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Serge Gaspers Dieter Kratsch Mathieu Liedloff
21st April 2006

Abstract
The Minimum Dominating Set problem remains NP-hard when restricted to
chordal graphs, circle graphs andense graphs (i.¢E| > cn? for a constant,
0 < ¢ < 1/2). For each of these three graph classes we present an exponential
time algorithm solving the Minimum Dominating Set problem. The running times
of those algorithms ar®(1.4173™) for chordal graphsQ(1.4956™) for circle
graphs, and)(1.23031*+V1=297) for c-dense graphs.

1 Introduction

During the last years there has been a growing interest in the design of exact ex-
ponential time algorithms. Woeginger has written a nice survey on the subjéct [19]

emphasizing the major techniques used to design exact exponential time algorithms.
We also refer the reader to the recent survey of Fomin etlal. [9] discussing some new
techniques in the design of exponential time algorithms. In particular they discuss

treewidth based techniques, Measure & Conquer and memorization.

Known results. AsetD C V of agraphG = (V, E) is dominating if every vertex
of V'\ D has a neighbor ith. The Minimum Dominating Set proble{DS) asks
to compute a dominating set of the input graph of minimum cardinality.

Exact exponential time algorithms for the Minimum Dominating Set problem have
not been studied until recently. By now there is a large interest in this particular prob-
lem. In 2004 three papers with exact algorithms KtDShave been published. In
[10] Fomin et al. presented an(1.9379™) time algorithm for general graphs and al-
gorithms for split graphs, bipartite graphs and graphs of maximum degree three with
running timeO(1.4143™), O(1.7321™), O(1.5144™), respectively. Exact algorithms
for MDSon general graphs have also been given by Randerath and Schierméyer [16]
and by Grandoni[12]. Their running times ap&1.8899™) andO(1.8026™), respec-
tively.

These algorithms have been significantly improved by Fomin et al.lin [8] where
the authors obtain the currently fastest exact algorithnMDIS Their search tree al-
gorithm is based on the so-called Measure & Conquer approach, and the upper bounds
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on the worst case running times are established by the use of non standard measures.
TheMDSalgorithm has running timé(1.5263™) and needs polynomial space. Using
memorization one can speed up the running tim@(©.5137™) needing exponential
space then. Both variants are based on algorithms for the minimum set cover problem
where the input consists of a univefgeand a collectiors of subsets of/. These al-
gorithms need running tim@(1.2354%1+151) and polynomial space, or running time
0(1.23031+151) and exponential spacel [8].

Finally, Fomin and Hgie used a treewidth based approach to establish an algorithm
to compute a minimum dominating set for graphs of maximum degree three [7] with
running timeO(1.2010™).

It is known that the problenMDSis NP-hard when restricted to chordal graphs
[5], and circle graphs [13]. Furthermore it is not hard to show MBSs NP-hard for
c-dense graphs.

Our results. In this paper we study the Minimum Dominating Set problem on
three graph classes and we obtain algorithms with a running@aé*) better than
the best known running time for an algorithm solviMtbSon general graphs, i.e.
O(1.5137").

In Sectior] B we present an exact algorithm solving Mi@Sproblem on chordal
graphs in timeD(1.4173™). In Sectiof # arO(1.4956™) time algorithm to compute
a minimum dominating set for circle graphs is established. In Sefction 5 we give an
0(1.2303”(1+ﬂ)) time algorithm forc-dense graphs, i.e. for all graphs with at
leasten? edges, where is a constant witl) < ¢ < 1/2.

Our algorithms rely heavily on the minimum set cover algorithms of Fomin et al.
[8]. Furthermore the algorithms for chordal graphs and for circle graphs are treewidth
based. Both of them use different algorithms for graphs of small treewidth, i.e. at most
tn, and for graphs of large treewidth, i.e. larger thianwheret is chosen to balance
the running times of those two algorithms.

The algorithm for circle graphs relies on an upper bound of the treewidth of circle
graphs in terms of the maximum degree which is interesting in its own. A related result
for graphs of small chordality is provided inl[4]. We are not aware of any previous
result of this type for circle graphs.

2 Preliminaries

Let G = (V, E) be an undirected and simple graph. For a vertexV we denote by
N (v) the neighborhood of and byN[v] = N(v) U {v} the closed neighborhood of
v. For a given subset of vertic&sC V, G[S] denotes the subgraph 6finduced by
S. The maximum degree of a graphis denoted byA(G) or by A if it is clear from
the context which graph is meant.

AcliqueisasetC C V of pairwise adjacent vertices. The maximum cardinality of
a clique in a graplt- is denoted by (G). A dominating seD of a graphG = (V, E)
is a subset of vertices such that every verteX'of D has at least one neighbor In.
The minimum cardinality of a dominating set 6fis the domination number af,
and it is denoted by (G).

Major tools of our paper are tree decompositions and treewidth of graphs. The
notions have been introduced by Robertson and Seymourlin [17].



Definition 1 (Tree decomposition). Let G = (V, E') be a graph. Aree decomposi-
tionof Gis apair({X; : i € I},T) where each¥,, i € I, is a subset oV andT is a
tree with elements of as nodes such that we have the following properties :

1. UieIXi =V
2. Y{u,v} € E,Fi e Ist{u,v} CX;;
3. Vi, 4,k € 1,if jis on the path from to k in T'thenX; N X, C X;.

The width of a tree decomposition is equahtax;c; | X;| — 1.

Definition 2 (Treewidth). Thetreewidthof a graphG is the minimum width over all
its tree decompositions and it is denotedtby(G).

A tree decomposition is calleaptimalif its width is tw(G).

Definition 3 (Nice tree decomposition).A nice tree decompositio{ X; : i € I}, T)
is a tree decomposition satisfying the following properties:

1. every node of " has at most two children;
2. If anodei has two childrery andk, thenX; = X; = X, (i is a Join Node);
3. If a nodei has one child, then either

(@) |X;| =|X;|+1andX; C X; (i is a Insert Node);
(b) | X;| =1X;| —landX; C X; (i is a Forget Node).

Lemma 4 ([14]). For a constant:, given a tree decomposition of a graphof width
k and O(n) nodes, where: is the number of vertices @, one can find a nice tree
decomposition ofr of widthk and with at mostin = O(n) nodes inO(n) time.

Structural and algorithmic properties of graph classes will be mentioned in the
corresponding sections. For definitions and properties of graph classes not given in
this paper we refer to [6, 11].

3 Domination on chordal graphs

In this section we present an exponential time algorithm for the minimum dominating
set problem on chordal graphs.

A graph ischordalif it has no chordless cycle of length greater tfBanChordal
graphs are a well-known graph class with its own chapter in Golumbic’s monograph
[11]. Split graphs, strongly chordal graphs and undirected path graphs are well-studied
subclasses of chordal graphs.

We shall use the clique tree representation of chordal graphs that we view as a tree
decomposition of the graph. A tr@éis asclique treeof a chordal grapttz = (V, E)
if there is a bijection between the maximal cliquegband the nodes df such that
for eachw € V the cliques containing induce a subtree df. It is well-known that
tw(G) > w(G) — 1 for all graphs. Furthermore the clique tree of a chordal gi@ph
is an optimal tree decomposition 6, i.e. its width isw(G) — 1.



Lemma 5. There is arO*(3/*(%)) time algorithm to compute a minimum dominating
set on chordal graph§]

Proof. Alber et al. have shown in [1] that a minimum dominating set of a graph can
be computed in time)(4'n) if a tree decomposition of width of the input graph

is known. Their algorithm uses a nice tree decomposition of the input graph and a
standard bottom up dynamic programming on the tree decomposition. The crucial
idea is to assign three different “colors” to the vertices of a bag:

e “black”, meaning that the vertex belongs to the dominating set,
¢ “white”, meaning that the vertex is already dominated,
e “gray”, meaning that the vertex is not yet dominated.

Now let us assume that the input graph is chordal. A cliqueTre¥ G can be
computed in linear time_[3]. By Lemniq 4, a nice optimal tree decompositia of
can be computed from the optimal tree decomposificim time O(n) and it has at
mostdn nodes. Sincé& is chordal every bag in the nice tree decomposition is a clique.
Therefore no bag can have both a black vertex and a gray vertex. Due to this restriction
there are at most X! possible so-called vector colorings of a hig(instead of3 |
for general graphs).

Consequently the running time of a modification of the algorithm of Alber et al. to
chordal graphs i©* (3t*(%)), where the only modification is to restrict allowed vector
colorings of a bag such that black and gray vertices simultaneously are forbidden.

O

The following theorem shows that graphs with sufficiently many vertices of high
degree allow to speed up tMDSalgorithm for general graphs.

Theorem 6. Lett > 0 be a fixed integer. Then there is@(1.2303?"~t) time
algorithm to solve theMiDSproblem if the input graph fulfills the conditiofv €
Vidw)>t—2} >t

Proof. Lett > 0 be an integer and" = (V, E) a graph fulfilling the conditions of
the theorem. Lefl” = {v € V' : d(v) > t — 2}; thus|T| > t. Notice that for
each minimum dominating sé? of GG either at least one vertex @f belongs taD, or
TND=4.

This allows to find a minimum dominating set 6f by the following branching
in two types of subproblems:v“e D" for all v € T, and ‘T N D = {". In both
cases we shall apply the minimum set cover algorithm of [8] to solve the subproblem.
Recall that the minimum set cover instance corresponding tdvilD&problem for
G has universé¢/ = V andS = {N[u] : w € V}, and thusli/| + |S| = 2n
[8]. Consequently the running time for a subproblem will®€l.23032" %), where
x is the number of vertices plus the number of subsets eliminated from the original
minimum set cover problem for the graph

Now let us consider the two types of subproblems. For every vertexT’, we
choosev in the minimum dominating set and we execute the Minimum Set Cover
algorithm presented in[8] on an instance of size at rast (d(v)+1)—1 < 2n—t.
Indeed, we remove from the univerethe elements ofV]v] and we remove fron®

IModified big-Oh notation suppresses polynomially bounded factors.



the set corresponding ta And we branch in the case “discafd: In this case we
have an instance of set cover of size at niost- |T'| = 2n — ¢ since for every € T
we remove fronS the set corresponding to each

O

Corollary 7. There is an algorithm taking as input a grajghand a cliqueC of G
and solving theVDSproblem in timeD (1.2303%"~1¢1),

Proof. Note that every vertex i has degree at leagt| — 1.
O

Our algorithm on chordal graphs works as follow: If the graph has a large treewidth
then it necessarily has a large clique and we apply Cordllary 7. Otherwise the graph
has a small treewidth and we use Leniha 5.

Theorem 8. There is an0O(1.4173™) time algorithm to solve thMDSproblem on
chordal graphs.

Proof. If tw(G) < 0.3174n, by Lemma[}, MDS is solvable in time
O(30-3174n) = (0(1.4173"™). Otherwise,tw(G) > 0.3174n and using Corollary|7
we obtain an0(1.230327~0-3174n) — ((1.4173") time algorithm.

O

4 Domination on circle graphs

In this section, we present an exponential time algorithmM®&$Son circle graphs
in a treewidth based approach. For a survey on treewidth based exponential time
algorithms we refer ta [9].

Definition 9. A circle graphis an intersection graph of chords in a circle. More
precisely,G is a circle graph, if there is a circle with a collection of chords, such that
one can associate in a one-to-one manner to each vertex a chord such that two vertices
are adjacent if and only if the corresponding chords have a nonempty intersection. The
circle and all its chords are callectacle modelof the graph.

Our algorithm heavily relies on a linear upper bound on the treewidth of circle
graphs in terms of the maximum degree(G) < 4A(G) — 1. This bound is interest-
ing in its own and it is likely that such bounds for circle graphs or other graph classes
can be used to construct exponential time algorithms for NP-hard problems on special
graph classes in a way similar to our approach for domination on circle graphs.

The algorithm uses the treewidth to branch into two different approaches: one for
“small treewidth” and one for “high treewidth”. If there are many vertices of high
degree in the input graph, Theoréin 6 is used to continue, and if not, the treewidth is
“small” and we use a* (4**(%)) algorithm to compute a minimum dominating set.

Theorem 10 ([1]). Suppose the grapfi = (V, E) and a tree decomposition of width
¢ of G are given. Then there is af(4‘N) time algorithm to compute a minimum
dominating set of7, whereN is the number of nodes of the tree decomposition.



We start with a brief summary of Kloks’ algorithm to compute the treewidth of a
circle graph[[15]. Consider the circle model of a circle graphGo around the circle
and place a new point (so-calledanpointybetween every two consecutive end points
of chords. The treewidth of a circle graph can be computed by considering all possible
triangulations of the polygof® formed by the convex hull of these scanpoints. The
weight of a triangle in this triangulation is the number of chords in the circle model
that cross this triangle. The weight of the triangulatibns the maximum weight of
the triangles irZ . The treewidth of the graph is the minimum weight minus one over
all triangulations ofP.

Theorem 11 ([15]). There exists arQ(n?) algorithm to compute the treewidth of
circle graphs, that also computes an optimal tree decomposition.

We rely on the following technical definitions in our construction of a tree decom-
position of width at mostA(G) — 1 for each circle grapldéz. The construction will
be given in the proof of Theorem[15.

Definition 12. A scanlines = (a, B) is a line segment connecting two scanpoiits
andb.

To emphasize the difference between scanlines and chords we use different nota-
tions: A chordv connecting two end pointsandd in the circle model of the graph is
denotedv = [¢, d]. We also use the following convention: two scanlines with empty
intersection or intersecting in exactly one scanpoint are said tmbecrossing

Definition 13. Let 3; and3; be two non-crossing scanlines. A scanliis between
31 and s, if every path from a scanpoint ¢f; to a scanpoint of, along the circle
passes through a scanpointsof

Definition 14. A setS of parallel scanlines is a set of scanlines respecting

(i) |S| <2 and the scanlines of are non-crossing, or

(i) |S| > 2 and for every subset of three scanlinesSinone of these scanlines is
between the other two.

The following theorem is one of the main results of this paper. It shows that the
treewidthtw(G) of circle graphs can be upper bounded by a linear function of the
maximum degreé\(G) of the graphG. Surprisingly, no linear bound seems to have
been known prior to our work.

Theorem 15. For every circle graphG holdstw(G) < 4A(G) — 1.

Proof. We construct a triangulation of the polygdn such that every triangle has
weight at mosttA, i.e. it intersects at mostA chords, and therefore the correspond-
ing tree decomposition has width at mdst — 1.

Notice that by the definition of a circle graph, every chord intersects at fhost
other chords. The triangulation of the polygBris obtained by constructing the cor-
responding set of scanlinéswhich is explained by the following procedures. Having
described our algorithm, we will analyze the number of chords that cross each triangle
and show that it is less than or equaklitia.



1. Description of the algorithm

e FirstCut(). Start withS = §. Choose a chord in the circle model of the grap@.
Call ScanChord(S, v). Call ParaCuts(S).

e ScanChord(S,v = [a,b]). Letand@ (resp. d andd’) be the two scanpoints
closest toa (resp. b) on the circle such that the order of the points on the circle
is ¢, a, E’,ﬁ’, b andd. _Now the algorithm adds the following three scanlinesSto

51 =(¢,d), 32 = (¢,d') andss = (¢,d’). If ¢ = d (or & = d’) then we add only the
scanlines, (or §1).

e ParaCuts(S). While S is not a maximal (by inclusion) parallel set of scanlines in
P, choose a chord such thatS remains parallel when callinGcanChord(S, v). Call
ScanChord(S, v). If S is maximal parallel, every polygon inside is delimited by
one or two scanlines. We call the polygons that are delimited by one scanitee
polygons and those that are delimited by two scanliireger polygongsee Fig[]L).
There are exactly two outer polygons now, one delimitedpgnd the other one by
59. Call TriangOuter( .S, 5;) andTriangOuter( .S, 53). For every inner polygon, call
Trianglnner( S, t,, t2) wheret, andt, are the two scanlines delimiting this polygon.

e TriangOuter( S, 5 = (a, b)). The scanline divides the polygorP into two parts.
Call P; the polygon delimited by and the part of” that does not contain any scan-
lines. Add a scanline betwe@&nand every scanpoint @?; excepta andb to S.

Figure 1: ParaCuts Figure 2: Trianglnner

o TriangInner( S, 5 = (a1, b1), 82 = (Ga,bo)). Let the end points of; and3s, be
orderedas, b1, b, az around the circle. W.l.o.g. assume that fewer chords cross the
line a1, as than the lineb;, b,. Now add a new~scan~liné = (a1,a2) to S. Call
OuterParaCuts(S, 7). Go around the circle from; to b, (without passing through
a; anday). Every time one passes through an end pejnt = 1,..., k, (wherek is
the number of chords that cro§s andb,, bs) of a chordv; that crosse$;, add the
following scanlines tas:

e § = (a,,d;) with d; being the scanpoint immediately followirg

° 5{/ = <CL, Ji71> with d~0 = Z~71

e 3 = (d;_y,d}) with d; being the scanpoint just befouig.



To triangulate the part of the polygdn delimited bys!” that does not intersect any

scanlines, execut®uterParaCuts(S, 5/). Finally, add the scanlines = (dy, bs)
ands, = (b2, a;1) to S (see FigD&). Execut®uterParaCuts(S, 33).

e OuterParaCuts(S, 5 = (a, 5)). This procedure is similar tBaraCuts on the outer
polygon delimited bys. Call P; the polygon delimited by that does not contain any
scanlines. Create a new set of scanlisés= {5}. While S’ is not a maximal (by
inclusion) parallel set of scanlines &%, choose a chord in P; such thatS’ remains
parallel when callingscanChord(S’, v). Call ScanChord(S’, v). After that there is
exactly one outer polygon i;, delimited by a scanliné Call TriangOuter(S’, £).
For every inner polygon irP;, call Trianglnner( S’, 1, t,) wheret, andt, are the
two scanlines delimiting this polygon. Add the set of new scanlifets S.

2. Analysis of the algorithm

In the main procedurdirstCut, no scanlines are directly added$o

Every timeScanChordis executed, one or three scanlines are addedl tdhey
form at most two triangles?, d, d’ andé, d’, &@. Each of them intersects at mast+ 1
chords:v and the chords crossing Furthermore, at mosk chords cros$’ ands”,
precisely the chords that cross

In the procedur@araCuts, no scanlines are directly added$oMoreover, when
it calls the procedure$riangOuter andTrianglnner, the setS is maximal parallel,
which is a necessary condition for these procedures.

WhenTriangOuter is called, two conditions are always respected:
(i) S is maximal parallel by inclusion, and
(i) at most2A chords cross.
The condition (i) implies that every chord that interse@tscrosses. Together with
condition (ii) we obtain that at mo&tA chords intersecP;. So any triangulation of
Ps produces triangles with weight at mash.

WhenTrianglnner is called, three conditions are always respected:
(i) S is a maximal parallel set of scanlines, and
(i) at mostA chords cross one of the scanlines; suppose tl3ig is
(iii) at most2A chords cross;.
There are at mos3A chords inside the quadrilateral , 131, 52, ao since there is no
chord crossing both the lings , @, andb,, b, (becauses is maximal parallel). As
fewer chords crosg,, a, thanby, by, at most3/2A chords cross the new scanline
t = (a1,as). So, when we calDuterParaCuts(S, ) the condition that intersects
at most2A chords is respected. For every end painof a chordv; that crosses,
we create two trianglesi;, d;_1,d; andd,,d;_1,d,. The first triangle intersects at
most4A chords: at mos2A chords that cross; (but neither; norv;_1), at mostA
chords that cross;_; and at mosi\ chords that cross;. Moreover, there are at most
2A 4+ 1 chords that interseét’ and at mosRA chords intersect;”. So, the weight of
the triangled;, d;_1, d. is at most2A + 1 and when we calDuterParaCuts(S, s;”
we respect the condition that the second parameter of the procedure is a scanline that
crosses at mo&A chords.
After adding the scanline$; and s, we obtain two more triangles&l,cik,ég and
a1, by, @s. The first one intersects at mO&t2A chords: at mos2A that crosss, at
mostA that crossy; and at mostA that crosss, of which we have already counted
1/2A crossings;. At most5/2A chords intersect the triangia, bz, az: at most2A
that intersecs; and at mostA that intersect, of which we have already counted



1/2A crossings;. Moreover at mos2A chords crosss, soOuterParaCuts(S, 53)
has valid parameters.

In the procedur®uterParaCuts, no scanlines are directly added$o The fol-
lowing condition is always respected:
(i) at most2A chords cross.
During this procedure, we consider only the polygBa A new set of scanlines
S’ = {5} is created and is made maximal parallel by inclusion by calicgnChord
If {5} is already maximal parallel, théfriangOuter(.S’, 5) is called and the two con-
ditions of that procedure are respected. If other scanlines had to be adsled tnake
it maximal parallel, the proceduf®iangOuter(.S’,t) is called for the outer polygon
wheret is a scanline intersecting at mastchords. Moreover, the proceduFaang-
Inner(S, t,,%,) is called for the inner polygons. Every scanline delimiting the inner
polygons intersects at most chords, excepf that can intersect up t2A chords.
So, we respect the condition fdrianginner that one scanline intersects at mast
chords and the other one at mast chords. Finally,S’ is added toS which does not
create any new triangles.

We have provided a recursive algorithm to triangulate the polyBaand have
shown that the obtained triangulation does not contain triangles intersecting more than
4A chords. Thus the corresponding tree decompositidr lods width at mostA —1.

O

Linear upper bounds for the treewidth in terms of the maximum degree seem to
have an immediate use in the design of treewidth based exact algorithms. Using The-
orem[16 we obtain an algorithm to compute a minimum dominating set for circle
graphs in time)(1.4956™). The algorithmDS-circle is simple and also based on the
algorithms of Theoretin 10 and Theorgn 6.

Algorithm DS-circle(circle graph G = (V, E); circle model of G)
Input: A circle graphG and its circle model.
Output: The domination numbey(G) of G.
A 0.2322
X0
Compute the treewidthw(G) of G using theorerp 31
while tw(G — X) > An do
| X < X U{u} whereu is a vertex ofG — X of highest degree
if | X| > An/4then
| use the algorithm of Theorejn 6 and return the result

else
| use the algorithm of Theorem|10 and return the result

Theorem 16. Given a circle graphG = (V, E), algorithm DS-circle computes a
minimum dominating set @f in time O(1.4956™).

Proof. The algorithm constructs a vertex skt = {x1, zs, ..., 21} Starting from an
empty set by adding maximum degree vertices of the remaining graph to thé set
until tw(G — X) < An.



When the vertex; is added taX = {z1, z9, ..., z;—1}, We havetw(G — X) > An.
The vertexz; € V — X is of highest degree itf — X, i.e. d(z;) = A(G — X).
We haved(z;) > tw(G — X)/4 by Theoren{ 15. Nowd(z;) > An/4 because
tw(G — X) > An. SoVz; € X, d(z;) > An/4.

In the casg X | > An/4, we have a subseX C V such thatvv € X,d(v) >
An/4. So, according to Theoreﬁ]\ 6, a minimum dominating set can be found in time
0(1.230327~A/4) = 0(1.4956™).

In the other case|X| < An/4 andtw(G — X) < An. As adding one ver-
tex to a graph increases its treewidth at most by ené) < An + An/4. Us-
ing the algorithm of Theorefn 10, a minimum dominating set is determined in time
O* (41 (@)) = O (45N D) = O(1.4956™).

O

5 Domination on dense graphs

It is known that problems like Independent Set, Hamiltonian Circuit and Hamilto-
nian Path remain NP-complete when restricted to graphs having a large humber of
edgesl[[1B]. Itis not hard to show that thEDSproblem onc-dense graph is also NP-
complete. A proof is given in the Appendix. In this section we present an exponential
time algorithm forMDSproblem onc-dense graphs.

Definition 17. A graphG = (V, E) is said to be:-dense(or simply dense if there is
no ambiguity), if| | > en? wherec is a constant witl) < ¢ < 1/2.

The main idea of our algorithm is to find a large subset of vertices of large degree.
Despite the approach of the previous sections, neither clique trees nor tree decompo-
sitions will be used here.

Lemma 18. For some fixed <t <n,1 <t <n—1,anygraphG = (V, E) with
JR— — J— / p—
|51+ t-—1D(n-1)+ (2n t+ 1)t —1)

has a subsef’ C V such that

(i) |7 >¢,
@iy Yo e T, dv)>t.

Proof. Letl <t <n,1 <t <n-—1,andagrapl = (V, E) such that there is no
subsetl” with the previous properties. Then for any subdisef V of size at least,
Jv € T such thatd(v) < ¢’. Then a such graph can only have at most k; + ko
edges where k; = (¢t — 1)(n — 1)/2 which corresponds to— 1 vertices of degree
n—1andke = (n—t+1)(t' —1) which corresponds to — (¢t — 1) vertices of degree
t’ — 1. Observe that if one of the — (¢ — 1) vertices has a degree greater than 1
then the graph has a subgétvith the required properties, a contradiction.

O
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Lemma 19. Everyc-dense graplt? = (V, E') has a sefl” C V fulfilling

VO —4dn +4n2 —8en?2 — 3

5 ,
V9 —4dn+4n2 —8cn2 +1

5 .
Proof. We apply Lemm@S with' = ¢ — 2. Since we have a dense graph| > cn?.
Using inequalityl + ((t —1)(n — 1) + (n —t +1)(t — 3)) /2 > cn? we obtain that in

¥ Q — —4an n<—3acn

a dense graph the value tin Lemm is such that 4 3=vO9=intdnZ=8cn® <4 <
n<n+ 3+\/974nJ2r4n278cn2 )

) |IT|=n-

(i) YoeT,d(v) >n—

O

Theorem 20. For any c with 0 < ¢ < 1/2, there is a0(1.2303"(1tV1-2¢)) time
algorithm to solve th&DSproblem onc-dense graphs.

Proof. Combining Theorer|6 and Lemral 19 we obtain an algorithm for solving the
Minimum Dominating Set problem in time

Vo—4antanZ_8cn2—
1.23032n~(n= BEEEEEERSEE (1 9303n (VI ),

6 Conclusions

In this paper we presented several exponential time algorithms to solve the Minimum
Dominating Set problem on graph classes for which this problem remains NP-hard.
All these algorithms are faster than the best known algorithm to $88on general
graphs. We would like to mention that any faster algorithm for the Minimum Set
Cover problem, i.e. of running tim@ (a/“+51) with o < 1.2303, could immediately

be used to speed up all our algorithms.

Besides classes of sparse graphs (se€ é.g. [7]) two more classes are of great interest
in this respect: split and bipartite graphs. For split graphs, combining idead of [10] and
[8] one easily obtains a@(1.2303™) algorithm. Unfortunately, despite our efforts we
could not construct an exponential time algorithm to sdW2Son bipartite graphs
beating the best known algorithm for general graphs.
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Appendix

An easy way to show that an NP-complete graph problem remains NP-complete for
c-dense graphs, for anywith 0 < ¢ < 1/2, is to construct the grap&’ by adding a
sufficiently large complete graph as new component to the original gragich that

G’ is c-dense. This simple reduction can be used to show that various NP-complete
graph problems remain NP-complete fedense graphs. To name a few problems:
INDEPENDENTSET (sincea(G’) = a(G) + 1), DOMINATING SET (sincey(G’) =

v(G) + 1), PARTITION INTO CLIQUES (sincex(G’) = k(G) + 1), VERTEX COVER,
FEEDBACK VERTEX SET and MINIMUM FILL -IN.

Theorem 21. For any constant with 0 < ¢ < 1/2, the problem to decide, whether a
c-dense graph has a dominating set of size at rhips NP-complete.

Proof. Let ¢ be any constant with < ¢ < 1/2. Clearly DOMINATING SET, and thus
also DOMINATING SET for c-dense graphs is in NP.

It is show in [2] that the problem of determining if a split graph has a dominating
set of sizek is NP-complete. We shall provide a polynomial many-one reduction from
DOMINATING SET for split graphs to @MINATING SET for c-dense graphs. Létbe
an integer and? = (V, E) a split graph wheré andC form a partition of the vertices
of G such that/ is an independent set addis a clique.

First we construct a-dense graplt:p = (Vp, Ep) with Ep > ¢ - |[Vp|?. The
graphGp = (Vp, Ep) is obtained from the grapty = (C U I, E) by adding a
cliqueC’ of size[(1+4c[IUC|++/1+8c[IUC|(1 + [T UC]))/(2—4c)] to G and
adding all edges with one end pointdhand the other if”. Note that this guarantees
thatGp is a split graph with a partition df p into an independent sétand a clique
C U C'. Furthermore the number of edges®}, is greater thar(|7 U C| + |C'])?,
and hencé7p is ac-dense graph.

Now we show thati has a dominating set of size a masif and only if Gp has
a dominating set of size at mast

First, assume tha®, has a dominating sdd with |D| < k. SinceNg,[z'] C
N¢,|z] forall 2’ € C" and allz € C' we may replace each vertex 6f belonging to
D by a vertex ofC.. In this way we obtain a dominating sBY C I U C of Gp such
that|D’| < k. ConsequenthyD’ is also a dominating set @f.

Conversely, assume thatis a dominating set aff of size at mosk. If D contains
at least one vertex af thenD is also a dominating set @, since each vertex af”
is adjacent to all vertices a@f'. Otherwise,D contains no vertex of’ and thus each
vertex inC' has at least one neighbor in N I. In this second case we replace any
vertexs € D NI by a neighbot € C and obtainD’ = (D \ {s}) U {¢}. ThenD’isa
dominating set oz sinceNg, [s] C N¢,, [t]. Furthermore, sinc®’ contains a vertex
of C'itis also a dominating set @¥ . HenceGp has in each case a dominating set
of size at most.

Thus we obtain that the problem of deciding whetherdiense graph has a domi-
nating set of size at mostis NP-complete. O
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