr(ATB) =
n∑
i=1

n∑
j=1

AijBij .

∗Will appear in proceedings of the conference FRANCORO V / ROADEF 2007, Grenoble, France.
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Interior point methods (IPMs) provide a powerful approach for solving SDO problems. A comprehensive list
of publications on this topic can be found in the SDO homepage maintained by Alizadeh [1]. The pioneering
works in this direction are due to Alizadeh [1, 2] and Nesterov and Nemirovskii [9]. Most IPMs for SDO can
be viewed as natural extensions of IPMs for LO, and have similar polynomial complexity results. However, to
obtain valid search directions is much more difficult than in the LO case. Below we describe how the usual search
directions are obtained for primal-dual methods for solving SDO problems. Our aim is to show in this section that
the kernel-function-based approach that we presented for LO in [3] can be applied also to SDO problems. For
self-regular kernel functions this has been earlier in [11]. Just as in the LO case, the new methods have the same
iteration complexity when small-updates are used, but the iteration complexity is better for large-updates methods.

1.1 Classical search direction

We assume that a strictly feasible pair (X � 0, S � 0) exists, which is the interior-point condition (IPC) for SDO.
This ensures the existence of an optimal primal-dual pair (X∗, S∗) with zero duality gap. Hence one can write the
optimality conditions for the primal-dual pair of problems as follows.

Tr(AiX) = bi, i = 1, . . . ,m
m∑
i=1

yiAi + S = C (1)

XS = 0
X,S � 0.

The basic idea of primal-dual IPMs is to replace the above complementarity condition XS = 0 by the parame-
terized equation

XS = µE; X,S � 0,

where E denotes the n × n identity matrix and µ > 0. The resulting system has a unique solution for each
µ > 0. This solution is denoted by (X(µ), y(µ), S(µ)) for each µ > 0; X(µ) is called the µ-center of (SDP )
and (y(µ), S(µ)) is the µ-center of (SDD). The set of µ-centers (with µ > 0) defines a homotopy path, which is
called the central path of (SDP ) and (SDD) [5, 11]. The principal idea of IPMs is to follow this central path
and approach the optimal set of SDP as µ goes to zero. Newton’s method amounts to linearizing the system (1),
thus yielding the following system of equations.

Tr(Ai∆X) = bi, i = 1, . . . ,m.
m∑
i=1

∆yiAi + ∆S = 0 (2)

X∆S + ∆XS = µE −XS.

This so-called Newton system has a unique solution (∆X,∆y,∆S). Note that ∆S is symmetric, due to the
second equation in (2). However, a crucial point is that ∆X may be not symmetric. Many researchers have
proposed various ways of ‘symmetrizing’ the third equation in the Newton system so that the new system has a
unique symmetric solution. All these proposals can be described by using a symmetric nonsingular scaling matrix
P and by replacing (2) by the system

Tr(Ai∆X) = bi, i = 1, . . . ,m
m∑
i=1

∆yiAi + ∆S = 0 (3)

∆X + P∆SPT = µS−1 −X

Now ∆X is automatically a symmetric matrix.
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1.2 Nesterov-Todd direction

In this paper we consider the symmetrization schema of Nesterov-Todd [10]. So we use

P = X
1
2

(
X

1
2SX

1
2

)− 1
2
X

1
2 = S−

1
2

(
S

1
2XS

1
2

) 1
2
S−

1
2 , (4)

where the last equality can be easily verified. Let D = P
1
2 , where P

1
2 denotes the symmetric square root of P .

Now, the matrix D can be used to scale X and S to the same matrix V , defined by [6, 14]:

V :=
1
√
µ
D−1XD−1 =

1
√
µ
DSD. (5)

Obviously the matrices D and V are symmetric, and positive definite. Let us further define

Āi := DAiD, i = 1, 2, . . . ,m;

and

DX :=
1
µ
D−1∆XD−1; DS :=

1
µ
D∆SD (6)

Then it follows from (3)

Tr(ĀiDX) = 0, i = 1, . . . ,m.
m∑
i=1

∆yiĀi +DS = 0 (7)

DX +DS = V −1 − V.

In the sequel, we use the following notational conventions. Throughout this paper, ‖·‖ denotes the 2-norm of a
vector. The nonnegative and the positive orthants are denoted as Rn

+ and Rn
++, respectively, and Sn, Sn

+, and Sn
++

denote the cone of symmetric, symmetric positive semidefinite and symmetric positive definite n × n matrices,
respectively. For any V ∈ Sn, we denote by λ(V ) the vector of eigenvalues of V arranged in increasing order, that
is, λ1(V ) ≤ λ2(V ) ≤, . . . , λn(V ). For any matrixA, we denote by η1(A) ≤ η2(A) ≤, . . . ,≤ ηn(A) the singular
values of A; if A is symmetric, then one has ηi(A) = |λi(A)| , i = 1, 2, . . . , n, if z ∈ Rn and f : R → R, then
f (z) denotes the vector in Rn whose i-th component is f (zi), with 1 ≤ i ≤ n, if D is a diagonal matrix, then
f(D) denotes a diagonal matrix with f(Dii) as i diagonal component. For X ∈ Sn, X = Q−1DQ, where Q is
orthogonal, and D diagonal matrices, f(X) = Q−1f(D)Q. Finally if v is a vector, diag(v) denotes the diagonal
matrix with the diagonal elements vi.

2 New search direction

In this section we introduce the definition of a matrix function [8, 13].

Definition 2.1 Let X be a symmetric matrix, and let

X = Q−1
X diag(λ1(X), λ2(X), . . . , λn(X))QX , (8)

be an eigenvalue decomposition of X , where λi(X), 1 ≤ i ≤ n denote the eigenvalues of X , and QX is orthog-
onal. If ψ(t) is any univariante function whose domain contains {λi(X); 1 ≤ i ≤ n} then the matrix function
ψ(X) is defined by

ψ(X) = Q−1
X diag(ψ(λ1(X)), ψ(λ2(X)), . . . , ψ(λn(X)))QX . (9)

Define the barrier function Ψ(X) as follows [11].

Ψ(X) :=
n∑
i=1

ψ(λi(X)) = Tr(ψ(X)). (10)
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In this paper, when we use the function ψ(.) and its first three derivatives ψ′(.), ψ′′(.), and ψ′′′(.) without any
specification, it denotes a matrix function if the argument is a matrix and a univariate function (from R to R) if
the argument is in R.

Following [11] we describe the kernel-function-based approach to SDO. Given the kernel function ψ(t) and the
associated ψ(V ) and ψ′(V ) as defined in Definition 2.1, we replace the right-hand side V − V −1 in the third
equation in (7) by −ψ′(V ). Thus we consider the following system.

Tr(ĀiDX) = 0, i = 1, . . . ,m.
m∑
i=1

∆yiĀi +DS = 0 (11)

DX +DS = −ψ′(V ).

Having DX and DS , 4X and 4S can be calculated from (6). Due to the orthogonality of 4X and 4S, it is
trivial to see that DX⊥DS , and so

Tr(DXDS) = Tr(DSDX) = 0. (12)

The algorithm considered in this paper is described in Figure 1.

Generic Primal-Dual Algorithm for SDO

Input:
a kernel function ψ(t);
a threshold parameter τ > 0;
an accuracy parameter ε > 0;
a barrier update parameter θ, 0 < θ < 1;

begin
X := X0; S := S0; µ := µ0;
while nµ ≥ ε do
begin
µ := (1− θ)µ;
while Φ (X,S, µ) ≥ τ do
begin

Solve system (3) for 4X , 4y, 4S;
Determine a step size α;
X := X + α4X;
S := S + α4S;
y := y + α∆y;

end
end

end

Figure 1: Generic primal-dual interior-point algorithm for SDO.

Just as in the LO case, the parameters τ, θ, and the step size α should be chosen in such a way that the algorithm is
‘optimized’ in the sense that the number of iterations required by the algorithm is as small as possible. Obviously,
the resulting iteration bound will depend on the kernel function underlying the algorithm, and our main task
becomes to find a kernel function that minimizes the iteration bound.

The paper is organized as follows. In Section 3 we start by deriving some properties of the kernel function Ψ(t).
In Section 4 we derive the properties of the barrier function Ψ(V ). The estimate of the step size and the decrease
behavior of the barrier function are discussed in Section 5. The total iteration bound of the algorithm and the
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complexity results are derived in Section 6. Finally, some concluding remarks follow in Section 7.

3 Properties of kernel functions

In this paper we consider a kernel functions analyzed in [3] namely,

ψ(t) =
t2 − 1

2
+

1
σ

(
eσ(1−t) − 1

)
for some σ ≥ 1. (13)

Recall that all known kernel functions have the property that limt↓0 ψ(t) = ∞ and limt→∞ ψ(t) = ∞. Our new
function has the second property, but it fails to have the first property, because

lim
t↓0

ψ(t) = ψ(0) =
eσ − 1
σ

− 1
2
<∞. (14)

This means that if either X or S approaches the boundary of the feasible region then

Φ(X,S;µ) := 2Ψ(V ),

converges to a finite value, depending on the value of σ. In the analysis of the algorithm based on the present kernel
functions ψ(t) we need its three derivatives. For ease of reference we give them here. One has

ψ′(t) = t− eσ(1−t), ψ′′(t) = 1 + σeσ(1−t), ψ′′′(t) = −σ2eσ(1−t) (15)

It follows that ψ(1) = ψ′(1) = 0 and ψ′′(t) ≥ 0, proving that ψ(t) is defined by ψ′′(t)

ψ(t) =
∫ t

1

∫ ξ

1

ψ′′(ζ) dζdξ. (16)

Lemma 3.1 Let ψ be as defined in (13). Then,

tψ′′(t) + ψ′(t) > 0, if t ≥ 1
σ
, (17-a)

ψ′′′(t) < 0, if t > 0, (17-b)
ψ′′(t)ψ′(βt)− βψ′(t)ψ′′(βt) > 0, if t > 1, β > 1. (17-c)

Proof. Using (15) we write, also using t ≥ 1
σ ,

ψ′(t) + tψ
′′
(t) = 2t+ (tσ − 1) e−σ(t−1) ≥ 2

σ
> 0.

Thus (17-a) follows. Inequality (17-b) immediately follows from (15). By (15),

ψ′′(t)ψ′(βt)− βψ′(t)ψ′′(βt) = σ (β − 1) e−σ(t−2+βt) + g(β) ≥ g(β),

where
g(β) = β (1 + σt) eσ(1−t) − (βσt+ 1) e−σ(βt−1).

One has g(1) = 0 and
g′(β) = (1 + σt) eσ(1−t) + β (σt)2 eσ(βt−1) ≥ 0.

From this (17-c) follows. 2 The first property (17-a) in Lemma 3.1 is related to Definition

2.1.1 and Lemma 2.1.2 in [11]. This property is equivalent to convexity of the composed function z 7→ ψ(ez) and
this holds if and only if ψ(

√
t1t2) ≤ 1

2 (ψ(t1) + ψ(t2)) for any t1, t2 ≥ 1
σ . Following [3], we therefore say that ψ

is exponentially convex, or shortly, e-convex, whenever t ≥ 1
σ .
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Lemma 3.2 One has
ψ(t) <

1
2
ψ′′(1) (t− 1)2 , if t > 1.

Proof. By using Taylor’s theorem and ψ(1) = ψ′(1) = 0, we obtain

ψ(t) =
1
2
ψ′′(1) (t− 1)2 +

1
6
ψ′′′(ξ) (ξ − 1)3 ,

where 1 < ξ < t if t > 1. Since ψ′′′(ξ) < 0. Thus the lemma follows. 2

Lemma 3.3 One has
tψ′(t) ≥ ψ(t), if t ≥ 1.

Proof. Defining g(t) := tψ′(t)− ψ(t) one has g(1) = 0 and g′(t) = tψ′′(t) ≥ 0. Hence g(t) ≥ 0 and the lemma
follows. 2

Not that the second inequality in (17-a) (t ≥ 1
σ ) is more restrictive than in [4], where we only assumed t nonnega-

tive. This means that we must ensure that t is large enough, before using inequality (17-a). The same problem was
encountered in [3], and we will see that we can deal with it in the same way as we did for linear case in [3].

We denote by % : [0,∞) → [1,∞) and ρ : [0,− 1
2ψ

′(0)) → (0, 1] the inverse functions of ψ(t) for t ≥ 1, and
− 1

2ψ
′(t) for t ≤ 1, respectively. In other words

s = ψ(t) ⇔ t = %(s), t ≥ 1, (18)

s = − 1
2ψ

′(t) ⇔ t = ρ(s), t ≤ 1. (19)

We recall from [4, 7] two other theorems that we need in the next section. In the first theorem the function Ψ is
applied to a positive vector v. The definition is compatible with Definition 2.1 when identifying the vector v with
its diagonal matrix diag (v) and applying Ψ to this matrix to obtain

Ψ(v) =
n∑
i=1

ψ(vi), v ∈ Rn
++.

The next theorem is due to the fact that ψ(t) satisfies (17-c).

Theorem 3.4 (Theorem 3.2 in [4]) For any positive vector v and any β > 1, we have

Ψ(βv) ≤ nψ

(
β%

(
Ψ(v)
n

))
.

The following theorem gives a lower bound of δ(v) in terms of Ψ(v). This is due to the fact that ψ(t) satisfies
(17-b).

Theorem 3.5 (Theorem 4.9 in [4]) One has

δ(v) ≥ 1
2ψ

′ (% (Ψ(v)) .

4 Properties of Ψ(V ) and δ(V )

In this section we extend two Theorem 3.4 and Theorem 3.5 to positive definite matrices. Recall that these theorems
follows from (17-c) and (17-b) respectively. [4].
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Theorem 4.1 Let % be as defined in (18). Then for any positive vector v and any β > 1 we have:

Ψ(βV ) ≤ nψ

(
β%

(
Ψ(V )
n

))
.

Proof. Let vi := λi(V ), 1 ≤ i ≤ n. Then v > 0 and

Ψ(βV ) =
n∑
i=1

ψ(βλi(V )) =
n∑
i=1

ψ(βvi) = Ψ(βv).

Using Theorem 3.4 we get

Ψ(βv) ≤ nψ

(
β%

(
Ψ(v)
n

))
= nψ

(
β%

(∑n
i=1 ψ(vi)
n

))
= nψ

(
β%

(∑n
i=1 ψ(λi(V ))

n

))
= nψ

(
β%

(
Ψ(V )
n

))
.

This proves the theorem. 2

The next theorem gives a lower bound on the norm-based proximity measure δ(V ), defined by

δ(V ) = 1
2‖ψ

′(V )‖ =
1
2

√√√√ n∑
i=1

ψ′(λi(V ))2 =
1
2
‖DX +DS‖ , (20)

in terms of Ψ(V ). Since Ψ(V ) is strictly convex and attains its minimal value zero at V = E, we have

Ψ(V ) = 0 ⇔ δ (V ) = 0 ⇔ V = E.

Theorem 4.2 Let % be as defined in (18). Then

δ(V ) ≥ 1
2ψ

′ (% (Ψ(V ))) .

Proof. The statement in the lemma is obvious if V = E since then δ(V ) = Ψ(V ) = 0. Otherwise we have
δ(V ) > 0 and Ψ(V ) > 0. To deal with the nontrivial case. Again, let vi := λi(V ), 1 ≤ i ≤ n. Then v > 0 and

δ(V )2 = 1
4

n∑
i=1

ψ′(λi(V ))2 = 1
4

n∑
i=1

ψ′(vi)2 = δ(v)2.

Using Theorem 3.5 we get

δ(v) ≥ 1
2ψ

′ (% (Ψ(v))) = 1
2ψ

′

(
%

(
n∑
i=1

ψ(vi)

))

= 1
2ψ

′

(
%

(
n∑
i=1

ψ(λi(V ))

))
= 1

2ψ
′ (% (Ψ(V ))) .

This completes the proof of the theorem. 2
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Corollary 4.3 Let % be as defined in (18). Thus we have

δ(V ) ≥ Ψ(V )
2% (Ψ(V ))

.

Proof. Using Theorem 4.2, i.e., δ(V ) ≥ 1
2ψ

′(%(Ψ(V ))), we obtain from Lemma 3.3

δ(V ) ≥ 1
2
ψ′(%(Ψ(V ))) ≥ ψ (%(Ψ(V )))

2% (Ψ(V ))
=

Ψ(V )
2% (Ψ(V ))

.

This proves the corollary. 2

Lemma 4.4 If Ψ(V ) ≥ 1, then

δ(V ) ≥ 1
6
Ψ(V )

1
2 . (21)

Proof. The inverse function of ψ(t) for t ∈ [1,∞) is obtained by solving t from the equation

ψ(t) =
t2 − 1

2
+
eσ(1−t) − 1

2
= s, t ≥ 1.

Since it is hard to solve this equation explicitly, we derive an upper bound for t, as this suffices for our goal. One
has from (16) and ψ′′(t) ≥ 1, we have

s = ψ(t) =
∫ t

1

∫ ξ

1

ψ′′(ζ) dζdξ ≥
∫ t

1

∫ ξ

1

dζdξ =
1
2
(t− 1)2,

which implies
t = % (s) ≤ 1 +

√
2s. (22)

Assuming s ≥ 1, we get
t = % (s) ≤

√
s+

√
2s ≤ 3s

1
2 .

Omitting the argument V , and assuming Ψ(V ) ≥ 1, we thus have

%(Ψ(V )) ≤ 3Ψ(V )
1
2 .

Now, using Corollary 4.3, we have

δ(V ) ≥ Ψ(V )
2% (Ψ(V ))

≥ 1
6
Ψ(V )

1
2 .

This proves the lemma. 2

Note that if Ψ(V ) ≥ 1, substitution in (21) gives

δ(V ) ≥ 1
6
. (23)

4.1 Fixing the value of σ

After the update of µ to (1− θ)µ we have V+ = V√
1−θ . Application of Theorem 4.1 yields that

Ψ(V+) ≤ L = L(n, θ, τ) = nψ

(
%
(
τ
n

)
√

1− θ

)
. (24)
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Lemma 4.5 Suppose that L ≥ 8 and Ψ(V ) ≤ L. If σ ≥ 1 + 2 log (L+ 1) , then λi(V ) > 3
2σ , for all i = 1, ..., n.

Proof. First note that Ψ(V ) ≤ L implies ψ(λi(V )) ≤ L for each i = 1, ..., n. Hence, putting t = λi(V ), we have

t2 − 1
2

+
1
σ

(
eσ(1−t) − 1

)
≤ L.

It follows that

1
σ

(
eσ(1−t) − 1

)
≤ L+

1− t2

2
≤ L+

1
2
, (25)

This implies

e1−σt ≤
1 + σ

(
L+ 1

2

)
eσ−1

.

Since the expression at the right-hand side is monotonically decreasing in σ, it follows that

e1−σt ≤
1 + (1 + 2 log (L+ 1))

(
L+ 1

2

)
(L+ 1)2

.

The expression at the right-hand side is monotonically decreasing in L. The value at L = 8 is 0.57842... < e−
1
2 .

Thus we obtain that e1−σt < e−
1
2 , which implies 1− σt < − 1

2 , or t > 3
2σ , proving the lemma. 2

Note that at the start of each inner iteration τ < Ψ(V ) ≤ L. To ensure that L satisfies the conditions of Lemma
4.5, we assume from now that L ≥ 8. and we choose

σ = 1 + 2 log (L+ 1) . (26)

5 Analysis of the algorithm

In the analysis of the algorithm the concepts of exponential convexity is crucial ingredient. Before dealing with
these concepts, we start with two technical lemmas.

Lemma 5.1 [Lemma 3.3.14 (c) in [8]] Let A,B ∈ Sn be two nonsingular matrices and f(t) be given real-valued
function such that f(et) is a convex function. One has

n∑
i=1

f(ηi(AB)) ≤
n∑
i=1

f(ηi(A)ηi(B)), (27)

where ηi(A), and ηi(B) i = 1, 2, ..., n denote the singular values of A, and B, respectively

Lemma 5.2 [Lemma 5.1 in [15]] Let A, A+B ∈ Sn
+, one has

λi(A+B) ≥ λ1 − |λn(B)| , i = 1, 2, ..., n. (28)

Lemma 5.3 Let V1 and V2 are two symmetric positive definite, and λ1(V1), λ1(V2) ≥ 1
σ , then

Ψ
(
(V

1
2

1 V2V
1
2

1 )
1
2

)
≤ 1

2
(Ψ(V1) + Ψ(V2)) . (29)

Proof. By the definition of the singular values of a matrix we have any nonsingular matrix U ∈ Sn,

ηi(U) =
(
λi(UTU)

) 1
2 =

(
λi(UUT )

) 1
2 , i = 1, 2, ..., n.
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From this, we can write

ηi(V
1
2

1 V
1
2

2 ) =
(
λi(V

1
2

1 V2V
1
2

1 )
) 1

2
= λi

(
(V

1
2

1 V2V
1
2

1 )
1
2

)
, i = 1, 2, ..., n.

Since V1 and V2 are symmetric positive definite, using Lemma 5.1 one has

Ψ
(
(V

1
2

1 V2V
1
2

1 )
1
2

)
=

n∑
i=1

ψ
(
ηi(V

1
2

1 V
1
2

2 )
)
≤

n∑
i=1

ψ
(
ηi(V

1
2

1 )ηi(V
1
2

2 )
)

≤ 1
2

n∑
i=1

(
ψ
(
η2
i (V1)

1
2

)
ψ
(
η2
i (V2)

1
2

))
=

1
2

n∑
i=1

(ψ (ηi(V1))ψ (ηi(V2))) =
1
2

(Ψ(V1) + Ψ(V2)) .

The second inequality follows from the exponential convexity of ψ(t), t ≥ 1
σ . This completes the lemma.

5.1 Decrease of the proximity during a (damped) Newton step

In this section we start to compute the step size. After a damped step, with step size α. Following [15, 4], using
(6) we have

X+ = X + α4X = X + α
√
µDDXD =

√
µD (V + αDX)D,

y+ = y + α∆y,
S+ = S + α4S = X + α

√
µD−1DSD

1 =
√
µD−1 (V + αDS)D−1.

One has [11]

V+ =
1
√
µ

(
D−1X+S+D

) 1
2 . (30)

Note that V 2
+ is unitarily similar to the matrix X

1
2
+S+X

1
2
+ and thus to

(V + αDX)
1
2 (V + αDS) (V + αDX)

1
2 .

This implies that the eigenvalues of V+ are the same as those of the matrix

Ṽ+ :=
(
(V + αDX)

1
2 (V + αDS) (V + αDX)

1
2

) 1
2
. (31)

By the definition of Ψ(V ), we have Ψ
(
Ṽ+

)
= Ψ(V ) .

Our aim is to find an upper bound for f(α) := Ψ (V+) − Ψ(V ) = Ψ
(
Ṽ+

)
− Ψ(V ) . To do this we assume for

the moment that the step size α is such that:

λi(V + αDX) ≥ 1
σ
, λi(V + αDS) ≥ 1

σ
, i = 1, 2..., n. (32)

Now ψ is e-convex, and using (29), so

Ψ
(
Ṽ+

)
= Ψ

((
(V + αDX)

1
2 (V + αDS) (V + αDX)

1
2

) 1
2
)
≤ 1

2 [Ψ (V + αDX) + Ψ (V + αDS)] .

Thus we have f(α) ≤ f1(α), where

f1(α) := 1
2 [Ψ (V + αDX) + Ψ (V + αDS)]−Ψ(V )

10



is convex in α, since Ψ is convex. Obviously, f(0) = f1(0) = 0. Taking the derivative to α, we get

f ′1(α) = 1
2Tr (ψ′ (V + αDX)DX + ψ′ (V + αDS)DS) .

This gives, using the last equality in (11) and (20),

f ′1(0) = 1
2Trψ

′(V ) (DX +DS) = − 1
2Tr

(
ψ′(V )2

)
= −2δ(V )2. (33)

Differentiating once more, we obtain

f ′′1 (α) = 1
2Tr

(
ψ′′ (V + αDX)D2

X + ψ′′ (V + αDS)D2
S

)
. (34)

Below we use the following notation:

λ1(V ) := min(λi(V )), δ := δ(V ).

Lemma 5.4 One has
f ′′1 (α) ≤ 2δ2 ψ′′ (λ1(V )− 2αδ) .

Proof. The last equality in (11) and (20) imply that ‖DX +DS‖2 = ‖DX‖2 + ‖DS‖2 = 4δ2. Thus we have
|λn(DX)| ≤ 2δ and |λn(DS)| ≤ 2δ. Using Lemma 5.2 and V + αDX � 0, Therefore,

λi(V + αDX) ≥ λ1(V )− α |λn(DX)| ≥ λ1(V )− 2αδ, 1 ≤ i ≤ n, (35)

λi(V + αDS) ≥ λ1(V )− α |λn(DS)| ≥ λ1(V )− 2αδ, 1 ≤ i ≤ n. (36)

Due to (15), ψ′′ is monotonically decreasing, so using the above inequalities, we have

ψ′′(λi(V + αDX)) ≤ ψ′′(λ1(V )− 2αδ), ψ′′(λi(V + αDS)) ≤ ψ′′(λ1(V )− 2αδ), (37)

this implies that

ψ′′(V + αDX) ≤ ψ′′(λ1(V )− 2αδ)E, ψ′′(V + αDS) ≤ ψ′′(λ1(V )− 2αδ)E, (38)

Now, using (12), and ‖DX‖2 + ‖DS‖2 = 4δ2, by (34) we obtain

f ′′1 (α) ≤ 1
2 ψ

′′ (λ1(V )− 2αδ)
n∑
i=1

(
λi(D2

X) + λi(D2
X)
)

= 2δ2 ψ′′ (λ1(V )− 2αδ) .

This proves the lemma. 2

Putting vi = λi(X), 1 ≤ i ≤ n, we have

f ′′1 (α) ≤ 2δ2 ψ′′ (v1 − 2αδ) ,

which is the same inequality as inequality (41) in [3]. From this stage on we can apply exactly the same argument
as in the LO case [3] to obtain the following results which require no further proof.

Lemma 5.5 One has f ′1(α) ≤ 0 if α satisfies the inequality

− ψ′ (λ1(V )− 2αδ) + ψ′ (λ1(V )) ≤ 2δ. (39)

Lemma 5.6 With ρ as defined in (19), as the inverse function of − 1
2ψ

′(t) for t ∈ (0, 1], the step size

ᾱ :=
1
2δ

[ρ (δ)− ρ (2δ)] (40)

is the largest possible solution of inequality (39).
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Lemma 5.7 Let ρ and ᾱ be as defined in Lemma 5.6. Then

ᾱ ≥ 1
ψ′′ (ρ (2δ))

. (41)

As in the LO case, we use

α̃ =
1

ψ′′ (ρ(2δ))
, (42)

as the default step size. By Lemma 5.7 we have α̃ ≤ ᾱ.

Lemma 5.8 If the step size α is such that α ≤ ᾱ then

f(α) ≤ −α δ2. (43)

Theorem 5.9 Let ρ be as defined in Lemma 5.6 and α̃ as in (42). Then

f(α̃) ≤ − δ2

ψ′′ (ρ(2δ))
≤ − δ

16σ
. (44)

Proof. Since α̃ ≤ ᾱ, Lemma 5.8 gives f(ᾱ) ≤ −α̃ δ2, where α̃ = 1
ψ′′(ρ(2δ)) . Thus the first inequality follows.

To obtain the inverse function t = ρ(s) of − 1
2ψ

′(t) for t ∈ ( 1
σ , 1] we need to solve t from the equation

−
(
t− eσ(t−1)

)
= 2s.

This implies, using t ≤ 1,
eσ(1−t) = 2s+ t ≤ 2s+ 1.

Hence, putting t = ρ(2δ), which is equivalent to 4δ = −ψ′(t), we get

eσ(1−t) ≤ 4δ + 1. (45)

Using (45), and σ ≥ 1, thus we have

α̃ =
1

ψ′′(t)
=

1
1 + σeσ(1−t) ≥

1
1 + σ (4δ + 1)

≥ 1
σ (4δ + 2)

.

Also using (23) (i.e., 6δ ≥ 1) we get,

α̃ ≥ 1
σ (2 + 4δ)

=
1

2σ (1 + 2δ)
≥ 1

2σ (6δ + 2δ)
=

1
16σδ

.

Denote
ᾱ :=

1
16σδ

; (46)

this will be our default step size. Hence

f(α̃) ≤ − δ2

16σδ
= − δ

16σ
.

Thus the theorem follows. 2

Substitution in (21) gives

f(α̃) ≤ − δ

16σ
≤ −Ψ

1
2

96σ
.

Finally, to validate the above analysis we need to show that α̃ = α satisfies (32). Using (46) and Lemma 4.5, we
may write

λi(V + αDX) ≥ λ1(V )− 2αδ ≥ 3
2σ

− 2δ
16δσ

≥ 3
2σ

− 1
8σ

=
11
8σ

≥ 1
σ
, i = 1, 2, ..., n, (47)

and
λi(V + αDS) ≥ λ1(V )− 2αδ ≥ 3

2σ
− 2δ

16δσ
≥ 3

2σ
− 1

8σ
=

11
8σ

≥ 1
σ
, i = 1, 2, ..., n. (48)
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6 Complexity

In this section we drive the complexity bounds for large-update methods and small-update methods. An upper
bound for the total number of iterations is obtained by multiplying (the upper bound for) the number K by the
number of barrier parameter updates, which is bounded above by (cf. [12] Lemma II.17, page 116)

1
θ

log
n

ε
.

Lemma 6.1 (Proposition 1.3.2 in [11]) Let t0, t1, · · · , tK be a sequence of positive numbers such that

tk+1 ≤ tk − κt1−γk , k = 0, 1, · · · ,K − 1, (49)

where κ > 0 and 0 < γ ≤ 1. Then K ≤
⌊
tγ0
κγ

⌋
.

Lemma 6.2 if K denotes the number of inner iterations, we have

K ≤ 192Ψ
1
2
0 .

Proof. The definition of K implies ΨK−1 > τ and ΨK ≤ τ and

Ψk+1 ≤ Ψk − κ (Ψk)
1−γ

, k = 0, 1, · · · ,K − 1,

with κ = 1
96 and γ = 1

2 . Application of Lemma 6.1, with tk = Ψk yields the desired inequality. 2

Using ψ0 ≤ L, and Lemma 6.2 we obtain the following upper bound on the total number of iterations:

192σL
1
2

θ
log

n

ε
. (50)

6.1 Large-update

We just established that (50) is an upper bound for the total number of iterations, where the number L is as given
in (24):

L = nψ

(
ρ
(
τ
n

)
√

1− θ

)
. (51)

Using

ψ(t) =
t2 − 1

2
+
eσ(1−t) − 1

σ
≤ t2 − 1

2
, for t ≥ 1,

and (22), by substitution in (51) we obtain

L ≤ n

(
%( τ

n )√
1−θ

)2

− 1

2
≤ n

2 (1− θ)

(
θ + 2

√
2
τ

n
+

2τ
n

)
=

(
θn+ 2

√
2τn+ 2τ

)
2 (1− θ)

.

Using (50), thus the total number of iterations is bounded above by

K

θ
log

n

ε
≤ 192σ
θ
√

2 (1− θ)

(
θn+ 2

√
2τn+ 2τ

) 1
2

log
n

ε
.

A large-update methods uses τ = O(n) and θ = Θ(1) and σ = O (log n). The right-hand side expression is then
O
(√
n log n log n

ε

)
, as easily may be verified.
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6.2 Small-update methods

For small-update methods one has τ = O(1) and θ = Θ
(

1√
n

)
. Using Lemma 3.2, with ψ′′(1) = 1 + σ, we then

obtain

L = nψ

(
%
(
τ
n

)
√

1− θ

)
≤ n (1 + σ)

2

(
%
(
τ
n

)
√

1− θ
− 1

)2

.

Using (22), then

L ≤ n (1 + σ)
2

1 +
√

2τ
n√

1− θ
− 1

2

.

Using 1−
√

1− θ = θ
1+
√

1−θ ≤ θ, this leads to

L ≤ (1 + σ)
2 (1− θ)

(
θ
√
n+

√
2τ
)2

= σO(1) = O(σ). (52)

Using (26) (i.e., σ = 1 + 2 log (1 + L)), by (52), we have

σ ≤ 1 + 2 log (1 +O(σ)) . (53)

This implies that σ = O(1). Then L = O(1). Using (50), thus the total number of iterations is bounded above by

K

θ
log

n

ε
≤ 192

θ
O(1) log

n

ε
= O

(√
n log

n

ε

)
.

7 Concluding Remarks

If a better iteration complexity can be proved for linear optimization, the tools developed in this paper will make
it possible to extend these results to somidefinite optimization problem. We showed that the iteration bound
of a large-update interior-point method for SDO based on the finite kernel functions considered in this paper is
O
(√
n log n log n

ε

)
, which improves the classical iteration complexity with a factor almost

√
n. For small-update

method we obtain the iteration bound, O
(√
n log n

ε

)
. In both cases these are the best known iteration bounds.
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