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Pathwidth of cubic graphs and exact algorithms

Fedor V. Fomin∗ Kjartan Høie†

Abstract

We prove that for any ε > 0 there exists an integer nε such that the
pathwidth of every cubic graph on n > nε vertices is at most (1/6 + ε)n.
Based on this bound we improve the worst case time analysis for a number of
exact exponential algorithms on graphs of maximum vertex degree three.

Keywords: Treewidth, pathwidth, cubic graph, exact exponential algorithm,
maximum independent set, max-cut, minimum dominating set.

1 Introduction

Treewidth is one of the most basic parameters in graph algorithms. There is well
established theory on the design of polynomial (or even linear) time algorithms
for many intractable problems when the input is restricted to graphs of bounded
treewidth. See [3] for a comprehensive survey. As it was observed in [8], treewidth
(or branchwidth) can also be used to obtain fast exact algorithms on planar graphs.
In this paper we show that similar approach can be used for graphs of degree at
most three. Our main combinatorial result is that for any ε > 0 there exists an
integer nε such that the pathwidth of every cubic graph on n > nε vertices is at
most (1/6+ε)n. Combining the combinatorial upper bound with standard dynamic
programming approach on graphs of bounded treewidth (or pathwidth) we obtain
new worst case time analysis for several well studied problems. Surprisingly, such a
simple idea leads to better analysis. To demonstrate this approach we choose three
problems on cubic graphs: Maximum Independent Set, Minimum Dominating
Set and Max-Cut.

Maximum Independent Set is one of the classical NP complete problems. For
graphs on n vertices it can be trivially solved in time O∗(2n)1 however the existence
of subexponential algorithm for this problem considered to be very unlikely [12].
In 1977 Tarjan and Trojanowski [22] gave an O∗(2n/3) algorithm for Maximum
Independent Set. After several improvements, the fastest so far time O∗(2n/4)
algorithm was announced by Robson [21]. The problem remains NP complete even
when restricted to graphs of maximum vertex degree three. Moreover, it is known
that

Proposition 1. (Johnson & Szegedy [14])
If the maximum independent set problem on graphs of maximum degree three can
be solved in sub-exponential time, then also the minimum independent set problem
on arbitrary graphs can be solved in sub-exponential time.

∗Department of Informatics, University of Bergen, N-5020 Bergen, Norway. Emails:
{fomin,kjartan.hoie}@ii.uib.no. F. Fomin is supported by Norges forskningsr̊ad projects
162731/V00 and 160778/V30.

1Throughout this paper we use a modified big-Oh notation that suppresses all polynomially
bounded factors. For functions f and g we write f(n) = O∗(g(n)) if f(n) = O(g(n) · nO(1)).
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There are several exponential time algorithms solving Maximum Independent
Set on graphs of maximum degree at most three. For example, Beigel [2] obtained
time O∗(1.1259n) algorithm for Maximum Independent Set on graphs with max-
imum vertex degree three. The fastest so far algorithm on graphs of degree three for
the problem is due to Chen et al. [4] with running time O∗(1.1255n). In this paper
we show that the treewidth based dynamic programming can solve the problem in
time O∗(1.1225n).

Until very recently there was no known algorithm for Max-Cut on graphs on
n vertices faster than a trivial O∗(2n). In 2004, Williams obtained an algorithm
solving Max-Cut in O∗(1.732n). For graphs of small vertex degree there were
several known algorithms. Gramm et al. [9] introduced an algorithm running in
time O∗(2m/3) on graphs with m edges. Kulikov and Fedin [16] improved the
running time down to O∗(2m/4). Recently, Kneis et al. proved that the treewidth
of a graph with m edges is at most m/6. Applying this combinatorial bound to the
analysis of the dynamic programming algorithm on graphs of bounded treewidth,
they obtained running time O∗(2m/6). For graphs of maximum vertex degree three
the algorithm of Kneis et al. [15] runs in time O∗(1.1893n). Our combinatorial
result allows to improve the running time analysis of the treewidth based algorithm
till O∗(1.1225n) on graphs of maximum degree three.

Minimum Dominating Set is a natural and very interesting problem concern-
ing the design and analysis of exponential-time algorithms. Despite of this, no exact
algorithm for this problem faster than the trivial one had been known until very
recently. In 2004 three different sets of authors seemingly independently published
algorithms breaking the trivial “2n-barrier”. The algorithm of Fomin et al. [7] uses
a deep graph-theoretic result due to Reed [19], providing an upper bound on the
domination number of graphs of minimum degree three. The most time consuming
part of their algorithm is an enumeration of all subsets of nodes of cardinality at
most 3n/8, thus the overall running time is O∗(1.9386n). The algorithm of Ran-
derath and Schiermeyer [18] uses a very nice and cute idea (including matching
techniques) to restrict the search space. The most time consuming part of their al-
gorithm enumerates all subsets of nodes of cardinality at most n/3, thus the overall
running time is O∗(1.8899n). Grandoni [10, 11] described a O∗(1.8026n) algorithm
for Minimum Dominating Set. Recently, it was shown that the running time of
Grandoni’s algorithm can be improved till O(1.5137n) [6].

For graphs of maximum degree three, Fomin et al. [7] gave an O∗(1.5144n) time
algorithm. Recently, Kneis et al. [15] introduced a better algorithm of running
time O∗(1.4143n). The combinatorial bound on the pathwidth of a graph of this
paper combined with an observation on the running time of dynamic programming
algorithm on graphs of bounded pathwidth yields that Minimum Dominating Set
of a graph with vertex degree at most three is solvable in time O∗(1.2010n).

We summarize the algorithmic consequences of combinatorial results in the fol-
lowing table.

Known results New results

Independent Set O∗(1.1255n) [4] O∗(1.1225n)

Dominating Set O∗(1.4143n) [15] O∗(1.2010n)

Max-Cut O∗(1.1893n) [15] O∗(1.1225n)

2 Preliminaries

We consider undirected and simple graphs, where V (G) denotes the set of vertices
and E(G) denotes the set of edges of a graph G. For a given subset S of V (G), G[S]
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denotes the subgraph of G induced by S, and G \S denotes the graph G[V (G) \S].
The set of neighbors of a vertex v is denoted by N(v).A cut in a graph G is a
separation of the vertices V (G) into two disjoint subsets V1 and V2. The size of the
cut is the number of edges that have one endpoint in V1 and the other in V2.

We use the following result due to Monien and Preis [17] in our proof.

Theorem 2 ([17]). For any ε > 0 there exists an integer nε such that for any
3-regular graph G with |V (G)| > nε there is a cut (V1, V2) of size at most (1/6 +
ε)|V (G)| and such that ||V1| − |V2|| ≤ 1.

It follows from the proof in [17] that the value nε can be taken at most (4/ε) ·
ln(1/ε) · (1 + 1/ε2). Also it is easy to check that the bound in Theorem 2 valid not
only for 3-regular graphs but for graphs of maximum vertex degree at most three
as well.

The notion of treewidth was introduced by Robertson and Seymour [20]. A tree
decomposition of a graph G is a pair ({Xi : i ∈ I}, T ), where {Xi : i ∈ I} is a
collection of subsets of G (these subsets are called bags) and T = (I, F ) is a tree
such that the following three conditions are satisfied:

1.
⋃

i∈I Xi = V (G).

2. For all {v, w} ∈ E(G), there is an i ∈ I such that v, w ∈ Xi.

3. For all i, j, k ∈ I, if j is on a path from i to k in T then Xi ∩Xk ⊆ Xj .

The width of a tree decomposition ({Xi : i ∈ I}, T ) is maxi∈I |Xi| − 1. The
treewidth of a graph G, denoted by tw(G), is the minimum width over all its tree
decompositions. A tree decomposition of G of width tw(G) is called an optimal
tree decomposition of G.

A tree decomposition ({Xi : i ∈ I}, T ) of G with T a path (i.e., every node in T
has degree at most two) is called a path decomposition of G. A path decomposition
is often denoted by listing the successive sets Xi : (X1, X2, . . . , Xr). The width of
a path decomposition (X1, X2, . . . , Xr) is max1≤i≤r |Xi| − 1. The pathwidth of a
graph G, denoted by pw(G), is the minimum width over all its path decompositions.
Clearly for all graphs G, tw(G) ≤ pw(G).

We need the following result due to Ellis et al. [5].

Theorem 3 (Ellis et al. [5]). For any tree T on n ≥ 3 vertices, pw(T ) ≤ log3 n.

3 Combinatorial bounds

Lemma 4. Let G be a graph on n vertices and with maximum vertex degree at
most 3. Then for any vertex subset X ⊆ V (G) there is a path decomposition
P = (X1, X2, . . . , Xr) of G of width ≤ max{|X|, bn/3c+ 1}+ (2/3) log3 n + 1 and
such that X = Xr.

Proof. We prove the lemma by induction on the number of vertices in a graph.
For a graph on one vertex the lemma is trivial. Suppose that Lemma holds for all
graphs on less than n vertices for some n > 1.

Let G be a graph on n vertices and let X ⊆ V (G). Different cases are possible.

Case 1. There is a vertex v ∈ X such that N(v)\X = ∅, i.e. v has no neighbors out-
side X. By induction assumption, there is a path decomposition (X1, X2, . . . , Xr)
of G \ {v} of width ≤ max{|X| − 1, b(n − 1)/3c} + (2/3) log3 (n− 1) + 1 and such
that X \ {v} = Xr. By adding v to the bag Xr we obtain the path decomposition
of G of width at most max{|X|, bn/3c}+ (2/3) log3 n + 1.
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Case 2. There is a vertex v ∈ X such that |N(v) \X| = 1, i.e. v has exactly one
neighbor outside X. Let u be such a neighbor. By the induction assumption for
G \ {v} and for X \{v}∪{u}, there is a path decomposition P ′ = (X1, X2, . . . , Xr)
of G \ {v} of width ≤ max{|X| + 1, b(n − 1)/3c} + (2/3) log3 n + 1 and such that
X \ {v} ∪ {u} = Xr. We create new path decomposition P from T ′ by adding bags
Xr+1 = X ∪ {u}, Xr+2 = X, i.e. P = (X1, X2, . . . , Xr, Xr+1, Xr+2). The width of
this decomposition is ≤ max{|X|, bn/3c}+ (2/3) log3 n + 1.

Case 3. For any vertex v ∈ X, |N(v) \X| ≥ 2. We consider two subcases.

Subcase 3.A. |X| ≥ bn/3c + 1. The number of vertices in G \ X is n − |X|. The
number of edges in G \X is at most

3(n− |X|)− 2|X|
2

=
3n− 5|X|

2
= n− |X|+ n− 3|X|

2

≤ n− |X|+ n− 3(bn/3c+ 1)
2

< n− |X|+ n− 3(n/3− 1) + 3
2

= n− |X| = |V (G \X)|

Since |E(G \ X)| < |V (G \ X)|, we know that there is a connected component T
of G \ X that is a tree. Note that |V (T )| ≤ (2n)/3. By Theorem 3, there is a
path decomposition P 1 = (X1, X2, . . . , Xr) of T of width at most (2/3) log3 n. By
induction assumption, there is a path decomposition P 2 = (Y1, Y2, . . . , Yt = X) of
G \ V (T ) of width at most |X| + 1. The desired path decomposition P of width
≤ |X|+(2/3) log3 n+1 is formed by adding X = Yt to all bags of P 1 and appending
the altered P 1 to P 2. In other words,

P = (Y1, Y2, . . . , Yt, X1 ∪X, X2 ∪X, . . . , Xr ∪X,X).

Case 3.B. |X| ≤ bn/3c, i.e. every vertex v ∈ X has at least two neighbors outside
X. In this case we choose a set S ⊆ V (G) \X of size bn/3c − |X|+ 1. If there is a
vertex of X ∪ S having at most one neighbor in V (G) \ (X ∪ S), we are in Case 1
or in Case 2. If every vertex of X ∪S has at least two neighbors in V (G) \ (X ∪S),
then we are in Case 3.A. For each of these cases, there is a path decomposition
P = (X1, X2, . . . , Xr) of width ≤ bn/3c+ 2 such that Xr = X ∪ S. By adding bag
Xr+1 = X we obtain the path decomposition of width ≤ bn/3c+ 2.

Theorem 5. For any ε > 0, there exists an integer nε such that for every graph
G with maximum vertex degree at most three and with |V (G)| > nε, pw(G) ≤
(1/6 + ε)|V (G)|.
Proof. For ε > 0, let G be a graph on n > nε(8/ε) · ln(1/ε) · (1 + 1/ε2) vertices and
with maximum vertex degree at most three. By Theorem 2, there is a bisection V1,
V2 of G such that there is at most ( 1

6 + ε
2 )|V (G)| edges with endpoints in V1 and

V2. Let ∂(V1) (∂(V2)) be the set of vertices in V1 (V2) having a neighbor in V2 (V1).
Note that |∂(Vi)| ≤ (1/6 + ε

2 )n, i = 1, 2.
By Lemma 4, there is a path decomposition P1 = (A1, A2, . . . , Ap) of G[V1] and

a path decomposition P3 = (C1, C2, . . . , Cs) of G[V2] of width at most

max{(1/6 +
ε

2
)n, bn/6c+ 1}+ (2/3) log3 n + 1 ≤ (1/6 + ε)n

such that Ap = ∂(V1) and C1 = ∂(V2).
It remains to show how the path decomposition P of G can be obtained from

path decompositions P1 and P3. To construct P we show that there is a path
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decomposition P2 = (B1, B2, . . . , Br) of G[∂(V1) ∪ ∂(V2)] of width ≤ (1/6 + ε)n for
all j ∈ {1, 2, . . . , k} and B1 = ∂(V1), Br = ∂(V2). The union of P1, P2, and P3, i.e.
(A1, . . . , Ap, B1, . . . , Br, C1, . . . , Cs) will be the path decomposition of G of width
≤ (1/6 + ε)n.

The path decomposition P2 = (B1, B2, . . . , Br) is constructed as follows. We put
B1 = ∂(V1). In a bag Bj , where j ≥ 1 is odd, we choose a vertex v ∈ Bj \ ∂(V2).
We put Bj+1 = Bj ∪N(v)∩ ∂(V2) and Bj+2 = Bj+1 \ {v}. Since we always remove
a vertex of ∂(V1) from Bj (for odd j), we arrive finally at the situation when a bag
Br contains only vertices of ∂(V2).

To conclude the proof, we argue that for any j ∈ {1, 2, . . . , k}, |Bj | ≤ (1/6 +
ε)n + 1. Let Dm, m = 1, 2, 3, be the set of vertices in ∂(V1) having exactly m
neighbors in ∂(V2). Thus

|B1| = |∂(V1)| = |D1|+ |D2|+ |D3|
and

|D1|+ 2 · |D2|+ 3 · |D3| ≤ (1/6 + ε)n.

Therefore,

|B1| ≤ (1/6 + ε)n− |D2| − 2 · |D3|.
For a set Bj , j ∈ {1, 2, . . . , k}, let D′

2 = Xj ∩D2 and D′
3 = Bj ∩D3. Every time

when `, ` ≤ 3, vertices are added to a bag, one vertex is removed from the next
bag. Thus

|Bj | ≤ |B1|+ |D2 \D′
2|+ 2 · |D3 \D′

3|+ 1
≤ (1/6 + ε)n− (|D2| − |D2 \D′

2|)− 2 · (|D3| − |D3 \D′
3|) + 1

≤ (1/6 + ε)n + 1.

4 Algorithmic consequences

The proof of Theorem 2 in [17] is constructive and can be turned into polynomial
time algorithm constructing for any large graph G of maximum vertex degree at
most three a cut (V1, V2) of size at most (1/6+ε)|V (G)| and such that ||V1|−|V2|| ≤
1. The proof of Theorem 5 is also constructive and can be turned into a polynomial
time algorithm constructing a path decomposition of G of width ≤ (1/6+ε)|V (G)|.

An independent set of a graph G is a subset of the vertices such that no two ver-
tices in the subset represent an edge of G. Maximum Independent Set problem
asks to determine the cardinality of a largest independent set in G.

It is a well known that a maximum independent set in a graph of n vertices and
of tree-width ≤ ` can be can be found in time O(2`n). Thus by Theorem 5, we
obtain the following

Corollary 6. On graphs of maximum degree ≤ 3, Maximum Independent Set
is solvable in time O∗(1.1225n).

Max-Cut problem asks to determine the cardinality of a largest cut in G. A
k-partition of a graph G is a cut (V1, V2) with |V1| = k. A k-partition is maximum
(minimum) if it has the largest (the smallest) cut size over all k-partitions. Jansen
et al. [13] observed that the sizes of all maximum and minimum k-partitions of a
graph on n vertices and of tree-width ≤ ` can be computed in O(2`n3) time. By
combining the result of Jansen et al. with Theorem 5 we arrive at the following
corollary.
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Corollary 7. On graphs of maximum degree ≤ 3, Max-Cut is solvable in time
O∗(1.1225n).

A set D ⊆ V is called a dominating set for G if every node of G is either in
D, or adjacent to some node in D. Minimum Dominating Set problem asks to
determine the cardinality of a smallest dominating set of G. Alber et al. [1] proved
that on graphs of tree-width ≤ ` Minimum Dominating Set can be solved in
O(4`n) time. It can be shown that on graphs of pathwidth ≤ ` the running time
of Alber et al. algorithm is O(3`n). The algorithm of Alber et al. for treewidth
requires O(3`n) steps for initialization, ’forget’ nodes and ’insert’ nodes. We refer
for details to [1]. The only case when Alber et al. algorithm requires O(4`n)
operations is the processing of ’join’ nodes. But since path decomposition has no
’join’ nodes, the running time of the algorithm is O(3`n).

Corollary 8. On graphs of maximum degree ≤ 3, Minimum Dominating Set is
solvable in time O∗(1.2010n).
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sità di Roma “Tor Vergata”, Roma, Italy, (March, 2004).

[11] , A note on the complexity of minimum dominating set, Journal of Dis-
crete Algorithms, (to appear).

[12] R. Impagliazzo, R. Paturi, and F. Zane, Which problems have strongly
exponential complexity, Journal of Computer and System Sciences, 63 (2001),
pp. 512–530.

[13] K. Jansen, M. Karpinski, A. Lingas, and E. Seidel, Polynomial time
approximation schemes for Max-Bisection on planar and geometric graphs,
in Proceedings of the 18th Annual Symposium on Theoretical Aspects of
Computer Science (STACS 2001), vol. 2010 of LNCS, Springer, Berlin, 2001,
pp. 365–375.

[14] D. S. Johnson and M. Szegedy, What are the least tractable instances of
max independent set?, in Proceedings of the 10th ACM-SIAM Symposium on
Discrete Algorithms (SODA’1999), SIAM, 1999, pp. 927–928.

[15] J. Kneis, D. Mölle, S. Richter, and P. Rossmanith, Algorithms based
in treewidth of sparse graphs, manuscript, (2005).

[16] A. S. Kulikov and S. S. Fedin, Solution of the maximum cut problem
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