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Abstract

An upper bound on the minimum average cycle weight per branch over all cycles in a
minimal state diagram of a convolutional code, excluding the all-zero cycle around the all-zero
state, is derived. We generalize the approach by Hole and Hole and derive bounds for large
code classes within the class of rate (n — r)/n, r > 2, codes. The results of an exhaustive
computer search indicate that the derived upper bound is almost tight as the code degree, or
the overall constraint length, grows.

1 Introduction

Let wo denote the minimum average cycle weight per branch over all cycles in a minimal state
diagram of a convolutional code, excluding the all-zero cycle around the all-zero state. Codes with
low wq contain long codewords of low weight. These codes are susceptible to long error events when
used with either maximum likelihood (Viterbi) or sequential decoding [1], [2]. Further, the active
distances for convolutional codes [3], describing which error patterns are guaranteed to be corrected
under a maximum likelihood decoding assumption, are lower bounded by a linearly increasing
function with slope wg. In this sense, wg determines the code’s error correcting capability.

When working with concatenated codes, e.g., serial concatenated convolutional codes, decoded
using iterative decoding schemes, simulation results indicate that outer codes with large wy and
small degree compare favorably with other choices for the outer code [4].

Huth and Weber [5] derived a general upper bound on wy for rate 1/n convolutional codes.
Recently, Jordan et al. [6] generalized the bound to rate (n — r)/n, r > 1, codes. The new upper
bound applies to codes having a canonical generator matrix containing a delay-free (n—1) X (n—r)
minor of degree equal to the code degree. A general lower bound on wg can be found in Hole and
Hole [2].

In [1], Hemmati and Costello derived a tight upper bound on wyp for a special class of rate 1/2
convolutional codes. By generalizing the approach in [1], the authors of [2] showed that the bound
in [1] applies to a particular class of rate (n — 1)/n, n > 2, codes as well.

This paper is organized as follows: In Section 2, a convenient matrix notation for convolutional
codes is described. A new upper bound on the minimum average cycle weight per branch is then
derived in Section 3. The bound applies to classes of rate (n —r)/n, r > 1, codes, and is based on
the argument given by Hole and Hole in [2] for rate (n — 1)/n codes. In Section 4, the results of
an exhaustive computer search are given, verifying that the derived upper bound is almost tight
as the code degree grows. Conclusions are presented in Section 5.

*This work was supported by Nera Research and the Norwegian Research Council (NFR) Grant 137783/221.



2 Convolutional code preliminaries

We use some of the notation and definitions introduced in [7], as well as a convenient matrix
notation established in [8], [9], and [10].

A linear (n,n—r,v) convolutional code C is an (n—r)-dimensional subspace in an n-dimensional
vector space F'(D)"™, where F(D) is the field of rational functions in the indeterminate D over the
field F' [7, Def. 2.4, p. 1073]. The code degree, or the overall constraint length, is denoted by
v. In this paper the convolutional code symbols are taken from the binary field F = GF(2). A
convolutional code can be defined by an r x n polynomial parity check matrix H(D). We assume
in general a canonical parity check matrix [7, Def. 3.5, p. 1080]. Let the jth polynomial in the ith
row of H(D) be denoted by h{” (D) = h{) + h{'\D + --- + h{) D" € F[D], where F[D] is the
ring of all polynomials in D with coefficients in F. The maximum degree of the polynomials in
the ith row is the ith row degree, denoted by v;. Every canonical parity check matrix of a given
convolutional code has the same set of row degrees with v =Y., v; [7, Theorem 3.10, p. 1081].

The coefficients of h;’) (D) define a column vector h;’) with hg-f()) as its topmost element. The
n polynomials in the ith row of the parity check matrix H(D) give rise to a (v; + 1) X n matrix
H = (hgi), ceey h,(f)) over the field F'. Furthermore, let H, referred to as a combined parity check
matriz, be defined as
H®

H®
H= R :(hl,...,hn). (1)

H)
Note that the combined parity check matrix is a (v + r) x n matrix over the field F. The D-
transform of H is H(D), where the polynomial in the ith row and jth column is the previously
defined polynomial h;i) (D).

Let X = (24%q41---p)” be a finite dimensional column vector, where (-)?" denotes the trans-
pose of its argument. The [th shift of x, denoted by x<l—, is defined as x& = (Taqy---zp0---0)7T,
1 > 0. The last [ coordinates in x& are equal to zero.

A codeword in C is a semi-infinite sequence of n-tuples, or column vectors. An arbitrary
codeword sequence is denoted as v = (vi,Vvs,...), where v¢, t > 0, is an n-tuple (or label) given
as v = (v} ---v)T. We now define the ith syndrome vector ng‘) = (s% S sgf,),)T of dimension
(v; + 1) at time t, recursively as follows (t > 0,1 <i <7):

ng’) = (s§21)<1— + H(i)vt, (2)

with s(()i) equal to a fixed vector, e.g., the all-zero vector. Furthermore, we define the ith syndrome
sequence as (s&%s%---) where sgf()), t > 0, is the zeroth element in the ¢th syndrome vector
s,g’). The code consists of all semi-infinite sequences v such that all the corresponding syndrome
sequences are equal to the all-zero sequence.

A compact form of (2) is obtained using the combined parity check matrix. The combined

syndrome vector at time t, s; = ((sgl))T, e, (sgr))T)T = (si,lo) "'51(2,1317 .. -731(k,T0) . --SE:}T)T

by

is given

8¢ = (si-1)¢ + Hvy, (3)

where (s;_1)& = (s$V)8)T, ..., (7)) &)T)T, ie., the shift operator should be applied to each
component individually. The combined syndrome vectors in (3) have dimension v + r. Assuming
that the syndrome vectors are computed from codewords, the set of possible combined syndrome
vectors Vg = {s; : (v1,Va,...) € C} is a vector space of dimension v (after an initial transient).

Example 1 Consider a (4,2,5) binary convolutional code with free distance 6 defined by the poly-
nomial canonical parity check matriz

1+D+D? 1+D? 1+ D? 1+ D? )

H(D):( 0 D D?  1+D+D? )



The corresponding binary combined parity check matriz is

1111
1000
) 1111
H=(g§2§)= 000 1|, (5)
010 1
0010
0001

where the solid line separates the two component matrices H) and H®) . Further, let si_q =
(010,0110)T, v; = (0001)T, and v¢y1 = (0000)T. From (3) we have

s; = (001,0001)"  and syy; = (010,0010)7. (6)

. : ; ; L _ (2 0
The binary column vectors vy and vii1 are contained in a codeword since s; 5 = $; g = $;110 =

3&21,0 = 0. Note that when the label is the all-zero label, the combined syndrome vector at the

next time instant is obtained by simply shifting each component of the previous combined syndrome
vector individually.

A code C may be represented by a state diagram, where each state represents a combined
syndrome vector. Obviously, the number of states in the state diagram is equal to 2. The set of
possible transitions between states is determined by the equation in (3). An important observation
is that a transition from state s on a branch with weight zero will lead to the state s&. (The
weight of a branch is the Hamming weight of the label on the branch.)

A path of length p in a state diagram consists of p consecutive branches. A cycle is a path
returning back to the state where it started, in which the intermediate states are distinct and
different from the starting state.

Lemma 1 Let H denote a combined parity check matrix defining a code C with free distance dgree.
Then the following holds:

1. diree = 1 if and only if H contains the all-zero combined column.
2. If H contains two equal combined columns, then dee = 2.

The proof of Lemma, 1 is trivial, and is omitted for brevity. In this work only codes with
diree > 3 are considered. Thus, using Lemma 1, we will assume without loss of generality that
every combined parity check matrix has distinct combined columns different from the all-zero
combined column.

Two combined parity check matrices are said to be d-equivalent if the two corresponding codes
have the same free distance dfpee > 2.

In [11], Paaske described some equivalence relations on the set of polynomial parity check
matrices for r = 1. In fact only parity check matrices where all polynomials have constant terms
different from zero need to be considered. In [8], Ytrehus generalized some of these relations to
r > 1. The following lemma was proved in [8]:

Lemma 2 Every combined parity check matriz H, of constraint length v, is d-equivalent to some
combined parity check matrix H, of constraint length < v, in which, for every column index j,

1 < j <mn, there is some row indezx i, 1 < i < r, such that ﬁ% =1.
Lemmas 1 and 2 imply the following.

Corollary 1 Without loss of generality, only combined parity check matrices H with distinct com-

bined columns containing no combined column h = (h(()l) ---h,(,ll), h(()2) e h,(,?, e, h((]r) ---h,(f;))T of
the form
B =n® =...=p{" =0 (7)



need to be considered when looking at codes with free distance > 3, where the ith row degree of H
is denoted by v;, 1 <i <.

Note that Corollary 1 reduces to the equivalence relation proposed by Paaske in [11] for » = 1.

3 Upper bound on the minimum average cycle weight

A zero segment of length p is a path consisting of p branches of Hamming weight zero such that
any extension of the path in either direction has nonzero weight. The all-zero cycle around the
all-zero state is excluded. The zero segments in a state diagram from a canonical parity check
matrix are disjoint, finite length paths whose states are different from the all-zero state [12]. To
obtain an upper bound on wy we consider zero segments and cycles containing zero segments.

Definition 1 Let Hg)(yl, cesr),r > 1L, v, >2 foralli, 1 <i <7, andn > 2r, be the class of all
canonical (v+1) x n combined parity check matrices with ordered row degrees, i.e., withvy < --- <
vy, satisfying the following constraints: There exists an ordered set J = {1 < j; < -+ < jor < m}
of cardinality 2r such that

W =nl), 1<i<r, jel, ®)

and
View = { (W gnSH, ..., KA 1 j € T} ©)
Viign = { (B8, b0, B, B )T 2 € T} (10)

are sets of linearly independent column vectors spanning F2". In addition, only combined parity
check matrices with combined columns that do not satisfy (7) are considered.

Example 2 Choose r = 2, vy = 2, and va = 3. The binary combined parity check matriz in (5)
satisfies the constraint in (8) with J = {1,2,3,4}. Further,

Viow = {(11,00)%, (10,01)%, (10,00)%, (10,11)*} (11)
Vhigh = {(11,00)7, (01,00)7, (01,10)7, (01,01)"} (12)

are sets of linearly independent column vectors. Thus, the canonical parity check matriz (4) from
the previous example is contained in the class 'Hf) (2,3).

Definition 2 Let B = {(boby---b, 1)T € F* : b, = 0,1 & J and b; € {0,1},1 € J} be a set of
branch labels.

In Fig. 1, a zero segment with ending state t is given. The zero segment is connected to an
internal state q of some zero segment via a branch with label from the set B of branch labels.
This figure is used repeatedly in the proofs of the lemmas below, and is included to make the
understanding easier.

Lemma 3 For codes in the class ’Hsf) (v1,...,vr), let t be the ending state of some zero segment.
There exists a unique label b € B on a branch from t to the starting state of some zero segment.

Proof: The proof for the lemma is 3-fold. First we prove that there exists a label b € B on
a transition from the ending state t of some zero segment to a valid state q such that b may be
followed by the all-zero label o = (0---0)7. The starting state of the zero segment is denoted
by s and its length by p. Secondly, we prove that q cannot be the all-zero state, i.e., the zero
segment cannot be connected to the self-loop of weight zero around the all-zero state. In Fig. 1, q
is depicted as an internal state of some zero segment. In the last part of the proof we show that
this cannot be the case, i.e., q has to be the starting state of some zero segment.



P
t =s<

Fig. 1. A zero segment with starting state s, length p, and ending state s&. The zero segment is
connected to an internal state q of some zero segment via a branch with label from B.

Part I: Consider the expression for q given by

a=(g"-¢,....q" g7 =t& + Hb = (s£)& + Hb = s7 1 Hb, (13)
where "
s = (5221 . --31(,11)0- --0,.. .,sg_gl . --s,(,:)O- ) (14)

Since s is the starting state of a zero segment of length p, there exists at least one j, 1 < j <,

such that 3;(;21 = 1. Further, from (9) there exists a unique nonzero label b € B such that

q((]l) = qg) =...= q(()r) = qY) =0, i.e., state q has an outgoing branch of weight zero since q& is

a valid state.

Part IT: At least the last two elements in every component of Ran are zero. Further, we know
that there exists at least one j, 1 < j < r, such that s;QI =1, i.e., the first two elements cannot
be both zero in every component of s From (9), the selected label from B in (13) is not equal
to the all-zero label o. Consequently, from (10) there will exist a j', 1 < j' < r, such that at least
one of the last two elements in the j' component of q is nonzero, i.e., q is not equal to the all-zero
state.

Part III: We need to show that q is the starting state of some zero segment, and not an
intermediate state. We will prove the statement by showing that the assumption of q being an
intermediate state will lead to a contradiction. If q is an intermediate state of some zero segment,
then the state, denoted by x, leading to q via a branch with the all-zero label will be of the form

x = (002" -2, ..., 00287 - 2{7)T. An outgoing branch of weight zero will lead to the state

x& = (Oxgl) —ziVo, . .,Oxgr) -270)T. We know that there exists at least one j, 1 < j < r,

such that the first element in the jth component of 7 s equal to 1. The label b in (13) is chosen
such that q(()’ ) — 0. The requirement in (8) implies that q,(,ﬁ) =1, and a contradiction follows by
comparison with x&. O

Lemma 4 For codes in the class ’H(nr)(ul, ...,v,), let s be the ending state of a particular zero
segment, and let s7 and s5 be the starting states of two distinct zero segments. If there exists a
label in B on a transition from s¥ to s7, then there is no label in B on a transition from s¥ to s3
for any s5.

Proof: The situation is depicted in Fig. 2, and the statement follows immediately from the
fact that every ending state of a zero segment after a left shift has specific values in the first two
elements in each component. The purpose of a label in B is to “zero-out” these elements. From
(9), there exists only one label in B for this purpose. O



Fig. 2. A zero segment with ending state sp connected via single branches to two zero segments
with starting states sy and s5, respectively. Only one of the branch labels can be taken from the
set B.

Lemma 5 For codes in the class Hg)(l/l, ...y V), let s1 and so be the starting states of two distinct
zero segments, and let q be the starting state of some zero segment. If there exists a label in B on
a transition from the ending state of the first zero segment to q, then there is no label in B on a
transition from the ending state of the second zero segment to q, for any ss.

Proof: Assume that the statement is false, i.e., there exist two distinct zero segments having
single branch connections in B, denoted by b; and bs, respectively, to the starting state q of some
zero segment. Let the starting states of the two zero segments be denoted by s; and sa, respectively.
The two zero segments are depicted in Fig. 3. The state q is given by the two expressions

q=(s1)22 + Hb, (15)
a = (s2)7" + Hby (16)

where p and r are the lengths of the two zero segments, respectively. At least two of the last
elements in every component of both (Sl)w and (sz)fil are equal to zero. We have to consider
two cases: (A) (sl)w and (sQ)ril differ somewhere in the first two elements of at least one
component. In this case by # by, which from (10) implies that there is a difference somewhere in
1
the last two elements in at least one component in the two expressions above for q. (B) (sl)l<i and
(52)<Til do not differ somewhere in the first two elements of any component. In this case by = b,
1
but the two expressions for q above cannot be equal since (sl)I<i and (52)<Til are unequal by
assumption. O
Let O denote an initially empty set of cycles. Start with some zero segment . There exists
a unique label b € B connecting the ending state of a to a zero segment & (it may happen that
a = a&). If a cycle is generated, then add the cycle to O and continue with another zero segment
different from the ones considered. Otherwise, continue with the next zero segment. Repeat the
procedure until the set of zero segments is exhausted.

Corollary 2 For codes in the class Hsf) (v1,...,v), the cycle set O is exclusive, i.e., there is no
pair of cycles in O with a common state.

Proof: This follows immediately from the construction and the lemmas above. O

Lemma 6 For codes in the class ’HSLT) (v1,...,vr), let L and W be the accumulated length and
Hamming weight of all cycles in O, respectively. Then the minimum average cycle weight per

branch, wo in the state diagram from o parity check matrixz in ”H%T)(Vl, ...y V) s upper bounded by
W/L.



Fig. 3. Two zero segments of length p and r with ending states (s1)& and (s,)&, respectively. The
two zero segments have single branch connections with labels from B to the starting state q of
some zero segment.

Lemma 6 was first proved by Hemmati and Costello in [1]. For completeness, the argument is
repeated below.

Proof: The minimum average cycle weight per branch, wg is upper bounded by the average
cycle weight per branch of some cycle in the set of all cycles in the state diagram, and in particular
by the average cycle weight per branch of some cycle in O. Even further, wg cannot be larger than
the average weight per branch of all the cycles in some cycle set. O

Lemma 7 Consider an (n,n —r), r > 1, convolutional code C defined by a canonical combined
parity check matriz H with row degrees v;, 1 < i < r. The number, n, of zero segments of length
p, p > 1, in the state diagram from H is

n, = 9d(») 4 9d(p+2) _ 2d(p+1)+1’ (17)

where

dp)= Y. (ui-p). (18)

1:1<4<r, v; 2>p

If v; > 2 for all i, 1 < i <7, then the total number of zero segments is
Ny = (27 —1)2V~?". (19)

In the state diagram from a parity check matriz in the class Hg)(yl, ces¥), 2< 1 < - < vy
defining an (n,n —r), 7 > 1, code C, the accumulated length L of all cycles in O is

L= (2" —1)2v=% — 1. (20)
The proof of Lemma, 7 is given in the Appendix.

Definition 3 Let Z = Z(H) denote the set of zero segments in the state diagram from a canonical
combined parity check matrix H with row degrees v; > 2 for alli, 1 < i <r, defining an (n,n —r),
r > 1, code C. Define the (non-injective) mapping

p:Z— Fr

ars (sMs? s (21)

where s = (s(()l)---s,(lll),...,s(()r) ---s,(f;))T denotes the ending state of a. Further, in general,
(sgl)sél), e ,sY)sg))T is called the image of a under ¢ if and only if ap = (sgl)sg), U sgr)sg))T.



Definition 4 The multiplicity of x € F2" s the cardinality of the largest subset Z of Z, such that
Zp =x.

Lemma 8 Given a canonical combined parity check matriz H with row degrees v; > 2 for all i,
1 < i <, the cardinality of the image of Z = Z(H) under @, Zyp is 27 7(2" — 1), where v is the
number of rows with row degree 2. Further, the multiplicity of x € F?" is either zero or equal to

some fized positive integer for all x € F?", i.e., Z can be partitioned into equally sized subsets, Z;,
1 <5 <2772 — 1), such that agp # dp for every pair (a,08) € Z; x Z;, i # 5.

Sketch of Proof: The first part of the lemma is a simple combinatorial exercise. In general,
the image of Z under ¢ contains column vectors of the form

X =

T
($81)$§1)7 R N e I ,:cff’xY’) 7 (22)

where one and only one of the following two constraints apply (both constraints can not be satis-
fied):

1) (y>0): mgi) =0 for all 4, 1 < ¢ <+, and there exists at least one i, 1 < i < +, such that

2) (y<r): x((]i) —m ) =0foralli, 1<i < v, and there exists at least one i, vy +1 <7 < r,
such that x(()) =1.
We will illustrate this below in Example 3. The number of column vectors x € F?" satisfying
condition 1) is 22("=7)(27 — 1). This is the case since (A) all possibilities are allowed in the last
2(r —v) coordinates, (B) z{" = --- = 2{" = 0, and (C) ({" - - - 2{"")T should be different from the
all-zero vector. Using the same type of argument, the number of column vectors x € F2" satisfying
condition 2) can be shown to be 2"~7(2"~7 — 1). The cardinality of Z¢ is

|Zp| = 2227 — 1) 42777277 —1) = 2777 (27 — 1), (23)
and the first part of the lemma follows.
For the second part, let G be the subset of states in the state diagram from H of the form
T
(088550, 080750 0) (24)
Obviously, G is a group under component-wise addition. Let H(") be the subgroup of G' consisting
of every state s of the form
T
= (03,053,055 - 10,050 50 0) (25)

Supt1-1

where 03 = (000). In the following we consider cosets of G of the form g + H"), where g is any
vector in G of the form T
(09" g0+ --0,..., 0995 0---0) ", (26)

such that (g (l)gél), ..,g(r)g(r)) € Zy. Every element in the coset g + H") is the ending state
of a unique zero segment. In more detail, there is a one-to-one correspondence between the zero
segments in Z; for some j, 1 < j < 2"~7(2" — 1), and the elements in g + H. In fact, (Z;)p =
(gg) gz(,l), ey g(r) g( ))T. From abstract algebra we know that every coset has the same number of
elements, and the result follows. O

Example 3 Choose r = 3, v = 1 (which implies that v1 = 2), and v = v3 = 3. In general, the
starting state s of some zero segment a of length p is of the form

. T
s = (00s$",00s2 20055257 . (27)
2 2 3 2 3

Note that all 2° possibilities will not result in valid starting states. We consider the cases p = 1
and p = 2 separately.



(A) (p=1): Set sgl) = 1. In this case s is a valid starting state for any values of sgz), sg2), sg3),

and 353). The image of a under ¢ is the column vector

T
ap = (10,75, 4057 29

It follows that there will be exactly 2* = 16 distinct images under ¢, each with multiplicity
1. Note that ap has the form in (22) under condition 1). Secondly, set sgl) = 0. Since the
length of o is 1, 352) and 853) can not both be zero. Further, s§2) and sg3) can not both be
zero, because s is the starting state of a zero segment. The possible images of a under ¢ is

the set of column vectors

{(00,01,10)7, (00,01,11)7, (00,10,01)7,
(00,10,11)7, (00,00,11)7, (00, 11,00)7, (29)
(00,11,01)%, (00,11,10)%, (00,11,11) },

all of which are different from the previous 16. Thus, we have 16 + 9 = 25 distinct images,
each with multiplicity 1. Note that ayp has the form in (22) under condition 2).

(B) (p=2): In this case every starting state s of a is of the form

T
s= (000,000352>,0003g3>) , (30)

gz) =1, then s is a valid starting state for any

with not both sg) and s§3) equal to zero. If s
value of sgS). Secondly, if sgS) = 1, then again s is a valid starting state for any value of
sg2). Consequently, there are 8 distinct starting states which result in the following 8 images

under ¢
{(00,10,00)7, (00,00, 10)7, (00,10,10)T }, (31)

all of which are different from the previous 25. Note that ap has the form in (22) under
condition 2).

To summarize we have 28 images each with multiplicity 1. Evaluating 2"~7(2" — 1) forr =3
and v =1 gives the same number.

Definition 5 Let v;, 1 < ¢ < 2r, denote the ith basis vector in View. Further, write (Z;)ep,
1<j<|Z¢|, as a linear combination of the basis vectors in Vo as follows:
Ny — o9 (9) (4)
(Zj)p=ai’vita; va+ -+ a5 v, (32)
where the column vector (ozgj) e ag];))T consists of the coefficients in the linear combination of the

basis vectors in View representing (Z;)¢. Define w; as the Hamming weight of the jth column of
the 2r x | Z¢| matriz

agl) 0452) agIZ«JI)
1 2 z
ag ) ag ). agl el) , (33)
1 2 z
o) o) o ofE
and let A, 2w + et wzy)-
Lemma 9 In the state diagram from a parity check matriz in the class ’Hﬁf)(ul, ), 2<1n <

-+« < vy, defining an (n,n —r), r > 1, code C, the accumulated weight W of all cycles in O is
W =A, 273+ (34)

where A, is defined in Definition 5.



Proof: In general,
W = |Ziw1 +|Za|wz + - + |2 24| |w) 24| (35)

where w;, 1 < j <|Z¢|, is defined in Definition 5. From Lemmas 7 and 8,
No
|Zl| = |Zz| T — |Z|Z<p|| = Z

el

| (36)

and the result follows from the fact that A, = wi + --- 4+ w)zy|, |2p| = 2777(2" — 1), and
Np = (27 — 1)2v—2r. o

Theorem 1 Let C be a code defined by a parity check matrix in the class ’Hg)(yl, ces¥p), 2 <
v, < -+ <. The minimum average cycle weight per branch in the state diagram for C, excluding
the all-zero cycle around the all-zero state, is upper bounded by

v—3r+
A 2v=3r+y

Wo S W/L = (27‘+1 _ 1)21/—271 _ 1’

(37)

where v is the number of rows with row degree 2 in the canonical parity check matriz from
Hif)(ul, ..., vy defining C.

Proof: The result follows immediately from Lemmas 6, 7, and 9. O

3.1 Codes withr=1

In this subsection we will show that our derived upper bound in Theorem 1 with r = 1 reduces to
the main theorem in [2]. We first consider Definition 1, which reduces to:

Let ’Hg)(l/), n > 2, be the class of all canonical (v+ 1) x n combined parity check matrices with
v > 2, satisfying the following constraints: There exists an ordered set J = {1 < j; < ja < n} of
cardinality 2 such that

h]"o = hj,,,, j € J, (38)

and
Viow = {(hj1,0hj1,1)Ta (h]'zﬂohj%l)T} (39)
Vhigh = {(hjl,'/—lhjl,V)T’ (hjzﬂf—lhjz,")T} (40)

are sets of linearly independent column vectors spanning F?. In addition, every polynomial in the
parity check matrices should have constant terms different from zero.
Actually, S) (v) is the class of all canonical parity check matrices with v > 2 that satisfy

hio=hoo="--=hpo=
hj1,1 # hj271
hjy w1 # hjs w1
hjw = hjp =1, (41)

which is equal to the class considered in [2]. Further, we have to consider two cases (v = 2 and
v>3):

1. v = 2 implies v = 1. In this case Zp = {(10)T} and 4, = 4; = 1. From (37), wy <
2v=2/(3.2v"2 — 1),

2. v > 3 implies v = 0. In this case Z¢ = {(11)7,(10)”} and A, = Ay = 2. From (37),
wo < 2°2/(3-2v2 —1).

In both cases, we get the upper bound provided in the main theorem in [2].
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3.2 Codes with r =2

The upper bound in Theorem 1 depends on A,, which again depends on Vioy. As an example we
will consider » = 2 codes. The number of zero segments of length p, p > 1, can be written out
explicitly using (17) and (18) as illustrated by the following examples.

Example 4 Consider codes with vi = v2 = v/2, v even. Using Lemma 7, we can find the number
of zero segments of length p, 1 <p < v/2 — 1, which is

9.2v=2(+2)  if1<p<u/2-2, (42)
Ny =
N ] fp=v/2—-1,

for allv > 4, v even.

Example 5 Consider codes with 2 < vy < va. Using Lemma 7, we can find the number of zero
segments of length p, 1 < p < wy — 1, which is

9.2v2+2) 1 <p<uiy —2,
5. 2va—p—2 ifp=1 —1,
2vap2 ifri <p<im -2
1 ifp=1y—1,

(43)

for all 2 < vy < ws.
Theorem 1 reduces to the following corollary when r = 2.

Corollary 3 LetC be a code defined by a parity check matriz in the class 7—[%2)(1/1, 1), 2 <y <ws.
The minimum average cycle weight per branch in the state diagram for C, excluding the all-zero
cycle around the all-zero state, is upper bounded by

Az ifry =2 and v = 2,

wo < W/L =4 A2 iry =2 and vy > 3, (44)

T otherwise.

Remark 1 To use Corollary 3, we have to determine As, A1, and Ao using (32) and (33). To
do that, we have to write out the image Zy explicitly for vy =2, v =1, and v = 0. For vy = 2,
|Zp| = 3, and from (22) under condition 1)

Zp = {(10,00)7, (10,10)7, (00, 10)T}. (45)
Further, for v =1, |Z¢| = 6, and from (22) under conditions 1) and 2)
Zp ={(10,00)7, (10,10)%, (00,10)7, (10,01)T, (10,11)7, (00, 11)7}. (46)

At last, for v =0, |Z¢| = 12, and from (22) under condition 2)

{(10,00)%, (10,01)", (11,01)7, (10,10)*, (10,11)*, (11,10)7,

2¢=""(11,11)7, (00,10)7, (00, 11)7, (11,00)7, (01, 10)7, (0L, 11)7 }.

(47)

For any given parity check matriz in the class ’H%Q) (v1,v2), 2 < v1 < vy, determine the basis vectors
in Viow- Then, use (45), (46), (47), and Viow to determine the matriz in (33), from which Ay, Ay,
and Ag are easily computed as the corresponding Hamming weight of the matriz.

Example 6 Define the subclass of canonical combined parity check matrices from 'H,(f) (v1,19),
2 <1y < vy, with

View = {(11,00)7, (10,01)7, (10,00)7, (10,11)"} . (48)
The column vectors in View are linearly independent. Using Viow, it is a simple task to verify that
As =6, Ay =10, and Ag = 26. The code in (4) is within this subclass with n = 4, v = 2, and
vo = 3, and it is the tightest code of free distance dgree > 3 within the class 7—(‘(12)(1/1, v2), 1+ = 5.

11



Table 1. Canonical parity check matrices in decimal compressed form of the tightest rate 2/4 codes
found versus code degree v.

| v | (v1,v2) | Parity check matrix | wo | wg®? | wio ™ —wy |
1] 22 | (57,21,40) 1/2 ] 0.667 |O0.167
5| (2,3) (7,21,37,93) 2/3 0.769 | 0.103
6 | (2,4) (7,21,173,253) 2/3 0.741 | 0.074
71 (25) (21,197,247,445) 21/31 | 0.727 | 0.050
8 1 (2,6) (21,621,829,847) 31/49 | 0.721 | 0.088!

4 Computer search

A computer search was carried out to determine the tightness of the derived upper bound. The
search was performed over all canonical parity check matrices in the class H. f(yl, Vo) with dfree > 3
and v1 + 2 = v, 2 < vy < va. The results are tabulated in Table 1 for different code degrees. Note
that the difference between the upper bound and wyq is vanishingly small as the code degree gets
large. The parity check matrices are tabulated in decimal compressed form. As an example, the
matrix in (4) is tabulated as (7,21, 37,93). Karp’s algorithm [13] was used to determine wg. Note
that the asymptotic complexity of Karp’s algorithm is ©(22” - min(2"~",2")), making it hard to
search for codes with large dimension and code degree.

5 Conclusion

We have generalized the approach by Hole and Hole in [2] deriving upper bounds on the minimum
average cycle weight per branch of special classes of (n,n —r), r > 2, convolutional codes.

We looked in particular at » = 2 codes. The results of an exhaustive computer search indicate
that the derived upper bound is almost tight as the code degree increases. For r > 3 a partial
search seems to indicate that the derived bounds are less tight.

Appendix

The proof of Lemma, 7 is given below. In the first part of the proof we derive the expression for
the number of zero segments of length p, p > 1. Then we use this expression to calculate the
accumulated length of all cycles in O, and the total number of zero segments.

Part I: According to Forney [12], the number of distinct all-zero paths of length p, p > 1,in a
minimal state diagram of rate (n — r)/n, r > 1, convolutional codes defined by a canonical parity
check matrix with row degrees v;, 1 < i < r, is 24?) where d(p) is defined in (18). For convenience
the definition is restated below:

dp)= Y, (i) (49)

©1<i<r, v;2p

In [1], Hemmati and Costello used this result to establish a closed form expression for the number
of zero segments of length p in a minimal state diagram of a rate 1/2 convolutional code. Their
proof is extended to the general case as follows:

Let Vmax denote the maximum row degree. From (49), it follows that there is one and only one
all-zero path of length p for p > vy, namely the all-zero path around the all-zero state. Thus,
there are no zero segments of length > vp.,. The number of all-zero paths of length vy, — 1 is
20(vmax—1) - After excluding the all-zero path around the all-zero state, the remaining all-zero paths
have to be zero segments of length v, — 1. If this is not the case, then it is possible to extend any

1The search is not exhaustive.
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of these all-zero paths in at least one direction. After the extension we will have an all-zero path
of length vmax. From (49) the number of all-zero paths of length > vmax is 1, which is the all-zero
path around the all-zero state. Since we have already excluded this path from consideration, we
have a contradiction. Hence, there are n,,__, 1 = 28(Vmax—1) _ 1 zerg segments of length vy, — 1.

From (49), there are 2¢(*max=2) all-zero paths of length vax — 2. To count the number of zero
segments of length vy, — 2, we must exclude the 2 subsequences of length vy, — 2 of each zero
segment of length v, — 1 as well as the all-zero path around the all-zero state. Thus,

Mg = 200mex=2 _2p 1. (50)
The same type of argument leads to the general expression
n, = 2d(p) _ Mppy1 — Npgy —-ov e — (Vmax — P)Mwpay—1 — 1. (51)
Substituting p + 1 for p in the recursive relation in (51) gives

— 9d(p+1)

Np+1 = 2Npio = 3Npyg — oo — (Vmax =P — D1 — 1. (52)

Taking the difference between n, from (51) and n,41 from (52) yields

np —nppr = 24P — 24Pt _ oy s — s — = M1 (53)
which implies
Vmax—1
ny = 9d(p) _ 9d(p+1) _ Npg1 — = — Ny 1 = 9d(p) _ 9d(p+1) _ Npp1 — Z n;. (54)
i=p+2
Further,
Vmax—1
np+1 = 2d(p+1) - 2d(p+2) - Z ni. (55)
i=p+2

Combining (54) and (55) gives the general expression
n, = 2d(p) 4 9d(p+2) _ gd(p+1)+1 (56)

valid for all p > 1.
Part II: We use the general expression for n, in (56).

Vmax Vmax Vmax Vmax

L= Z (1+p)n, = Z (1 +p)2d(p) + Z (1 +p)2d(p+2) _9 Z (1 +p)2d(p+1)
p=1 p=1 p=1 =1

(57)

Vmax Vmax Vmax

- Z (1 +p)2d(19) + Z 1 +p)2d(p+2) —9d(2) _9 Z 1+ p)Qd(p-i-l) + 2d(1)+1,
p=1 p=-—1 p=0
In the second summation in (57) we now change the summation index from p to ¢ = p+ 2, and in
the third summation we change the summation index from p to ¢ = p+ 1. It follows (using the
fact that d(¥max + 1) = d(Vmax + 2) = 0) that

Vmax Vmax+2 Vmax+1
L= Z 1+ q)2d(q) + Z (¢ - 1)2d(q) -9 Z G240 _ 2d(2) | 9d(1)+1
q=1 q=1 q=1

(58)

— Vmax2d(umax+1) + (Vma,x + 1)2d(umax+2) _ 2(Vma,x + 1)2d(l/max+1) _ 2d(2) + 2d(1)+1
— 2d(1)+1 _ 2d(2) —1.
Using the facts that d(1) = v — r and d(2) = v — 2r (since v; > 2 for all 4, 1 < i <), it follows

that
L= (2t —1)2v 2" —1. (59)

Part III: We can use the same argument as above to derive the total number of zero segments

Vmax

No= ) mp= (2" —1)2"7". (60)
p=1
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