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Exponential time algorithms for the minimum
dominating set problem on some graph classes

Serge Gaspers∗ Dieter Kratsch† Mathieu Liedloff†

21st April 2006

Abstract

The Minimum Dominating Set problem remains NP-hard when restricted to
chordal graphs, circle graphs andc-dense graphs (i.e.|E| ≥ cn2 for a constantc,
0 < c < 1/2). For each of these three graph classes we present an exponential
time algorithm solving the Minimum Dominating Set problem. The running times
of those algorithms areO(1.4173n) for chordal graphs,O(1.4956n) for circle
graphs, andO(1.2303(1+

√
1−2c)n) for c-dense graphs.

1 Introduction

During the last years there has been a growing interest in the design of exact ex-
ponential time algorithms. Woeginger has written a nice survey on the subject [19]
emphasizing the major techniques used to design exact exponential time algorithms.
We also refer the reader to the recent survey of Fomin et al. [9] discussing some new
techniques in the design of exponential time algorithms. In particular they discuss
treewidth based techniques, Measure & Conquer and memorization.

Known results. A setD ⊆ V of a graphG = (V,E) is dominating if every vertex
of V \D has a neighbor inD. The Minimum Dominating Set problem(MDS) asks
to compute a dominating set of the input graph of minimum cardinality.

Exact exponential time algorithms for the Minimum Dominating Set problem have
not been studied until recently. By now there is a large interest in this particular prob-
lem. In 2004 three papers with exact algorithms forMDShave been published. In
[10] Fomin et al. presented anO(1.9379n) time algorithm for general graphs and al-
gorithms for split graphs, bipartite graphs and graphs of maximum degree three with
running timeO(1.4143n), O(1.7321n), O(1.5144n), respectively. Exact algorithms
for MDSon general graphs have also been given by Randerath and Schiermeyer [16]
and by Grandoni [12]. Their running times areO(1.8899n) andO(1.8026n), respec-
tively.

These algorithms have been significantly improved by Fomin et al. in [8] where
the authors obtain the currently fastest exact algorithm forMDS. Their search tree al-
gorithm is based on the so-called Measure & Conquer approach, and the upper bounds
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on the worst case running times are established by the use of non standard measures.
TheMDSalgorithm has running timeO(1.5263n) and needs polynomial space. Using
memorization one can speed up the running time toO(1.5137n) needing exponential
space then. Both variants are based on algorithms for the minimum set cover problem
where the input consists of a universeU and a collectionS of subsets ofU . These al-
gorithms need running timeO(1.2354|U|+|S|) and polynomial space, or running time
O(1.2303|U|+|S|) and exponential space [8].

Finally, Fomin and Høie used a treewidth based approach to establish an algorithm
to compute a minimum dominating set for graphs of maximum degree three [7] with
running timeO(1.2010n).

It is known that the problemMDSis NP-hard when restricted to chordal graphs
[5], and circle graphs [13]. Furthermore it is not hard to show thatMDSis NP-hard for
c-dense graphs.

Our results. In this paper we study the Minimum Dominating Set problem on
three graph classes and we obtain algorithms with a running timeO(αn) better than
the best known running time for an algorithm solvingMDSon general graphs, i.e.
O(1.5137n).

In Section 3 we present an exact algorithm solving theMDSproblem on chordal
graphs in timeO(1.4173n). In Section 4 anO(1.4956n) time algorithm to compute
a minimum dominating set for circle graphs is established. In Section 5 we give an
O(1.2303n(1+

√
1−2c)) time algorithm forc-dense graphs, i.e. for all graphs with at

leastcn2 edges, wherec is a constant with0 < c < 1/2.
Our algorithms rely heavily on the minimum set cover algorithms of Fomin et al.

[8]. Furthermore the algorithms for chordal graphs and for circle graphs are treewidth
based. Both of them use different algorithms for graphs of small treewidth, i.e. at most
tn, and for graphs of large treewidth, i.e. larger thantn, wheret is chosen to balance
the running times of those two algorithms.

The algorithm for circle graphs relies on an upper bound of the treewidth of circle
graphs in terms of the maximum degree which is interesting in its own. A related result
for graphs of small chordality is provided in [4]. We are not aware of any previous
result of this type for circle graphs.

2 Preliminaries

Let G = (V,E) be an undirected and simple graph. For a vertexv ∈ V we denote by
N(v) the neighborhood ofv and byN [v] = N(v) ∪ {v} the closed neighborhood of
v. For a given subset of verticesS ⊆ V , G[S] denotes the subgraph ofG induced by
S. The maximum degree of a graphG is denoted by∆(G) or by∆ if it is clear from
the context which graph is meant.

A clique is a setC ⊆ V of pairwise adjacent vertices. The maximum cardinality of
a clique in a graphG is denoted byω(G). A dominating setD of a graphG = (V,E)
is a subset of vertices such that every vertex ofV −D has at least one neighbor inD.
The minimum cardinality of a dominating set ofG is the domination number ofG,
and it is denoted byγ(G).

Major tools of our paper are tree decompositions and treewidth of graphs. The
notions have been introduced by Robertson and Seymour in [17].
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Definition 1 (Tree decomposition). Let G = (V,E) be a graph. Atree decomposi-
tion of G is a pair({Xi : i ∈ I}, T ) where eachXi, i ∈ I, is a subset ofV andT is a
tree with elements ofI as nodes such that we have the following properties :

1. ∪i∈IXi = V ;

2. ∀{u, v} ∈ E, ∃i ∈ I s.t.{u, v} ⊆ Xi;

3. ∀i, j, k ∈ I, if j is on the path fromi to k in T thenXi ∩Xk ⊆ Xj .

The width of a tree decomposition is equal tomaxi∈I |Xi| − 1.

Definition 2 (Treewidth). The treewidthof a graphG is the minimum width over all
its tree decompositions and it is denoted bytw(G).

A tree decomposition is calledoptimal if its width is tw(G).

Definition 3 (Nice tree decomposition).A nice tree decomposition({Xi : i ∈ I}, T )
is a tree decomposition satisfying the following properties:

1. every node ofT has at most two children;

2. If a nodei has two childrenj andk, thenXi = Xj = Xk (i is a Join Node);

3. If a nodei has one childj, then either

(a) |Xi| = |Xj |+ 1 andXj ⊂ Xi (i is a Insert Node);

(b) |Xi| = |Xj | − 1 andXi ⊂ Xj (i is a Forget Node).

Lemma 4 ([14]). For a constantk, given a tree decomposition of a graphG of width
k andO(n) nodes, wheren is the number of vertices ofG, one can find a nice tree
decomposition ofG of widthk and with at most4n = O(n) nodes inO(n) time.

Structural and algorithmic properties of graph classes will be mentioned in the
corresponding sections. For definitions and properties of graph classes not given in
this paper we refer to [6, 11].

3 Domination on chordal graphs

In this section we present an exponential time algorithm for the minimum dominating
set problem on chordal graphs.

A graph ischordal if it has no chordless cycle of length greater than3. Chordal
graphs are a well-known graph class with its own chapter in Golumbic’s monograph
[11]. Split graphs, strongly chordal graphs and undirected path graphs are well-studied
subclasses of chordal graphs.

We shall use the clique tree representation of chordal graphs that we view as a tree
decomposition of the graph. A treeT is asclique treeof a chordal graphG = (V,E)
if there is a bijection between the maximal cliques ofG and the nodes ofT such that
for eachv ∈ V the cliques containingv induce a subtree ofT . It is well-known that
tw(G) ≥ ω(G) − 1 for all graphs. Furthermore the clique tree of a chordal graphG
is an optimal tree decomposition ofG, i.e. its width isω(G)− 1.
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Lemma 5. There is anO∗(3tw(G)) time algorithm to compute a minimum dominating
set on chordal graphs.1

Proof. Alber et al. have shown in [1] that a minimum dominating set of a graph can
be computed in timeO(4ln) if a tree decomposition of widthl of the input graph
is known. Their algorithm uses a nice tree decomposition of the input graph and a
standard bottom up dynamic programming on the tree decomposition. The crucial
idea is to assign three different “colors” to the vertices of a bag:

• “black”, meaning that the vertex belongs to the dominating set,

• “white”, meaning that the vertex is already dominated,

• “gray”, meaning that the vertex is not yet dominated.

Now let us assume that the input graph is chordal. A clique treeT of G can be
computed in linear time [3]. By Lemma 4, a nice optimal tree decomposition ofG
can be computed from the optimal tree decompositionT in time O(n) and it has at
most4n nodes. SinceG is chordal every bag in the nice tree decomposition is a clique.
Therefore no bag can have both a black vertex and a gray vertex. Due to this restriction
there are at most2|X| possible so-called vector colorings of a bagX (instead of3|X|

for general graphs).
Consequently the running time of a modification of the algorithm of Alber et al. to

chordal graphs isO∗(3tw(G)), where the only modification is to restrict allowed vector
colorings of a bag such that black and gray vertices simultaneously are forbidden.

The following theorem shows that graphs with sufficiently many vertices of high
degree allow to speed up theMDSalgorithm for general graphs.

Theorem 6. Let t > 0 be a fixed integer. Then there is aO(1.23032n−t) time
algorithm to solve theMDSproblem if the input graph fulfills the condition|{v ∈
V : d(v) ≥ t− 2}| ≥ t.

Proof. Let t > 0 be an integer andG = (V,E) a graph fulfilling the conditions of
the theorem. LetT = {v ∈ V : d(v) ≥ t − 2}; thus |T | ≥ t. Notice that for
each minimum dominating setD of G either at least one vertex ofT belongs toD, or
T ∩D = ∅.

This allows to find a minimum dominating set ofG by the following branching
in two types of subproblems: “v ∈ D” for all v ∈ T , and “T ∩ D = ∅”. In both
cases we shall apply the minimum set cover algorithm of [8] to solve the subproblem.
Recall that the minimum set cover instance corresponding to theMDSproblem for
G has universeU = V andS = {N [u] : u ∈ V }, and thus|U| + |S| = 2n
[8]. Consequently the running time for a subproblem will beO(1.23032n−x), where
x is the number of vertices plus the number of subsets eliminated from the original
minimum set cover problem for the graphG.

Now let us consider the two types of subproblems. For every vertexv ∈ T , we
choosev in the minimum dominating set and we execute the Minimum Set Cover
algorithm presented in [8] on an instance of size at most2n− (d(v)+1)−1 ≤ 2n− t.
Indeed, we remove from the universeU the elements ofN [v] and we remove fromS

1Modified big-Oh notation suppresses polynomially bounded factors.
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the set corresponding tov. And we branch in the case “discardT ”: In this case we
have an instance of set cover of size at most2n− |T | = 2n− t since for everyv ∈ T
we remove fromS the set corresponding to eachv.

Corollary 7. There is an algorithm taking as input a graphG and a cliqueC of G
and solving theMDSproblem in timeO(1.23032n−|C|).

Proof. Note that every vertex inC has degree at least|C| − 1.

Our algorithm on chordal graphs works as follow: If the graph has a large treewidth
then it necessarily has a large clique and we apply Corollary 7. Otherwise the graph
has a small treewidth and we use Lemma 5.

Theorem 8. There is anO(1.4173n) time algorithm to solve theMDSproblem on
chordal graphs.

Proof. If tw(G) ≤ 0.3174n, by Lemma 5, MDS is solvable in time
O(30.3174n) = O(1.4173n). Otherwise,tw(G) > 0.3174n and using Corollary 7
we obtain anO(1.23032n−0.3174n) = O(1.4173n) time algorithm.

4 Domination on circle graphs

In this section, we present an exponential time algorithm forMDSon circle graphs
in a treewidth based approach. For a survey on treewidth based exponential time
algorithms we refer to [9].

Definition 9. A circle graph is an intersection graph of chords in a circle. More
precisely,G is a circle graph, if there is a circle with a collection of chords, such that
one can associate in a one-to-one manner to each vertex a chord such that two vertices
are adjacent if and only if the corresponding chords have a nonempty intersection. The
circle and all its chords are called acircle modelof the graph.

Our algorithm heavily relies on a linear upper bound on the treewidth of circle
graphs in terms of the maximum degree:tw(G) ≤ 4∆(G)−1. This bound is interest-
ing in its own and it is likely that such bounds for circle graphs or other graph classes
can be used to construct exponential time algorithms for NP-hard problems on special
graph classes in a way similar to our approach for domination on circle graphs.

The algorithm uses the treewidth to branch into two different approaches: one for
“small treewidth” and one for “high treewidth”. If there are many vertices of high
degree in the input graph, Theorem 6 is used to continue, and if not, the treewidth is
“small” and we use anO∗(4tw(G)) algorithm to compute a minimum dominating set.

Theorem 10 ([1]). Suppose the graphG = (V,E) and a tree decomposition of width
` of G are given. Then there is anO(4`N) time algorithm to compute a minimum
dominating set ofG, whereN is the number of nodes of the tree decomposition.
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We start with a brief summary of Kloks’ algorithm to compute the treewidth of a
circle graph [15]. Consider the circle model of a circle graphG. Go around the circle
and place a new point (so-calledscanpoints) between every two consecutive end points
of chords. The treewidth of a circle graph can be computed by considering all possible
triangulations of the polygonP formed by the convex hull of these scanpoints. The
weight of a triangle in this triangulation is the number of chords in the circle model
that cross this triangle. The weight of the triangulationT is the maximum weight of
the triangles inT . The treewidth of the graph is the minimum weight minus one over
all triangulations ofP.

Theorem 11 ([15]). There exists anO(n3) algorithm to compute the treewidth of
circle graphs, that also computes an optimal tree decomposition.

We rely on the following technical definitions in our construction of a tree decom-
position of width at most4∆(G) − 1 for each circle graphG. The construction will
be given in the proof of Theorem 15.

Definition 12. A scanlines̃ = 〈ã, b̃〉 is a line segment connecting two scanpointsã
andb̃.

To emphasize the difference between scanlines and chords we use different nota-
tions: A chordv connecting two end pointsc andd in the circle model of the graph is
denotedv = [c, d]. We also use the following convention: two scanlines with empty
intersection or intersecting in exactly one scanpoint are said to benon-crossing.

Definition 13. Let s̃1 ands̃2 be two non-crossing scanlines. A scanlines̃ is between
s̃1 and s̃2 if every path from a scanpoint of̃s1 to a scanpoint of̃s2 along the circle
passes through a scanpoint ofs̃.

Definition 14. A setS of parallel scanlines is a set of scanlines respecting

(i) |S| ≤ 2 and the scanlines ofS are non-crossing, or

(ii) |S| > 2 and for every subset of three scanlines inS, one of these scanlines is
between the other two.

The following theorem is one of the main results of this paper. It shows that the
treewidthtw(G) of circle graphs can be upper bounded by a linear function of the
maximum degree∆(G) of the graphG. Surprisingly, no linear bound seems to have
been known prior to our work.

Theorem 15. For every circle graphG holdstw(G) ≤ 4∆(G)− 1.

Proof. We construct a triangulation of the polygonP such that every triangle has
weight at most4∆, i.e. it intersects at most4∆ chords, and therefore the correspond-
ing tree decomposition has width at most4∆− 1.

Notice that by the definition of a circle graph, every chord intersects at most∆
other chords. The triangulation of the polygonP is obtained by constructing the cor-
responding set of scanlinesS which is explained by the following procedures. Having
described our algorithm, we will analyze the number of chords that cross each triangle
and show that it is less than or equal to4∆.
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1. Description of the algorithm

• FirstCut(). Start withS = ∅. Choose a chordv in the circle model of the graphG.
Call ScanChord(S, v). Call ParaCuts(S).

• ScanChord(S, v = [a, b]). Let c̃ and c̃′ (resp. d̃ and d̃′) be the two scanpoints
closest toa (resp. b) on the circle such that the order of the points on the circle
is c̃, a, c̃′, d̃′, b and d̃. Now the algorithm adds the following three scanlines toS:
s̃1 = 〈c̃, d̃〉, s̃2 = 〈c̃′, d̃′〉 ands̃3 = 〈c̃, d̃′〉. If c̃ = d̃ (or c̃′ = d̃′) then we add only the
scanlinẽs2 (or s̃1).

• ParaCuts(S). While S is not a maximal (by inclusion) parallel set of scanlines in
P, choose a chordv such thatS remains parallel when callingScanChord(S, v). Call
ScanChord(S, v). If S is maximal parallel, every polygon insideP is delimited by
one or two scanlines. We call the polygons that are delimited by one scanlineouter
polygons, and those that are delimited by two scanlinesinner polygons(see Fig. 1).
There are exactly two outer polygons now, one delimited bys̃1 and the other one by
s̃2. Call TriangOuter( S, s̃1) andTriangOuter( S, s̃2). For every inner polygon, call
TriangInner( S, t̃1, t̃2) wheret̃1 andt̃2 are the two scanlines delimiting this polygon.

• TriangOuter( S, s̃ = 〈ã, b̃〉). The scanlinẽs divides the polygonP into two parts.
Call Ps̃ the polygon delimited bỹs and the part ofP that does not contain any scan-
lines. Add a scanline betweeña and every scanpoint ofPs̃ except̃a andb̃ to S.

Figure 1: ParaCuts Figure 2: TriangInner

• TriangInner( S, s̃1 = 〈ã1, b̃1〉, s̃2 = 〈ã2, b̃2〉). Let the end points of̃s1 and s̃2 be
orderedã1, b̃1, b̃2, ã2 around the circle. W.l.o.g. assume that fewer chords cross the
line ã1, ã2 than the linẽb1, b̃2. Now add a new scanlinẽt = 〈ã1, ã2〉 to S. Call
OuterParaCuts(S, t̃). Go around the circle from̃b1 to b̃2 (without passing through
ã1 andã2). Every time one passes through an end pointei, i = 1, ..., k, (wherek is
the number of chords that crosss̃1 and b̃1, b̃2) of a chordvi that crosses̃s1, add the
following scanlines toS:

• s̃′i = 〈ã1, d̃i〉 with d̃i being the scanpoint immediately followingei

• s̃′′i = 〈d̃i, d̃i−1〉 with d̃0 = b̃1

• s̃′′′i = 〈d̃i−1, d̃
′
i〉 with d̃′i being the scanpoint just beforẽdi.
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To triangulate the part of the polygonP delimited bys̃′′′i that does not intersect any
scanlines, executeOuterParaCuts(S, s̃′′′i ). Finally, add the scanlines̃s3 = 〈d̃k, b̃2〉
ands̃4 = 〈b̃2, ã1〉 to S (see Fig. 2). ExecuteOuterParaCuts(S, s̃3).

• OuterParaCuts(S, s̃ = 〈ã, b̃〉). This procedure is similar toParaCuts on the outer
polygon delimited bỹs. CallPs̃ the polygon delimited bỹs that does not contain any
scanlines. Create a new set of scanlinesS′ = {s̃}. While S′ is not a maximal (by
inclusion) parallel set of scanlines forPs̃, choose a chordv in Ps̃ such thatS′ remains
parallel when callingScanChord(S′, v). Call ScanChord(S′, v). After that there is
exactly one outer polygon inPs̃, delimited by a scanlinẽt. Call TriangOuter( S′, t̃).
For every inner polygon inPs̃, call TriangInner( S′, t̃1, t̃2) where t̃1 and t̃2 are the
two scanlines delimiting this polygon. Add the set of new scanlinesS′ to S.

2. Analysis of the algorithm
In the main procedure,FirstCut , no scanlines are directly added toS.
Every timeScanChord is executed, one or three scanlines are added toS. They

form at most two triangles:̃c, d̃, d̃′ andc̃, d̃′, c̃′. Each of them intersects at most∆ + 1
chords:v and the chords crossingv. Furthermore, at most∆ chords cross̃s′ ands̃′′,
precisely the chords that crossv.

In the procedureParaCuts, no scanlines are directly added toS. Moreover, when
it calls the proceduresTriangOuter andTriangInner , the setS is maximal parallel,
which is a necessary condition for these procedures.

WhenTriangOuter is called, two conditions are always respected:
(i) S is maximal parallel by inclusion, and
(ii) at most2∆ chords cross̃s.
The condition (i) implies that every chord that intersectsPs̃ crosses̃s. Together with
condition (ii) we obtain that at most2∆ chords intersectPs̃. So any triangulation of
Ps̃ produces triangles with weight at most2∆.

WhenTriangInner is called, three conditions are always respected:
(i) S is a maximal parallel set of scanlines, and
(ii) at most∆ chords cross one of the scanlines; suppose this iss̃2

(iii) at most2∆ chords cross̃s1.
There are at most3∆ chords inside the quadrilateralã1, b̃1, b̃2, ã2 since there is no
chord crossing both the lines̃a1, ã2 and b̃1, b̃2 (becauseS is maximal parallel). As
fewer chords cross̃a1, ã2 than b̃1, b̃2, at most3/2∆ chords cross the new scanline
t̃ = 〈ã1, ã2〉. So, when we callOuterParaCuts(S, t̃) the condition that̃t intersects
at most2∆ chords is respected. For every end pointei of a chordvi that crosses̃s1,
we create two triangles:̃a1, d̃i−1, d̃i and d̃i, d̃i−1, d̃

′
i. The first triangle intersects at

most4∆ chords: at most2∆ chords that cross̃s1 (but neithervi norvi−1), at most∆
chords that crossvi−1 and at most∆ chords that crossvi. Moreover, there are at most
2∆ + 1 chords that intersect̃s′′i and at most2∆ chords intersect̃s′′′i . So, the weight of
the triangled̃i, d̃i−1, d̃

′
i is at most2∆ + 1 and when we callOuterParaCuts(S, s̃′′′i )

we respect the condition that the second parameter of the procedure is a scanline that
crosses at most2∆ chords.
After adding the scanlines̃s3 and s̃4 we obtain two more triangles:̃a1, d̃k, b̃2 and
ã1, b̃2, ã2. The first one intersects at most7/2∆ chords: at most2∆ that cross̃s1, at
most∆ that crossvk and at most∆ that cross̃s2 of which we have already counted
1/2∆ crossings̃1. At most5/2∆ chords intersect the trianglẽa1, b̃2, ã2: at most2∆
that intersect̃s1 and at most∆ that intersect̃s2 of which we have already counted
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1/2∆ crossings̃1. Moreover at most2∆ chords cross̃s3, soOuterParaCuts(S, s̃3)
has valid parameters.

In the procedureOuterParaCuts, no scanlines are directly added toS. The fol-
lowing condition is always respected:
(i) at most2∆ chords cross̃s.
During this procedure, we consider only the polygonPs̃. A new set of scanlines
S′ = {s̃} is created and is made maximal parallel by inclusion by callingScanChord.
If {s̃} is already maximal parallel, thenTriangOuter( S′, s̃) is called and the two con-
ditions of that procedure are respected. If other scanlines had to be added toS′ to make
it maximal parallel, the procedureTriangOuter( S′, t̃) is called for the outer polygon
wheret̃ is a scanline intersecting at most∆ chords. Moreover, the procedureTriang-
Inner(S, t̃1, t̃2) is called for the inner polygons. Every scanline delimiting the inner
polygons intersects at most∆ chords, except̃s that can intersect up to2∆ chords.
So, we respect the condition forTriangInner that one scanline intersects at most∆
chords and the other one at most2∆ chords. Finally,S′ is added toS which does not
create any new triangles.

We have provided a recursive algorithm to triangulate the polygonP and have
shown that the obtained triangulation does not contain triangles intersecting more than
4∆ chords. Thus the corresponding tree decomposition ofG has width at most4∆−1.

Linear upper bounds for the treewidth in terms of the maximum degree seem to
have an immediate use in the design of treewidth based exact algorithms. Using The-
orem 16 we obtain an algorithm to compute a minimum dominating set for circle
graphs in timeO(1.4956n). The algorithmDS-circle is simple and also based on the
algorithms of Theorem 10 and Theorem 6.

Algorithm DS-circle(circle graph G = (V,E); circle model of G)
Input : A circle graphG and its circle model.
Output : The domination numberγ(G) of G.

λ← 0.2322
X ← ∅
Compute the treewidthtw(G) of G using theorem 11
while tw(G−X) ≥ λn do

X ← X ∪ {u} whereu is a vertex ofG−X of highest degree

if |X| ≥ λn/4 then
use the algorithm of Theorem 6 and return the result

else
use the algorithm of Theorem 10 and return the result

Theorem 16. Given a circle graphG = (V,E), algorithm DS-circle computes a
minimum dominating set ofG in timeO(1.4956n).

Proof. The algorithm constructs a vertex setX = {x1, x2, ..., xk} starting from an
empty set by adding maximum degree vertices of the remaining graph to the setX
until tw(G−X) < λn.
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When the vertexxi is added toX = {x1, x2, ..., xi−1}, we havetw(G −X) ≥ λn.
The vertexxi ∈ V − X is of highest degree inG − X, i.e. d(xi) = ∆(G − X).
We haved(xi) > tw(G − X)/4 by Theorem 15. Now,d(xi) > λn/4 because
tw(G−X) ≥ λn. So,∀xi ∈ X, d(xi) > λn/4.

In the case|X| ≥ λn/4, we have a subsetX ⊆ V such that∀v ∈ X, d(v) >
λn/4. So, according to Theorem 6, a minimum dominating set can be found in time
O(1.23032n−λn/4) = O(1.4956n).

In the other case,|X| < λn/4 and tw(G − X) < λn. As adding one ver-
tex to a graph increases its treewidth at most by one,tw(G) < λn + λn/4. Us-
ing the algorithm of Theorem 10, a minimum dominating set is determined in time
O∗(4tw(G)) = O(4(5λ/4)n) = O(1.4956n).

5 Domination on dense graphs

It is known that problems like Independent Set, Hamiltonian Circuit and Hamilto-
nian Path remain NP-complete when restricted to graphs having a large number of
edges [18]. It is not hard to show that theMDSproblem onc-dense graph is also NP-
complete. A proof is given in the Appendix. In this section we present an exponential
time algorithm forMDSproblem onc-dense graphs.

Definition 17. A graphG = (V,E) is said to bec-dense(or simply dense if there is
no ambiguity), if|E| ≥ cn2 wherec is a constant with0 < c < 1/2.

The main idea of our algorithm is to find a large subset of vertices of large degree.
Despite the approach of the previous sections, neither clique trees nor tree decompo-
sitions will be used here.

Lemma 18. For some fixed1 ≤ t ≤ n, 1 ≤ t′ ≤ n − 1, any graphG = (V,E) with

|E| ≥ 1 +
(t− 1)(n− 1) + (n− t + 1)(t′ − 1)

2
has a subsetT ⊆ V such that

(i) |T | ≥ t,

(ii) ∀v ∈ T , d(v) ≥ t′.

Proof. Let 1 ≤ t ≤ n, 1 ≤ t′ ≤ n− 1, and a graphG = (V,E) such that there is no
subsetT with the previous properties. Then for any subsetT ⊆ V of size at leastt,
∃v ∈ T such thatd(v) < t′. Then a such graph can only have at mostk = k1 + k2

edges where :k1 = (t − 1)(n − 1)/2 which corresponds tot − 1 vertices of degree
n−1 andk2 = (n− t+1)(t′−1) which corresponds ton− (t−1) vertices of degree
t′ − 1. Observe that if one of then− (t− 1) vertices has a degree greater thant′ − 1
then the graph has a subsetT with the required properties, a contradiction.
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Lemma 19. Everyc-dense graphG = (V,E) has a setT ⊆ V fulfilling

(i) |T | ≥ n−
√

9− 4n + 4n2 − 8cn2 − 3
2

,

(ii) ∀v ∈ T , d(v) ≥ n−
√

9− 4n + 4n2 − 8cn2 + 1
2

.

Proof. We apply Lemma 18 witht′ = t−2. Since we have a dense graph,|E| ≥ cn2.
Using inequality1 + ((t− 1)(n− 1) + (n− t + 1)(t− 3))/2 ≥ cn2 we obtain that in
a dense graph the value oft in Lemma 18 is such thatn + 3−

√
9−4n+4n2−8cn2

2 ≤ t ≤
n ≤ n + 3+

√
9−4n+4n2−8cn2

2 .

Theorem 20. For any c with 0 < c < 1/2, there is aO(1.2303n(1+
√

1−2c)) time
algorithm to solve theMDSproblem onc-dense graphs.

Proof. Combining Theorem 6 and Lemma 19 we obtain an algorithm for solving the
Minimum Dominating Set problem in time

1.23032n−(n−
√

9−4n+4n2−8cn2−3
2 ) = O(1.2303n(1+

√
1−2c)).

6 Conclusions

In this paper we presented several exponential time algorithms to solve the Minimum
Dominating Set problem on graph classes for which this problem remains NP-hard.
All these algorithms are faster than the best known algorithm to solveMDSon general
graphs. We would like to mention that any faster algorithm for the Minimum Set
Cover problem, i.e. of running timeO(α|U|+|S|) with α < 1.2303, could immediately
be used to speed up all our algorithms.

Besides classes of sparse graphs (see e.g. [7]) two more classes are of great interest
in this respect: split and bipartite graphs. For split graphs, combining ideas of [10] and
[8] one easily obtains anO(1.2303n) algorithm. Unfortunately, despite our efforts we
could not construct an exponential time algorithm to solveMDSon bipartite graphs
beating the best known algorithm for general graphs.
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Appendix

An easy way to show that an NP-complete graph problem remains NP-complete for
c-dense graphs, for anyc with 0 < c < 1/2, is to construct the graphG′ by adding a
sufficiently large complete graph as new component to the original graphG such that
G′ is c-dense. This simple reduction can be used to show that various NP-complete
graph problems remain NP-complete forc-dense graphs. To name a few problems:
INDEPENDENTSET (sinceα(G′) = α(G) + 1), DOMINATING SET (sinceγ(G′) =
γ(G) + 1), PARTITION INTO CLIQUES (sinceκ(G′) = κ(G) + 1), VERTEX COVER,
FEEDBACK VERTEX SET and MINIMUM FILL -IN.

Theorem 21. For any constantc with 0 < c < 1/2, the problem to decide, whether a
c-dense graph has a dominating set of size at mostk, is NP-complete.

Proof. Let c be any constant with0 < c < 1/2. Clearly DOMINATING SET, and thus
also DOMINATING SET for c-dense graphs is in NP.

It is show in [2] that the problem of determining if a split graph has a dominating
set of sizek is NP-complete. We shall provide a polynomial many-one reduction from
DOMINATING SET for split graphs to DOMINATING SET for c-dense graphs. Letk be
an integer andG = (V,E) a split graph whereI andC form a partition of the vertices
of G such thatI is an independent set andC is a clique.

First we construct ac-dense graphGD = (VD, ED) with ED ≥ c · |VD|2. The
graphGD = (VD, ED) is obtained from the graphG = (C ∪ I, E) by adding a
cliqueC ′ of sized(1+4c|I∪C|+

√
1 + 8c|I ∪ C|(1 + |I ∪ C|))/(2−4c)e to G and

adding all edges with one end point inC and the other inC ′. Note that this guarantees
thatGD is a split graph with a partition ofVD into an independent setI and a clique
C ∪ C ′. Furthermore the number of edges ofGD is greater thanc(|I ∪ C| + |C ′|)2,
and henceGD is ac-dense graph.

Now we show thatG has a dominating set of size a mostk if and only if GD has
a dominating set of size at mostk.

First, assume thatGD has a dominating setD with |D| ≤ k. SinceNGD
[x′] ⊆

NGD
[x] for all x′ ∈ C ′ and allx ∈ C we may replace each vertex ofC ′ belonging to

D by a vertex ofC. In this way we obtain a dominating setD′ ⊆ I ∪ C of GD such
that|D′| ≤ k. ConsequentlyD′ is also a dominating set ofG.

Conversely, assume thatD is a dominating set ofG of size at mostk. If D contains
at least one vertex ofC thenD is also a dominating set ofGD since each vertex ofC ′

is adjacent to all vertices ofC. Otherwise,D contains no vertex ofC and thus each
vertex inC has at least one neighbor inD ∩ I. In this second case we replace any
vertexs ∈ D ∩ I by a neighbort ∈ C and obtainD′ = (D \ {s})∪ {t}. ThenD′ is a
dominating set ofG sinceNGD

[s] ⊆ NGD
[t]. Furthermore, sinceD′ contains a vertex

of C it is also a dominating set ofGD. HenceGD has in each case a dominating set
of size at mostk.

Thus we obtain that the problem of deciding whether ac-dense graph has a domi-
nating set of size at mostk is NP-complete.
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