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Optimal broadcast domination of arbitrary graphs

in polynomial time

Pinar Heggernes� Daniel Lokshtanov�

Abstract

Broadcast domination was introduced by Erwin in 2002, and it is a variant
of the standard dominating set problem, such that vertices can be assigned
various domination powers. Broadcast domination assigns a power f(v) � 0
to each vertex v of a given graph, such that every vertex of the graph is within
distance f(v) from some vertex v having f(v) � 1. The optimal broadcast
domination problem seeks to minimize the sum of the powers assigned to the
vertices of the graph. Since the presentation of this problem its computational
complexity has been open, and the general belief has been that it might be NP-
hard. In this paper, we show that optimal broadcast domination is actually
in P, and we give a polynomial time algorithm for solving the problem on
arbitrary graphs.

1 Introduction

A dominating set in a graph is a subset of the vertices of the graph such that every
vertex of the graph either belongs to the dominating set or has a neighbor in the
dominating set. A vertex outside of the dominating set is said to be dominated
by one of its neighbors in the dominating set. The standard optimal domination
problem seeks to �nd a dominating set of minimum cardinality. Since the introduc-
tion of this problem [2, 12], many domination related graph parameters have been
introduced and studied, and domination in graphs is one of the most well known
and widely studied subjects within graph algorithms [7, 8].

The standard dominating set problem can be seen as to represent a set of cities
having broadcast stations, where every city can hear a broadcast station placed in it
or in a neighboring city [11]. In 2002 Erwin [5] introduced the broadcast domination
problem, which is more realistic in the sense that the various broadcast stations
are allowed to transmit at di�erent powers. FM radio stations are distinguished
both by their transmission frequency and by their ERP (E�ective Radiated Power).
A transmitter with a higher ERP can transmit further, but it is more expensive
to build and to operate. Consequently, the optimal broadcast domination problem
asks to compute an integer valued power function f on the vertices, such that every
vertex of the graph is at distance at most f(v) from some vertex v having f(v) � 1,
and the sum of the powers are minimized.

Since the introduction of this problem, its computational complexity has been
open [4, 10]. The standard optimal domination problem is NP-hard [6], and so are
some variants that might resemble broadcast domination: optimal r-domination
asks for a dominating set of minimum cardinality where every vertex of the graph
is within distance r from some vertex of the dominating set for a given r [9, 13],
and the (k; r)-center problem asks to �nd an r-dominating set containing at most k
vertices, where one parameter is given and the other is to be minimized [1, 6]. Since
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most of the interesting domination problems are NP-hard on general graphs, this
gave some indication that optimal broadcast domination might also be NP-hard for
general graphs. Following this, in 2003 Blair et al. gave polynomial time algorithms
for optimal broadcast domination of trees, interval graphs, and series-parallel graphs
[3].

In this paper, we show that, quite surprisingly, optimal broadcast domination
is in P . We �rst prove that every graph has an optimal broadcast domination in
which the subsets of vertices dominated by the same vertex are ordered in a path
or a cycle. Using this, we give a polynomial time algorithm for computing optimal
broadcast dominations of arbitrary graphs.

This paper is organized as follows. In the next section, we give the necessary
background. In Section 3, we prove the necessary results on the structure of optimal
broadcast dominations. In Section 4, we use this result to develop a polynomial time
algorithm for all graphs. We conclude with a few remarks in Section 5.

2 De�nitions and terminology

In this paper we work with unweighted, undirected, connected, and simple graphs as
input graphs to our problem. Let G = (V;E) be a graph with n = jV j and m = jEj.
For any vertex v 2 V , the neighborhood of v is the set NG(v) = fu j uv 2 Eg.
Similarly, for any set S � V , NG(S) = [v2SN(v) � S. We let G(S) denote the
subgraph of G induced by S.

The distance between two vertices u and v in G, denoted by dG(u; v), is the
minimum number of edges on a path between u and v. The eccentricity of a vertex
v, denoted by e(v), is the largest distance from v to to any vertex of G. The radius
of G, denoted by rad(G), is smallest eccentricity in G. The diameter of G, denoted
by diam(G), is the largest distance between any pair of vertices in G.

A function f : V ! f0; 1; � � � ; diam(G)g is a broadcast on G. The set of broadcast
dominators de�ned by f is the set Vf = fv 2 V j f(v) � 1g. A broadcast is
dominating if for every vertex u 2 V there is a vertex v 2 Vf such that d(u; v) �
f(v). In this case f is also called a broadcast domination. The cost of a broadcast
f incurred by a set S � V is cf (S) =

P
v2S f(v). Thus, cf (V ) is the total cost

incurred by broadcast function f on G.
For a vertex v 2 V and an integer p � 1, we de�ne the ball BG(v; p) to be the

set of vertices that are at distance � p from v in G. Thus BG(v; f(v)) is the set of
all vertices that are dominated by v (including v itself) if f(v) � 1. We will omit
the subscript G in the notation for balls, since a ball will always refer to the input
graph G. A broadcast domination f on G is eÆcient if B(u; f(u))\B(v; f(v)) = ;
for all pairs of distinct vertices u; v 2 V .

For an eÆcient broadcast domination f on G, we de�ne the domination graph
Gf = (Vf ; fuv j NG(B(u; f(u))) \ B(v; f(v)) 6= ;g). Hence the domination graph
can be seen as a modi�cation of G in which every ball B(v; f(v)) is contracted to
the single vertex v, and neighborhoods are preserved. Since G is connected and f

is dominating, Gf is always connected. An example is given in Figure 1.
The optimal broadcast domination problem on a given graph G asks to compute

a broadcast domination on G with the minimum cost. Note that if f is an optimal
broadcast domination on G = (V;E), then cf (V ) � rad(G) since one can always
choose a vertex v of smallest eccentricity and dominate all other vertices with f(v) =
e(v) = rad(G). If cf (V ) = rad(G) = f(v) for a single vertex v in G, then f is called
a radial broadcast domination.
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Figure 1: On the left hand side, a graph G with an eÆcient broadcast domination
f is shown. For vertices v with f(v) � 1, the broadcast powers f(v) are shown
in parentheses, and the dashed curves indicate the balls B(v; f(v)). For all other
vertices w, f(w) = 0. On the right hand side, the corresponding domination graph
Gf is given, and the weight of each vertex is shown in parentheses.

3 The structure of an optimal broadcast domina-

tion

In [4], Dunbar et al. show that every graph has an optimal broadcast domination
that is eÆcient. In particular, the following lemma is implicit from the proof of this
result.

Lemma 3.1 (Dunbar et al. [4]) For any non eÆcient broadcast domination f on
a graph G = (V;E), there is an eÆcient broadcast domination f 0 on G such that
jVf 0 j < jVf j and cf 0(V ) = cf (V ).

We now add the following results.

Lemma 3.2 Let f be an eÆcient broadcast domination on G = (V;E). If the
domination graph Gf has a vertex of degree > 2, then there is an eÆcient broadcast
domination f 0 on G such that jVf 0 j < jVf j and cf 0(V ) = cf (V ).

Proof. Let v be a vertex with degree > 2 in Gf , and let x; y, and z be three of
the neighbors of v in Gf . By the way the domination graph Gf is de�ned, v; x; y,
and z are also vertices in G, and they all have broadcast powers � 1 in f . Since f
is eÆcient, dG(v; x) = f(v) + f(x) + 1. Similarly, dG(v; y) = f(v) + f(y) + 1 and
dG(v; z) = f(v) + f(z) + 1. Assume without loss of generality that f(x) � f(y) �
f(z).

If f(x) + f(y) > f(z) then we construct a new broadcast f 0 on G with f 0(u) =
f(u) for all vertices u 2 V n fv; x; y; zg. Furthermore, we let f 0(v) = f(v) + f(x) +
f(y) + f(z), and f 0(x) = f 0(y) = f 0(z) = 0. The new broadcast f 0 is dominating
since every vertex that was previously dominated by one of v; x; y, or z is now
dominated by v. To see this, let u be any vertex that was dominated by x; y, or z in
f . Thus dG(v; u) � f(v)+2f(z)+1 by our assumptions. Since f 0(v) > f(v)+2f(z),
vertex u is now dominated by v in f 0. The cost of f 0 is the same as that of f , and
the number of broadcast dominators in f 0 is smaller.

Let now f(x) + f(y) � f(z). As we mentioned above, there is a path P in G

between v and z of length f(v) + f(z) + 1. Let w be a vertex on P such that the
number of edges between w and z on P is f(v) + f(x) + f(y). Since f is eÆcient,
f(w) = 0. We construct a new broadcast f 0 on G such that f 0(u) = f(u) for all
vertices u 2 V nfv; w; x; y; zg. Furthermore, we let f 0(w) = f(v)+f(x)+f(y)+f(z),
and f 0(v) = f 0(x) = f 0(y) = f 0(z) = 0. By the way dG(z; w) is de�ned, any vertex
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that was dominated by z or v in f is now dominated by w, since dG(v; w) < f(z).
Let u be a vertex that was dominated by y in f . The distance between u and w in
G is � 2f(y)+2f(v)+f(z)+2�f(v)�f(x)�f(y) = f(y)+f(v)+f(z)+2�f(x)�
f(y)+f(v)+f(z)+f(x) = f 0(w). Thus u is now dominated by w. The same is true
for any vertex that was dominated by x in f since we assumed that f(x) � f(y).
Thus f 0 is a broadcast domination. Clearly, the costs of f 0 and f are the same, and
f 0 has fewer broadcast dominators.

Thus we have shown how to compute a new broadcast domination f 0 as desired.
If f 0 is not eÆcient, then by Lemma 3.1 there exists an eÆcient broadcast domi-
nation with the same cost and fewer broadcast dominators, so the lemma follows.

We are now ready to state the main result of this section, on which our algorithm
will be based.

Theorem 3.3 For any graph G, there is an eÆcient optimal broadcast domination
f on G such that the domination graph Gf is either a path or a cycle.

Proof. Let f be any eÆcient optimal broadcast domination on G = (V;E). If Gf

has a vertex of degree > 2 then by Lemma 3.2, an eÆcient broadcast domination f 0

on G with jVf 0 j < jVf j and cf 0(V ) = cf (V ) exists. The proofs of both Lemmas 3.1
and 3.2 are constructive, so we know how to obtain f 0. As long as there are vertices
of degree > 2 in the domination graph, this process can be repeated. Since we
always obtain a new domination graph with a strictly smaller number of vertices,
the process has to stop after < n steps. Since domination graphs are connected,
the theorem follows.

Note that a path can be a single edge or a single vertex. If Gf is a single vertex
then f is a radial broadcast.

Corollary 3.4 For any graph G = (V;E), there is an eÆcient optimal broadcast
domination f on G such that removing the vertices of B(v; f(v)) from G results in
at most two connected components, for every v 2 Vf .

Proof. Since there is always an eÆcient optimal broadcast domination f on G such
that the balls B(v; f(v)) with v 2 Vf are ordered in a path or a cycle by Theorem
3.3, it suÆces to observe that B(v; f(v)) induces a connected subgraph in G for
each v 2 Vf .

Corollary 3.5 For any graph G = (V;E), there is an eÆcient optimal broad-
cast domination f on G such that a vertex x 2 Vf satis�es the following: G0 =
G(V n B(x; f(x))) is connected (or empty), and G0 has an eÆcient optimal broad-
cast domination f 0 such that G0

f 0 is a path (or empty).

Proof. By Theorem 3.3, let f be an eÆcient optimal broadcast domination of G
such that Gf is a path or a cycle. Let x be any vertex of Gf if Gf is a cycle, any
of the two endpoints of Gf if Gf is a path with at least two vertices, or Gf itself if
Gf is a single vertex. Let f 0(v) = f(v) for all v 2 V n fxg. Since f is eÆcient on
G, f 0 is an eÆcient dominating broadcast on G0, and G0

f 0 is the result of removing
x from Gf . Thus G

0

f 0 is a path or empty.

4 Computing an optimal broadcast domination

By Theorem 3.3 we know that an eÆcient optimal broadcast f on G must exist
such that Gf is a path or a cycle. We will �rst give an algorithm for handling the
case when Gf is a path.
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4.1 Optimal broadcast domination when the domination graph

is a path

In this subsection, we want to �nd an eÆcient broadcast domination of minimum
cost over all broadcast dominations f on G = (V;E) such that Gf is a path. Our
approach will be as follows: for each vertex u of G, we will compute a new graph
Gu, and use this to �nd the best possible broadcast domination f such that Gf is
a path and u belongs to a ball corresponding to one of the endpoints of Gf . We
will repeat this process for every u in G, and choose at the end the best f ever
computed.

Given a vertex u 2 V , we de�ne a directed graph Gu with weights assigned to
its vertices as follows: For each v 2 V and each p 2 [1; :::; rad(G)], there is a vertex
(v; p) in Gu if and only if one of the following is true:

� G(V nB(v; p)) is connected or empty and u 2 B(v; p)
� G(V nB(v; p)) has at most two connected components and u 62 B(v; p).

Thus Gu has a total of at most n rad(G) vertices. Following Corollaries 3.4 and 3.5,
each vertex (v; p) represents the situation that f(v) = p in the broadcast domination
f that we are aiming to compute. We de�ne the weight of each vertex (v; p) to be
p.

The role of u is to de�ne the \left" endpoint of the path that we will compute.
All edges will go from \left" to \right". We partition the vertex set of Gu into four
subsets:

� Au = f(v; p) j G(V nB(v; p)) is connected and u 2 B(v; p)g
� Bu = f(v; p) j G(V nB(v; p)) has two connected componentsg
� Cu = f(v; p) j G(V nB(v; p)) is connected and u 62 B(v; p)g
� Du = f(v; p) j B(v; p) = V g
For each vertex (v; p), let Lu(v; p) be the connected component of G(V nB(v; p))

that contains u (i.e., the component to the \left" of B(v; p)), and let Ru(v; p) be the
connected component of G(V nB(v; p)) that does not contain u (i.e., the component
to the \right" of B(v; p)). Thus Lu(v; p) = ; for every (v; p) 2 Au [ Du, and
Ru(v; p) = ; for every (v; p) 2 Cu [Du.

The edges of Gu are directed and de�ned as follows: A directed edge (v; p) !
(w; q) is an edge of Gu if and only if all of the following three conditions are satis�ed:

� B(v; p) \ B(w; q) = ; in G

� Ru(v; p) 6= ; and Lu(w; q) 6= ;
� (NG(B(w; q))\Lu(w; q)) � B(v; p) and (NG(B(v; p))\Ru(v; p)) � B(w; q) in

G.
To restate the last requirement in plain text: B(v; p) must contain all neighbors

of B(w; q) in Lu(w; q), and B(w; q) must contain all neighbors of B(v; p) in Ru(v; p).

Observation 4.1 Given the �rst two requirements that an edge of Gu must satisfy,
the two conditions of the last requirement are equivalent.

Proof. Note �rst that (NG(B(w; q)) \ Lu(w; q)) 6= B(v; p) and (NG(B(v; p)) \
Ru(v; p)) 6= B(w; q) since B(v; p)\B(w; q) = ; and thus v has no neighbor in B(w; q)
and w has no neighbor in B(v; p) in G. Let now (NG(B(w; q))\Lu(w; q)) � B(v; p).
Observe that B(v; p) � Lu(w; q), since B(v; p) \ B(w; q) = ; and each ball induces
a connected subgraph of G. Furthermore, since B(w; q)[Ru(w; q) is connected and
does not intersect with B(v; p), and since there is no path from B(w; q) to u that
avoids B(v; p), we can also conclude that B(w; q) � Ru(v; p). Assume now, for a
contradiction, that (NG(B(v; p))\Ru(v; p)) 6� B(w; q). Thus B(v; p) has a neighbor
z in Ru(v; p) and z 62 B(w; q). Since Ru(v; p) is connected there is a path between z
and a vertex of B(w; q) in Ru(v; p), and in particular, this path contains a vertex y
of Ru(w; q). But this means that there is a path between u and y in G(V nB(w; q)),
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which contradicts that y 2 Ru(w; q). The proof in the other direction is analogous.

By the way we have de�ned the edges of Gu, all vertices belonging to Au have
indegree 0 and all vertices belonging to Cu have outdegree 0. Hence, any path in
Gu can contain at most one vertex from Au (which must be the starting point of
the path) and at most one vertex from Cu (which must be the ending point of the
path). The vertices of Du are isolated, and every vertex of Du de�nes a radial
broadcast domination on its own.

Lemma 4.2 Given G = (V;E) and a vertex u in G, let (v1; p1) ! (v2; p2) !
::: ! (vk; pk) be a directed path in Gu with (v1; p1) 2 Au [ Du and (vk ; pk) 2

Cu [Du. Then for 1 � i � k, the following is true:
Si�1

j=1 B(vj ; pj) = Lu(vi; pi) and
Sk
j=i+1 B(vj ; pj) = Ru(vi; pi).

Proof. Observe that k = 1 if and only if the path contains a vertex of Du, in which
case the lemma follows trivially. Let us for the rest of the proof assume that k � 2.

We �rst show that
Si�1

j=1 B(vj ; pj) = Lu(vi; pi) by induction on i, starting from
i = 1 and continuing to i = k.

Let us consider the base cases i = 1 and i = 2. When i = 1, we must show
that Lu(v1; p1) = ;, which follows trivially since (v1; p1) 2 Au [ Du. When i = 2,
we need to show that B(v1; p1) = Lu(v2; p2). Since (v1; p1)! (v2; p2) is an edge of
Gu and Lu(v1; p1) = ;, we know that NG(B(v1; p1)) � B(v2; p2). By the de�nition
of an edge of Gu, we also know that NG(B(v2; p2)) \ Lu(v2; p2) � B(v1; p1). Thus
there cannot exist a path between a vertex of B(v2; p2) and a vertex of B(v1; p1)
that avoids B(v1; p1) and the result follows since Lu(v2; p2) is connected.

For the induction step, assume that
Si�1

j=1 B(vj ; pj) = Lu(vi; pi), and we will

show that
Si

j=1 B(vj ; pj) = Lu(vi+1; pi+1). Because of the edge (vi; pi)! (vi+1; pi+1),
by the proof of Observation 4.1, we know that B(vi; pi) � Lu(vi+1; pi+1) and
B(vi+1; pi+1) � Ru(vi; pi). Thus, by the induction assumption, B(vi+1; pi+1) does

not intersect with
Si
j=1 B(vj ; pj). Again by the induction assumption,

Si
j=1 B(vj ; pj)

is connected and contains u. Thus we can conclude that
Si

j=1B(vj ; pj) � Lu(vi+1; pi+1).

Now, if Lu(vi+1; pi+1) contains a vertex x that does not belong to
Si

j=1B(vj ; pj)
then due to the induction assumption, there must be a path (possibly a single edge)

between x and a vertex of B(vi; pi) whose vertices are all outside of
Si�1
j=1 B(vj ; pj).

Consequently, B(vi; pi) must have a neighbor y in Ru(vi; pi) such that that x 62
B(vi+1; pi+1), which contradicts the existence of the edge (vi; pi) ! (vi+1; pi+1).

Thus
Si

j=1B(vj ; pj) = Lu(vi+1; pi+1), and the proof of this part is complete.

Showing that
Sk

j=i+1 B(vj ; pj) = Ru(vi; pi) for 1 � i � k is completely analo-
gous, and we skip this part.

Lemma 4.3 Given G = (V;E), there is a vertex u 2 V such that (v1; p1) !
(v2; p2) ! ::: ! (vk ; pk) is a directed path in Gu with (v1; p1) 2 Au [ Du and
(vk; pk) 2 Cu [ Du if and only if G has an eÆcient broadcast domination f such
that Gf is the undirected path v1 � v2 � :::� vk and f(vi) = pi for 1 � i � k.

Proof. Let f be an eÆcient broadcast on G = (V;E) with broadcast dominators
Vf � V such that Gf is a path. Let Vf = fv1; v2; :::; vkg so that v1 � v2 � ::: � vk
is the path equivalent to Gf , and let u be any vertex of B(v1; f(v1)). If k = 1
then V = B(v1; p1), and the lemma trivially follows since Gu contains a vertex
(v1; p1) 2 Du. Let k � 2. By the proofs of Corollaries 3.4 and 3.5, removing
B(v1; f(v1)) or B(vk ; f(vk)) from G results in a connected graph, and removing
B(vi; f(vi)) from G results in exactly two connected components for 2 � i � k� 1.
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Consequently, for each vi 2 Vf , (vi; f(vi)) is a vertex of Gu. In Gu, (v1; f(v1)) belongs
to Au, (vk; f(vk)) belongs to Cu, vertices (vi; f(vi)) belong to Bu for 2 � i � k� 1,
and (v1; f(v1)) ! (v2; f(v2)) ! ::: ! (vk ; f(vk)) is a path by the de�nition of the
edges in Gu.

In the other direction, let u be a vertex of G, and let P = (v1; p1)! (v2; p2)!
::: ! (vk; pk) be a directed path in Gu such that (v1; p1) 2 Au [Du and (vk ; pk) 2
Cu [Du. De�ne a function f so that f(vi) = pi for 1 � i � k, and f(v) = 0 for all

other vertices ofG. By Lemma 4.2,
Sk

i=1B(vi; pi) = V , andB(vi; pi)\B(vj ; pj) = ;,
for 1 � i < j � k. Thus f is an eÆcient broadcast domination on G.

Now the idea is to �nd a directed path Pu in Gu from a vertex of Au [ Du

to a vertex of Cu [ Du such that the sum of the weights of the vertices of Pu is
minimized1. Let us call this sum W (Pu). Then we will compute Gu for each vertex
u in G, and repeat this process, and at the end choose a path with the minimum
total weight. Our algorithm for the path case is given in Figure 2.

Algorithm Minimum Path Broadcast Domination - MPBD
Input: A graph G = (V;E).
Output: An eÆcient broadcast domination function f of minimum cost on G,
such that Gf is a path.
begin

for each vertex v in G do

f(v) = 0;
Let P be a dummy path with W (P ) = rad(G);
for each vertex u in G do

Compute Gu with vertex sets Au, Bu, Cu, and Du;
Find a minimum weight path Pu starting in a vertex of Au [Du and
ending in a vertex of Cu [Du;
if W (Pu) < W (P ) then

P = Pu;
end-for

for each vertex (v; p) on P do

f(v) = p;
end

Figure 2: The algorithm for computing the best path broadcast domination.

Theorem 4.4 Given a graph G = (V;E), Algorithm MPBD computes an eÆcient
broadcast domination f on G of minimum cost such that Gf is a path.

Proof. We compute a minimum weight path in Gu for every u 2 V , and among
all these paths we choose a path P with the lowest W (P ). By Lemma 4.3, P
corresponds to a broadcast domination f of G such that Gf is a path, and by the
way each Gu is constructed, W (P ) = cf (V ). Assume that there is a broadcast
domination f 0 on G with cf 0(V ) < cf (V ) such that Gf 0 is a path. Lemma 4.3
guarantees the existence of a path P 0 in Gv for some vertex v 2 V such that
W (P 0) < W (P ), which is a contradiction.

Corollary 4.5 Let G = (V;E) be a graph such that there is an eÆcient optimal
broadcast domination on G where the domination graph is a path. Algorithm MPBD
computes such a broadcast domination on G.

1Recall that Pu might be a single vertex from Du, corresponding to a radial broadcast.
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4.2 Optimal broadcast domination for all cases

Now we want to compute an optimal broadcast domination for any given graph G.
Our approach will be as follows. Let x be any vertex of G. For each k between
1 and rad(G) such that G0 = G(V n B(x; k)) is connected or empty, we run the
minimum path broadcast domination algorithm MPBD on G0. Our algorithm for
the general case is given in Figure 3.

Algorithm Optimal Broadcast Domination - OBD
Input: A graph G = (V;E).
Output: An eÆcient optimal broadcast domination function f on G.
begin

opt =1;
for each vertex x in G do

for k = 1 to rad(G) do
if G0 = G(V nB(x; k)) is connected or empty then

f = MPBD(G0);
if cf (V n B(x; k)) + k < opt then

opt = cf (V nB(x; k)) + k;
f(x) = k;
for each vertex v in B(x; k) n fxg do

f(v) = 0;
end-if

end-if

end

Figure 3: The algorithm for computing an optimal broadcast domination.

In this way, we consider all broadcast dominations f whose corresponding dom-
ination graphs are paths or cycles. The advantage of this approach is its simplicity.
The disadvantage is that we also consider many cases that do not correspond to
a path or a cycle, which we could have detected with a longer and more involved
algorithm. However, these unnecessary cases do not threaten the correctness of the
algorithm, and detecting them does not decrease the asymptotic time bound.

Theorem 4.6 Algorithm OBD computes an optimal broadcast domination of any
given graph.

Proof. Let G = (V;E) be the input graph. By Theorem 3.3 and Corollary 3.5, there
is a vertex x in V and an integer k 2 [1; rad(G)] such that the graph G0 = G(V n
B(x; k)) has an eÆcient optimal broadcast domination f 0 where the domination
graphG0

f 0 is a path, and that f 0 can be extended to an optimal broadcast domination
f for G with f(x) = k, f(v) = 0 for v 2 B(x; k) with x 6= v, and f(v) = f 0(v) for
all other vertices v. Algorithm MPBD computes an optimal broadcast domination
of G0, and since Algorithm OBD tries all possibilities for (x; k), the result follows.

Note that although there is always an eÆcient optimal broadcast domination f
such that Gf is a cycle or a path, there can of course exist other optimal broadcast
dominations f 0 with cf 0(V ) = cf (V ) such that Gf 0 is not a path or a cycle, and such
that f 0 is not eÆcient. The optimal broadcast domination returned by algorithm
OBD does not necessarily correspond to a path or a cycle, since we do not force
the endpoints (or forbid the interior points) of the path for G0 to be neighbors of
B(x; k). Nor is the returned broadcast necessarily eÆcient, as some ball B(v; p)
might have an outreach outside of G0 and might overlap with B(x; k).

4.3 Time complexity

Given a graphG, for each vertex u in G, we create a graph Gu with at most n rad(G)
vertices. In each such graph we compute a path of minimum weight. Shortest paths
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in graphs can be computed eÆciently by well-known algorithms like the one by
Dijkstra. Minimum weight paths can be computed by simple modi�cations of such
algorithms within the same time bound. We repeat this process n rad(G) times to
�nd the optimal broadcast domination. Thus the overall time complexity is clearly
polynomial.

Note that in algorithm OBD we could have searched through fewer alterna-
tives to reduce the running time in practice. After removing B(x; k) from G, we
could check only those paths whose starting and ending points contain neighbors
of B(x; k), to �nd an optimal broadcast domination f where Gf is a cycle. Then
we would have to compare the best path case with the best cycle case in the end.
In its current shape, Algorithm OBD is simpler, and for the asymptotic worst case
time bound the enhancements would not give signi�cant gain.

5 Concluding remarks

In this paper we have shown that the broadcast domination problem is solvable in
polynomial time on all graphs. Our focus has been on polynomial time and not
the best possible time bound. Our algorithm can be enhanced to run substantially
faster, as mentioned. For further research, more eÆcient algorithms for this problem
should be of interest.

The optimal broadcast domination problem studies the cost cf (V ) =
P

v2V f(v)
of a broadcast domination f on a graph G = (V;E). We would like to mention
that other de�nitions of the cost of a broadcast may be appropriate depending on
the application, since the cost of a broadcast can be di�erent from the value of a
broadcast. To be more precise, one could de�ne a cost function c(i), and let the total
cost be cf (V ) =

P
v2V c(f(v)). Thus in our case c(i) = i for all i. Our polynomial

time algorithm can be used for all cost functions c, where c(i) + c(j) � c(i+ j) for
all distinct integers i and j � 0. For general cost functions the problem becomes
NP-hard, because we can let c(0) = 0, c(1) = 1 and c(i) > n for all i > 1, which
gives a direct reduction from the standard dominating set problem.
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