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A Simple and Fast Approach for Solving

Problems on Planar Graphs∗†

Fedor V. Fomin‡ Dimitrios M. Thilikos§

Abstract

It is well known that the celebrated Lipton-Tarjan planar separation theorem, in a combi-

nation with a divide-and-conquer strategy leads to many complexity results for planar graph

problems. For example, by using this approach, many planar graph problems can be solved

in time 2O(
√

n), where n is the number of vertices. However, the constants hidden in big-Oh,

usually are too large to claim the algorithms to be practical even on graphs of moderate size.

Here we introduce a new algorithm design paradigm for solving problems on planar graphs.

The paradigm is so simple that it can be explained in any textbook on graph algorithms:

Compute tree or branch decomposition of a planar graph and do dynamic programming. Sur-

prisingly such a simple approach provides faster algorithms for many problems. For example,

Independent Set on planar graphs can be solved in time O(23.182
√

nn+n4) and Dominating

Set in time O(25.043
√

nn + n4). In addition, significantly broader class of problems can be

attacked by this method. Thus with our approach, Longest cycle on planar graphs is solved

in time O(22.29
√

n(ln n+0.94)n5/4 +n4) and Bisection is solved in time O(23.182
√

nn+n4). The

proof of these results is based on complicated combinatorial arguments that make strong use

of results derived by the Graph Minors Theory. In particular we prove that branch-width of a

planar graph is at most 2.122
√

n. In addition we observe how a similar approach can be used

for solving different fixed parameter problems on planar graphs. We prove that our method

provides the best so far exponential speed-up for fundamental problems on planar graphs like

Vertex Cover, (Weighted) Dominating Set, and many others.

Keywords. Tree-width, Branch-width, Planar Graphs, Separation theorems, Fixed Parameter
Algorithms, Independent Set, Vertex Cover, Dominating Set, Longest Cycle.

1 Introduction

The design of (exponential) algorithms that are significantly faster than exhaustive search is one of
the basic approaches of coping with NP-hardness [19]. Nice examples of fast exponential algorithms
are Eppstein’s graph coloring algorithm [18] and the algorithm for 3-SAT [12]. For a good overview
of the field see the recent survey written by Gerhard Woeginger [35].
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It is well known that by making use of the well-known approach of Lipton & Tarjan [27] based on
the celebrated planar separator theorem [26] one can obtain algorithms with time complexity cO(

√
n)

for many problems on planar graphs. However, the constants “hidden” in O(
√

n) can be crucial for
practical implementations. During the last few years a lot of work has been done to compute and
to improve the “hidden” constants [3, 4]. In this paper we observe a general approach for obtaining
sub-exponential time exact algorithms for many problems on planar graphs. Our approach is based
on dynamic programming for graphs of bounded branch-width (tree-width). Combining our upper
bound for branch-width of planar graphs with this simple approach one can obtain exponential
speed-up for many known algorithms for many different planar graph problems. Independent

Set, Dominating Set, SAT, MIN-Bisection, Longest Cycle (Path) on planar graphs are
just a few examples of such problems.

Another field for implementation of our graph theoretical bounds is in the designing of param-
eterized algorithms. The last ten years were the evidence of rapid development of a new branch of
computational complexity: Parameterized Complexity. (See the book of Downey & Fellows [17].)
Roughly speaking, a parameterized problem with parameter k is fixed parameter tractable if it ad-
mits a solving algorithm with running time f(k)|I|β . (Here f is a function depending only on k, |I|
is the length of the non parameterized part of the input and β is a constant.) Typically, f(k) = ck

is an exponential function for some constant k. However, it appears, that for a large variety of
planar graph problems algorithms with growth of the form f(k) = c

√
k are possible. During the

last two years much attention was paid to the construction of algorithms with running time c
√

k for
different problems on planar graphs. The first paper on the subject was the paper by Alber et al.
[1] describing an algorithm with running time O(46

√
34kn) (which is approximately O(270

√
kn)) for

the Planar Dominating Set problem. Different fixed parameter algorithms for solving problems
on planar and related graphs are discussed in [4, 25]. We observe that our technique can serve
also as a simple unified approach for solving many parameterized problems on planar graphs in
subexponential time. Again, our approach is based on combinatorial bounds on planar branch-
width and tree-width and provides a better running time for such basic parameterized problem
like Vertex Cover, Dominating Set and many others.

The crucial part of our paper is devoted to the proof that such a simple approach guarantees
better time bounds and here we use complicated combinatorial arguments coming from Robertson-
Seymour’s Graph Minor Theory. More precisely, our proof is based on a new upper bound to the
branch-width and the tree-width of planar graphs. Both these parameters where introduced (and
served) as basic tools by Robertson and Seymour in their Graph Minors series of papers. Tree-width
and branch-width are related parameters (See Theorem 2.1) and can be considered as measures
of the “global connectivity” of a graph. Moreover, they appear to be of a major importance in
algorithmic design as many NP-hard problems admit polynomial or even linear time solutions when
their inputs are restricted to graphs of bounded tree-width or branch-width. This motivated the
search for graphs where these parameters are relatively small. In this direction, Alon, Seymour
& Thomas proved in [6] that given a minor closed graph class G, any n-vertex graph G in G
has tree-width/branch-width O(

√
n). As a consequence of this, any n-vertex planar graph G has

tree-width/branch-width ≤ 14.697
√

n.
We show that every n-vertex planar graph G has branch-width ≤ 2.122

√
n and tree-width

≤ 3.182
√

n. To our knowledge, this is the best known upper bound for the value of these parameters
on planar graphs. To obtain the new upper bounds we use deep “dual” and “min-max” theorems
from Graph Minors series papers of Robertson & Seymour.

2



1.1 Previous results and our contribution

Computation of constants αt and αb such that for every planar graph on n vertices tw(G) ≤
αt
√

n+O(1) and bw(G) ≤ αb
√

n+O(1) is of a great theoretical importance. In [6] Alon, Seymour
& Thomas proved that any Kr-minor free graph on n vertices has tree-width≤ r1.5

√
n. (Here Kr

is complete graph on r vertices.) Since no planar graph contains K5 as a minor, we have that
αt(G) ≤ 61.5 ≤ 14.697.

Before we proceed, let us remind the notion of a minor. Given an edge e = {x, y} of a graph
G, the graph G/e is obtained from G by contracting the edge e; that is, to get G/e we identify the
vertices x and y and remove all loops and duplicate edges. A graph H obtained by a sequence of
edge-contractions is said to be a contraction of G. H is a minor of G if H is the subgraph of a
some contraction of G.

The following is a combination of statements (4.3) in [28] and (6.3) in [30].

Theorem 1.1 ([30]). Let k ≥ 1 be an integer. Every planar graph with no (k×k)-grid as a minor
has branch-width ≤ 4k − 3.

Because a graph on n vertices does not contain a ((d√ne+1)× (d√ne+1))-grid as a minor, we
have that αb(G) ≤ 4. Robertson, Seymour, and Thomas showed (unpublished result announced
by Thomas [34]) that any planar graph without a (k× k)-grid as a minor has tree-width ≤ 5k− 1
implying αt ≤ 5.

To design the algorithms of this paper, we will reduce the constant αb to 2.122 (for the case of
branch-width) and αt to 3.182 (for the case of tree-width).

Lipton & Tarjan [27] were first to observe the existence of time 2O(
√

n)nO(1) algorithms for
several problems on planar graphs. However the constants hidden in big-Oh of the exponent
make these algorithms unpractical. Later, a lot of work was done on computing and reducing
these constants. The best known so far results can be found in [4], where generalizations and
complicated improvement of Lipton-Tarjan (together with kernel reduction techniques) are used
to obtain subexponential parameterized algorithms.

Thus, for example, the approach suggested in [4] provides an O(29.07
√

nn ln n) algorithm for
Independent Set and an O(218.61

√
nn ln n) algorithm for Dominating Set.

Here we suggest a unified approach based on branch decompositions (see Section 2 for the
definitions). Our algorithm is simple and is performed in two steps: First we compute the branch
decomposition of a planar graph and then do dynamic programming on graphs of bounded branch-
width. Optimal branch decomposition of a planar graph can be constructed in polynomial time by
using the algorithm due to Seymour & Thomas (Sections 7 and 9 in [32]). (See also the results of
Hicks [23] on implementations of Seymour & Thomas algorithm.) For graphs with n vertices this
algorithm can be implemented in O(n4) steps. And what is important for practical applications,
there is no large hidden constants in the running time of this algorithm. As for the second stage,
well known dynamic programming algorithms on tree decompositions can be easily translated to
branch decompositions. Using upper bounds for branch-width we prove that our approach provides
more efficient solutions for many well known problems on planar graphs.

The following table summarize some known and new results on some problems on planar graphs
(for more problems see Section 3). (See [33] for the definitions of Perfect Code, H-coloring,
and H-covering problems and Appendix for the definitions of other problems.)
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Known results New results

Planar Independent Set O(29.07
√

nn ln n)[4] O(23.182
√

nn + n4)

Planar Dominating Set O(218.61
√

nn ln n)[4] O(25.043
√

nn + n4)

Planar (k, r)-center O((2r + 1)3.182
√

nn + n4)

Planar Longest Cycle O(22.29
√

n(ln n+0.94)n5/4 + n4)

Planar Longest Path O(22.29
√

n(ln n+0.94)n5/4 + n4)

Planar Bisection O(23.182
√

nn + n4)

Planar Weighted Dominating Set O(26.37
√

nn + n4)

Planar Perfect Code O(26.37
√

nn + n4)

Planar Total Dominating Set O(27.4
√

nn + n4)

Planar H-coloring O(2log h·2.12
√

nhn3/2 + n4)

Planar Kernel O(23.37
√

nn2 + n4)

Planar H-covering O(29.55
√

nhn + n4)

Similar approach works well also for parameterized problems. The next table summarize results
on the most fundamental fixed parameter problems on planar graphs. (See [3] for an overview of
the results on this subject.) We include the result from [20] because it is based on the main
combinatorial result of this paper and is obtained by similar approach.

Known results New results

Planar k-Vertex Cover O(24
√

3kn) [3] O(24.5
√

kk + k4 + kn)

Planar k-Dominating Set O(227
√

kn) [25] O(215.13
√

kk + k4 + n3)[20]

Planar k-Independent Set O(24
√

6kn) [3] O(k4 + 24
√

4.5kk + n)

Thus our approach provides exponential speedup for the main basic parameterized problems.
Our method is quite universal and can be implemented to obtain an exponential speed-up for many
known algorithms for different problems with fixed parameters. Mention just a few parameterized
versions of the following problems: Independent Dominating Set, Perfect Dominating

Set, Perfect Code, Weighted Dominating Set, Total Dominating Set, Edge Domi-

nating Set, Face Cover, Vertex Feedback Set, Minimum Maximal Matching, Clique

Transversal Set, Disjoint Cycles, and Digraph Kernel. Another advantage of our results
is that they apply not only on planar graphs but on different generalizations of planar graphs, e.g.
K3,3-minor-free or K5-minor-free graphs.

2 Definitions and preliminary results

All graphs in this paper are undirected, loop-less and, unless otherwise mentioned, they may have
multiple edges.

2.1 Tree-width and branch-width

A tree decomposition of a graph G is a pair ({Xi | i ∈ V (T )}, T ), where {Xi | i ∈ V (T )} is a
collection of subsets of V (G) and T is a tree, such that

1.
⋃

i∈V (T ) Xi = V (G),

2. for each edge {v, w} ∈ E(G), there is an i ∈ V (T ) such that v, w ∈ Xi, and
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3. for each v ∈ V (G) the set of nodes {i | v ∈ Xi} forms a subtree of T.

The width of a tree decomposition ({Xi | i ∈ V (T )}, T ) equals maxi∈V (T )(|Xi|−1). The tree-width
of a graph G, tw(G), is the minimum width over all tree decompositions of G.

A branch decomposition of a graph (or a hyper-graph) G is a pair (T, τ), where T is a tree with
vertices of degree 1 or 3 and τ is a bijection from the set of leaves of T to E(G). The order of an
edge e in T is the number of vertices v ∈ V (G) such that there are leaves t1, t2 in T in different
components of T (V (T ), E(T )− e) with τ(t1) and τ(t2) both containing v as an endpoint.

The width of (T, τ) is the maximum order over all edges of T , and the branch-width of G,
bw(G), is the minimum width over all branch decompositions of G. (In case where |E(G)| ≤ 1, we
define the branch-width to be 0; if |E(G)| = 0, then G has no branch decomposition; if |E(G)| = 1,
then G has a branch decomposition consisting of a tree with one vertex – the width of this branch
decomposition is considered to be 0).

It is known from [28] that if H is a minor of G then bw(H) ≤ bw(G). The following result is
due to Robertson & Seymour [(5.1) in [28]].

Theorem 2.1 ([28]). For any connected graph G where |E(G)| ≥ 3, bw(G) ≤ tw(G) + 1 ≤
3
2bw(G).

From Theorem 2.1, any upper bound on tree-width implies an upper bound on branch-width
and vice versa.

2.2 Planar graphs, slopes and majorities

In this paper we use the expression Σ-plane graph for any planar graph drawn in the sphere Σ.
To simplify notations we do not distinguish between a vertex of a Σ-plane graph and the point
of Σ used in the drawing to represent the vertex or between an edge and the open line segment
representing it. We also consider G as the union of the points corresponding to its vertices and
edges. That way, a subgraph H of G can be seen as a graph H where H ⊆ G. We call by region
of G any connected component of Σ − E(G) − V (G). (Every region is an open set.) We use the
notation V (G), E(G), and R(G) for the set of the vertices, edges and regions of G. A path of G

is any connected subgraph P of G with two vertices of degree 1 (we call them extremes) and all
other vertices (we call them internal) of degree 2. A sub-path of a path P is any path P ′ ⊆ P . A
cycle of G is any connected subgraph C of G with all the vertices of degree 2. The length |C| (|P |)
of a cycle C (path |P |) is the number of its edges.

If ∆ ⊆ Σ, then ∆ denotes the closure of ∆, and the boundary of ∆ is bd(∆) = ∆∩Σ−∆. An
edge e (a vertex v) is incident with a region r if e ⊆ bd(r) (v ⊆ bd(r)).

We call a Σ-plane graph G triangulated if all of its regions are triangles, i.e. for every region
r, bd(r) is a cycle of three edges and three vertices. Given a region r of a triangulated graph G

we call the cycle bd(r) triangle of G. A triangulation H of a Σ-plane graph G is any triangulated
Σ-plane graph H where G ⊆ H. Notice that any Σ-plane graph with all regions of size ≥ 3 has
a triangulation. A triangle of a triangulated Σ-plane graph G is a regional triangle if it bounds a
region of G.

Let G be a Σ-plane graph. A subset of Σ meeting the drawing only in vertices of G is called
G-normal. A subset of Σ homeomorphic to the closed interval [0, 1] is called I-arc. If the extreme
points of a G-normal I-arc L are both vertices of G then we call it line of G. If a simple closed
curve F ⊆ Σ is G-normal then we call it noose.
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The length of a line is the number of its vertices minus 1 and the length of a noose is the
number of its vertices. We denote by |N | (|L|) the length of a noose N (line L). ∆ ⊆ Σ is an open
disc if it is homeomorphic to {(x, y) : x2 + y2 < 1}. We say that a disc D is bounded by a noose N

if N = bd(D). From the theorem of Jordan, any noose N bounds exactly two closed discs ∆1, ∆2

in Σ where ∆1 ∩∆2 = N . We call Θ-structure S = (L1, L2, L3) of G the union of three mutually
touching lines. If for i, j, 1 ≤ i < j ≤ 3 the noose Li ∪ Lj has size ≤ k then we say that S is a
Θ-structure of length ≤ k. We call a Θ-structure non-trivial if at least two of its lines have length
≥ 2. We call the 6 closed discs bounded by the nooses Li ∪ Lj , 1 ≤ i < j ≤ 3 closed discs bounded
by S.

The radial graph of a Σ-plane graph G is the bipartite Σ-plane graph RG obtained by selecting
a point in every region r of G and connecting it to every vertex of G incident to that region. We
call the vertices of RG that are not vertices of G radial vertices. For an example of a graph G

drawn along with its radial, see Fig. 1 in the Appendix.

Slopes and majorities are important tools for improving upper bounds.
Slopes (Robertson & Seymour [29]). Let G be a Σ-plane graph and let k ≥ 1 be an integer. A
slope in G of order k/2 is a function ins which assigns to every cycle C of G of length < k one of
the two closed discs ins(C) ⊆ Σ bounded by C such that

[S1] If C, C ′ are cycles of length < k and C ⊆ ins(C ′) then ins(C) ⊆ ins(C ′).

[S2] If P1, P2, P3 are three paths of G joining the same pair u, v of distinct vertices but otherwise
disjoint, and the three cycles P1 ∪ P2, P1 ∪ P3, P2 ∪ P3 all have length < k then

ins(P1 ∪ P2) ∪ ins(P1 ∪ P3) ∪ ins(P2 ∪ P3) 6= Σ.

A slope is uniform if for every region r ∈ R(G) there is a cycle C of G of length < k such that
r ⊆ ins(C).

We need the following deep result proved in the Graph Minors papers by Robertson & Seymour.
This result follows from Theorems (6.1) and (6.5) in [29] and Theorem (4.3) in [28]. (See also
Theorems (6.2) and (7.1) in [32].)

Theorem 2.2 ([29]). Let G be a connected and loopless Σ-plane graph where |E(G)| ≥ 2 and let
k ≥ 1 be an integer. The radial drawing RG has a uniform slope of order ≥ k if and only if G has
branch-width ≥ k.

Majorities (Alon, Seymour & Thomas [7]). Let G be a Σ-plane graph and let k ≥ 0 be an integer.
A majority of order k is a function big that assigns to every noose N of length ≤ k a closed disc
big(N) ⊆ Σ bounded by N such that

[M1] If P1, P2, P3 is a Θ-structure of G with length ≤ k and P3 ⊆ big(P1∪P2), then big(P1∪P3) ⊆
big(P1 ∪ P2) or big(P2 ∪ P3) ⊆ big(P1 ∪ P2).

[M2] If N is a noose of length ≤ min(2, k) then either big(N) − N contains a vertex or big(N)
includes at least two edges of G.

The following result gives an upper bound on the order of a majority (statement (3.7) of [7]).
This is a basic ingredient of our bound for the branch-width of planar graphs.
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Theorem 2.3 ([7]). Any majority of a Σ-plane graph G has order
√

4.5 · |V (G)| − 1.

Our bounds on branch-width and tree-width follows from the following theorem that is the
main combinatorial result of the paper.

Theorem 2.4. Let G, |V (G)| ≥ 5, be a triangulated Σ-plane graph without multiple edges, drawn
in Σ along with its radial graph and let k ≥ 2 be an integer. If there exists a uniform slope of order
k + 1 in RG then G contains a majority of order k.

The proof of Theorem 2.4 is rather long and technical. Due to space restrictions we sketch here
the main ideas of the proof. (The detailed proof has been moved to the Appendix.)

2.3 The ideas of the proof of Theorem 2.4.

We want to correspond nooses of G to cycles of RG and try to translate the slope axioms to
majority axioms. Corresponding nooses to cycles is not direct as not every noose is a cycle of the
radial graph. To overcome this problem we need to work with “classes” of similar structures.

Let G be a Σ-plane graph without loops or multiple edges and let S ⊆ Σ be an I-arc (simple
closed curve) in Σ. We use the notation κG(S) = (v1, . . . , v|S∩V (G)|) for the ordering (cyclic
ordering) of the vertex set S∩V (G) that represents the way the vertices of G are met by S. Notice
that κ can be applied to both cycles and nooses but also to paths and lines. Especially for cycles
and paths of graphs without multiple edges, we can directly represent them with the output of the
function κ (we will use the same notation for a cycle/path and the (cyclic) ordering of the vertices
that it meets).

Let S be one of the following structures in G: a noose, a line, or a Θ-structure. A variation of
S is the operation that transforms S to a structure S′ of the same type in a way that dif(S, S′) :=
(S ∪ S′)− (S ∩ S′) is a noose of size 2 where one of the closed discs D it bounds has the following
two properties:

1. D − bd(D) contains no vertices of G,

2. D contains at most one edge of G.

If two structures S1 and S2 are variations each of the other, we denote it as S1 ∼ S2. If a
structure S′ is the result of a finite number of consecutive variations with S as starting point, we
call S′ vibration of S and we denote this fact as S ∼∗ S′. (See Fig. 1 in the Appendix.) Notice
that if S ∼∗ S′ then V (G) ∩ S = V (G) ∩ S′ and S, S′ have the same length.

The importance of vibrations is that in a triangulated Σ-plane graph without multiple edges
every noose is a vibration of a cycle of the radial graph. This fact is intuitively clear but needs a
technical proof. (We move this proof to the Appendix, Lemma B.7.)

Let ins be a uniform slope of order k + 1 in RG. To construct a majority we need to define
the function big. Every noose N in Σ of size ≤ k is a vibration of a cycle C in RG and the
length of C is ≤ 2k. Cycle C is also a noose in Σ and because C and N are vibrations of
each other, they “separate” the same vertex sets in G. In other words, if ins(C), Σ− ins(C)
are closed discs bounded by C then for one of the closed discs D bounded by N , we have that
D ∩ V (G) = Σ− ins(C) ∩ V (G). We define big(N) = D.

The proof of the fact that the function big defined via ins satisfies majority axioms is quite
technical. It uses some results about vibrations of Θ-structures. (These results are moved to the
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Appendix, Section B.4.) and requires a series of auxiliary results assuring that the basic topological
properties involved in the majority axioms are invariants under vibrations. (Section B.6 of the
Appendix.)

Theorem 2.4 implies our main combinatorial result.

Theorem 2.5. For any planar graph G, bw(G) ≤
√

4.5|V (G)| ≤ 2.122
√
|V (G)|.

Proof. We assume that G has no multiple edges (notice that the duplication of an edge does not
increase the branch-width of a graph with branch-width ≥ 2). It is easy to see that G has a
triangulation H without multiple edges. It is enough to prove the bound of the theorem for H.
By Theorem 2.3, H does not have any majority of order ≥ (3/

√
2)

√
|V (G)|. By Theorem 2.4, RH

has no slope of order ≥ (3/
√

2)
√
|V (G)|+ 1. The result now follows from Theorem 2.2.

Since 9/(2
√

2) < 3.182, Theorems 2.1 and 2.5 imply the following:

Theorem 2.6. For any planar graph G, tw(G) ≤ 3.182
√
|V (G)|.

In the next section examine the algorithmic consequences of our combinatorial bounds.

3 Algorithmic consequences

In this section we discuss some applications of our results for different problems on planar graphs.

3.1 Exact algorithms

The following simple theorem is the source for obtaining subexponential algorithms for many graph
problems.

Theorem 3.1. Let Π be an optimization problem that is solvable on graphs of branch-width ≤ `

in time f(`)g(n). Then on planar graphs problem Π is solvable in time O(f(2.122
√

n)g(n) + n4)

Proof. First we compute an optimal branch decomposition of planar graph. To compute an optimal
branch decomposition of a planar graph one can use the algorithm due to Seymour & Thomas
(Sections 7 and 9 in [32]). (See also the results of Hicks [23] on implementations of Seymour &
Thomas algorithm.) This algorithm can be implemented in O(n4) steps. Then Theorem 2.5 implies
the proof.

Corollary 3.2. Let Π be an optimization problem that is solvable on graphs of branch-width/tree-
width ≤ ` in time 2o(`2)poly(n, `). Then on planar graphs problem Π is solvable in subexponential
time (in 2o(n) steps).

In spite of its simplicity, Theorem 3.1 provides a general framework for obtaining subexponential
algorithms for a broad range of problems. And the only thing one needs to know to estimate the
running time of the algorithm is how fast a problem can be solved on graphs of bounded branch-
width/tree-width1. But really surprising is that such a trivial approach provides better time
estimation than many, complicated to analyze, algorithms based on separator theorems.

1Let us remark that any algorithm solving a problem on graphs of tree-width ≤ ` in time f(`)g(n) can be easy

translated to the algorithm for graphs of branch-width ≤ ` with running time O(f(3/2`)g(n) + m) where m is the

number of edges of the input graph.
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Let us give just few examples. It is well known that on graphs of tree-width ` Independent

Set can be solved in time O(2`n) and hence on graphs of branch-width ≤ ` it can be solved in time
O(2(3/2)`n). Thus by Theorem 3.1 we obtain that Independent Set on planar graphs is solvable in
O(23.182

√
nn+n4). Dominating set on graphs of branch-width≤ ` is solvable is time O(23log43·`m)

[13]. Thus on planar graphs, Dominating set is solvable in O(25.043
√

nn+n4). Similar arguments,
based on the algorithms in [5], work for for the planar versions of different variations of the
Dominating set problem like Independent Dominating Set, Perfect Dominating Set,

Perfect Code, Weighted Dominating Set, Red Blue Dominating Set where the time
is O(26.37

√
nn + n4), and for Total Dominating Set and Total Perfect Dominating Set

where the time is O(27.4
√

nn + n4).
Longest cycle and Longest path problems on graphs of tree-width ` are solved in O(`!2`n)

time [8] implying an O(22.29
√

n(ln n+0.94)n5/4 + n4) algorithm on planar graphs2. MIN-Bisection

is solvable in O(2`n) [24] on graphs of tree-width ` and the planar version of the problem is solvable
in O(23.182

√
nn + n4). In [21], Gutin et al. gave a time O(3`kn) algorithm for finding a kernel of

size k in a digraph whose underlying graph has treewidth at most `. This implies that Kernel

is solvable in O(23.37
√

nn2 + n4). The H-coloring problem is solvable in O(h`+1`n) on graphs
of tree-width ` [15], therefore its planar version is solvable in time O(2log h·2.12

√
nhn3/2 + n4).

H-Cover is solvable in time O(n23`h) [33] on graphs of tree-width ≤ ` and thus for planar graphs
in time O(29.546

√
nhn + n4). Finally, (k, r)-center is solvable in time O((2r + 1)

3
2 ·`m) on graphs

of branch-width ≤ ` [13] providing an O((2r + 1)3.182
√

nn + n4) algorithm for the planar version of
the problem.

More generally, almost every natural problem expressible in MSOL is solvable in time O(c`nO(1)),
O(``nO(1)) or O(`!c`nO(1)), and by Corollary 3.2 is solvable in subexponential time on planar
graphs. Examples of such problems where c is a small constant are Vertex Feedback Set, Dis-

joint Cycles, Face Cover. Edge Dominating Set, Clique Transversal, and Maximal

Maching (see [10, 14]). For all these problems Corollary 3.2 provides subexponential algorithms
with small hidden constants.

Actually, one can further strengthen the conditions of Corollary 3.2 towards extending the
framework where subexponential algorithms are possible. Indeed, it is enough to have a time
(poly(`, n))o(`2) algorithm for the problem Π for graphs of treewidth/branchwidth at most `. Notice
that such problems are not necessarily expresible in MSOL. As an example we mention the problems
of finding a non-preemptive multicoloring with minimum sum/makespan (see Appendix for the
definitions). These problems can be solved in time O(n · (`p log n)`+1) for graphs with tree-width
≤ ` (see [22]). Therefore, they can be solved in time O(pn3/2 log n · 21.15·log p log n log log n

√
n + n4)

on planar graphs.

3.2 Parameterized algorithms

Similar ideas work for parameterized problems. Let L be a parameterized problem, i.e. L consists
of pairs (I, k) where k is the parameter of the problem. Reduction to linear problem kernel is the
replacement of problem inputs (I, k) by a reduced problem with inputs (I ′, k′) (linear kernel) with
constants c1, c2 such that

k′ ≤ c1k, |I ′| ≤ c2k
′ and (I, k) ∈ L ⇔ (I ′, k′) ∈ L.

2The calculation of the exponent in this algorithm makes use of Stirling’s formula.
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(We refer to Downey & Fellows [17] for discussions on fixed parameter tractability and the ways
of constructing kernels.)

Theorem 3.3. Let L be a parameterized problem (I, k) (here I can be a graph, hypergraph or
matroid) such that
— There is a linear problem kernel computable in time Tkernel(|I|, k) with constants c1, c2 and
such that an optimal branch decomposition of the kernel is computable in time Tbw(|I ′|).
— On graphs (hypergraphs, matroids) of branch-width ≤ ` and ground set of size n the problem L
can be solved in O(2c3`n), where c3 is a constant.
— bw(I ′) ≤ c4

√
k, where c4 is a constant. Then L can be solved in time O(2c3c4

√
kk + Tbw(|I ′|) +

Tkernel(|I|, k)).

Proof. The algorithm works as follows. First we compute a linear kernel in time Tkernel(|I|, k).
Then we construct a branch decomposition of the kernel in Tbw(|I ′|) steps. The size of the kernel is
at most c1c2k = O(k). The branch-width of the kernel is at most c4

√
k and it takes O(2c3c4

√
kk +

Tbw(|I ′|) + Tkernel(|I|, k)) to solve the problem.

Let us give some examples, where Theorem 3.3 provides proven better bounds for different
parameterized problems.

The Planar k-Vertex Cover problem is the task to compute, given a planar graph G and a
positive integer k, a vertex cover of size k or to report that no such a set exists. A linear problem
kernel of size 2k (with constants c1 = 1 and c2 = 2) for the k-Vertex Cover problem (not
necessary planar) was obtained by Chen et al. [11]. The running time of the algorithm constructing
a kernel of a graph on n vertices is O(kn+k3). So in this case Tkernel(|I|, k) = O(kn+k3). It is well
known that the Vertex Cover problem on graphs on n vertices and with bounded tree-width
≤ ` can be solved in O(2`n) time. The dynamic programming algorithm for the Vertex Cover

on graphs with bounded tree-width can be easy translated to the dynamic programming algorithm
for graphs with bounded branch-width with running time O(23/2`m), where m is the number of
edges in a graph, and we omit it here. For planar graphs 23/2`m = O(23/2`n), thus c3 ≤ 3/2.

From the constructions used in the reduction algorithm of Chen et al. [11] it follows that if G is
a planar graph then the kernel graph is also planar. To compute an optimal branch decomposition
of a planar graph one can use the algorithm due to Seymour & Thomas [32]. This algorithm
(applied to the kernel graph) can be implemented in O(k4) steps. The kernel graph I ′ has at most
2k vertices. Then by Theorem 2.5, c4 ≤

√
4.5
√

2 = 3. Thus by making use of Theorem 3.3, we
conclude that Planar k-Vertex Cover can be solved in O(k4 + 24.5

√
kk + kn).

A k-dominating set D of a graph G is a set of k vertices such that every vertex outside D is
adjacent to a vertex of D. The Planar k-Dominating Set problem is the task to compute,
given a planar graph G and a positive integer k, a k-dominating set or to report that no such a
set exists.

Alber, Fellows & Niedermeier [2] show that the Planar Dominating Set problem admits a
linear problem kernel. (The size of the kernel is 335k.) This reduction can be performed in O(n3)
time. Dominating Set problem on graphs of branch-width ≤ ` can be solved in O(23log43·`m)
steps [20]. Thus c3 ≤ 3log43. It is proved in [20] that for every planar graph G with dominating
set k, the branch-width of G is at most 3

√
4.5
√

k, i.e. c4 ≤ 3
√

4.5. Then by Theorem 3.3, Planar

Dominating set can be solved in O(215.13
√

kk + n3 + k4).
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3.3 Other problems and generalizations.

Our ideas can be adapted to different problems by using the bounds and tree-width (branch-width)
based algorithms in the same fashion as it is done in [1, 3, 10, 14]. That way, our upper bound im-
plies the construction of faster algorithms for a series of problems when their inputs are restricted
to planar graphs. As a sample we mention parameterized versions of the following problems:
Independent Dominating Set, Perfect Dominating Set, Perfect Code, Weighted

Dominating Set, Total Dominating Set, Edge Dominating Set, Face Cover, Ver-

tex Feedback Set, Minimum Maximal Matching, Clique Transversal Set, Disjoint

Cycles, and Digraph Kernel (see [1, 3, 10, 14] for the exact definitions).
Finally let us note that our upper bound for treewidth holds not only on planar graphs but on

different generalizations of planar graphs. This follows directly from the results of [14] and implies
an exponential speed-up of all the aforementioned problems on certain classes of non-planar graphs
such as K3,3-minor-free or K5-minor-free graphs.

4 Discussion and open problems

In this section we present three open problems emerging from our main combinatorial result and
the methodology of our proof.
Improving the constant 2.122. According to Theorem 2.5, any planar graph on n vertices has
branch-width ≤ 2.122

√
n. The constant 2.122 follows from the constant of Theorem 2.3 proven by

Alon, Seymour, and Thomas in [7]. Any improvement of the constant of Theorem 2.3 implies also
an improvement of our bound.

Given a graph G, a function w : V (G) → R, and a set S ⊆ V (G), we call S (2/3)-separator of
G if V (G) − S can be partitioned into two sets A1, A2 where no edge of E(G) has one endpoint
in A1 and the other in A2 and such that w(Ai) ≤ 2

3w(V (G)). If we strengthen the definition of
a (2/3)-separator by asking that w(Ai) + 1

2w(S) ≤ 2
3w(V (G)), we define the notion of a strong

(2/3)-separator of G. If G is Σ-plane and there exist a noose N bounding the open discs D, D′

such that D ∩ V (G) = A1, D′ ∩ V (G) = A2, and S = N ∩ V (G) then we call S (strong) cyclic
(2/3)-separator of G.

In [7], Alon, Seymour and Thomas proved the following.

Theorem 4.1. Let G be a Σ-plane graph with n vertices, let w : V (G) → R be a function, and let
k ≥ 0 be an integer. If every majority of G has order ≤ k then G has a strong (2/3)-separator of
G of size ≤ k.

Theorems 4.1 and 2.3 were proved in [7] in order to imply the following.

Theorem 4.2. Let G be a Σ-plane graph with n vertices and let w : V (G) → R be a function.
Then G has strong cyclic (2/3)-separator of size ≤ 2.122

√
n.

Curiously, any proof of Theorem 4.2 for a better constant c, implies the reduction of the constant
of Theorem 2.5 from 2.122 to max{2, c}. Indeed, this is correct because of Theorems 2.2 and 2.5
and the following interesting result (statement (3.9) of [7]).

Theorem 4.3. Let G be a Σ-plane graph with n vertices, let w : V (G) → R be a function, and let
k be an integer where k ≥ 2

√
n− 1. If G contains a strong (2/3)-cyclic separator of size ≤ k then

every majority of G has order ≤ k.

11



In [16], Djidjev & Venkatesan proved that every Σ-plane graph on n vertices contains a cyclic
2/3-separator of size 2

√
n + O(1). It is an interesting challenge to strengthen this result so that

it guarantees the existence of a strong cyclic (2/3)-separator, as required by Theorem 4.2. This
would make it possible to reduce to 2 the constant 2.122 of our main result (and to improve the
time bounds of our algorithms).
Creating slopes from majorities. We believe that the ideas of this paper can be useful for proving
the following conjecture.

Conjecture. Any planar graph G has a cyclic (2/3)-separator of size ≤ bw(G).

Conjecture 4 can follow from Theorems 2.2 and 4.1 if the inverse of Theorem 2.4 holds for
general graphs. In this direction, one should show that majorities can be “transformed” to slopes.
As any cycle C of RG is also a noose of G we can directly define ins(C) = Σ− big(C), following
the idea in the proof of Theorem 2.4 (notice that in this direction the idea does not need the
“vibration” machinery). Moreover it is possible to prove that the axiom [M2] for big implies the
uniformity of ins and axiom [M1] for big implies axiom [S2] for ins. However, it is not easy to
prove that axiom [S1] also holds for ins and this is the main obstacle for any proof of Conjecture 4
based on the possible “translation” of majorities to slopes.
Constructive upper bounds. While Theorem 2.5 gives an upper bound to the branch-width of any
planar graph, it does not provide any way to construct the corresponding branch decomposition.
The “non-constructiveness” of our proof emerges from the fact that it makes strong use of the
results in [7], [28] and [30] that are not (at least directly) “translatable” to a polynomial time
algorithm. However, the algorithmic results of [30] make it possible to construct, for any n-vertex
planar graph, a branch decomposition of width ≤ 2.122

√
n in time O(n4) and such a branch

decomposition can be easily transformed to a tree decomposition of width ≤ 3.128
√

n using the
results of [29]. It is an open problem, whether Theorem 2.5 can admit a simple proof implying
faster algorithms for the construction of the corresponding decompositions. Robin Thomas (in
private communication) mentioned that by adapting the arguments from [7] one can obtain similar
bounds on branch-width/tree-width. Perhaps this can bring us to faster algorithms.
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[22] M. M. Halldórsson and G. Kortsarz, Tools for multicoloring with applications to planar
graphs and partial k-trees, Journal of Algorithms, 42 (2002), pp. 334–366.

[23] I. V. Hicks, Branch Decompositions and their applications, PhD thesis, Rice University, 2000.

[24] K. Jansen, M. Karpinski, A. Lingas, and E. Seidel, Polynomial time approxima-
tion schemes for Max-Bisection on planar and geometric graphs, in STACS 2001 (Dresden),
vol. 2010 of Lecture Notes in Comput. Sci., Springer, Berlin, 2001, pp. 365–375.
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A Appendix: Definitions of some problems

A vertex cover C of a graph is a set of vertices such that every edge of G has at least one endpoint
in C. A dominating set D of a graph G is a set of vertices such that every vertex outside D is
adjacent to a vertex of D. We denote the corresponding problems of finding minimum vertex cover
and dominating set as Vertex Cover. and Dominating Set.

(k, r)-center is a natural generalization of dominating set. We define the r-neighborhood of a set
S ⊆ V (G), denoted by Nr

G(S), to be the set of vertices of G at distance at most r from at least one
vertex of S if there exists a set S of centers (vertices) of size at most k such that Nr

G(S) = V (G).
An independent set I of a graph G is a set of vertices such that no two vertices of I are adjacent.

The problem of computing maximum minimum independent set is Independent Set.
Longest path (cycle) problem is to find a path (cycle) in a graph of the maximum length.
Bisection is the problem of a partitioning the vertex set V (G) of a graph G into two parts V1

and V2, such that |V1| = |V2| and the number of edges between V1 and V2 is minimal.
A set S of vertices in a digraph D = (V, A) is a kernel if S is independent and every vertex in

V − S has an out-neighbor in S. We denote the corresponding decision problem as Kernel.
Let G = (V,E) be a graph and x : V → N some function mapping vertices to non-negative

integers. Let also p = maxv∈V x(v). A non-preemptive multicoloring3 of G is an assignment ψ

mapping each vertex of v to some set of x(v) consecutive positive integers such that adjacent
vertices receive non-intersecting sets. The sum of a multicoloring ψ is equal to Σv∈V maxi∈ψ(v) i.
The makespan of a multicoloring ψ is equal to maxv∈V maxi∈ψ(v) i.

B Appendix: Creating majorities from slopes

This part of Appendix is devoted to the complete proof of our main combinatorial result:

Theorem B.1. Let G, |V (G)| ≥ 5, be a triangulated Σ-plane graph without multiple edges, drawn
in Σ along with its radial graph and let k ≥ 2 be an integer. If there exists a uniform slope of order
k + 1 in RG then G contains a majority of order k.

This section is devoted to the proof of Theorem B.1 and is organized as follows. We start with
the definitions of the notions of variations and vibrations (Subsection B.1). Then we prove that
any noose can be transformed, after applying to it a sequence of variations, to a cycle of the radial
graph (Subsection B.3). We also prove that the same type of representation via variations applies
also to the Θ-structures (Subsection B.4). That way, we are able to “translate” the slope axioms
to majority ones. This requires a series of auxiliary results assuring that the basic topological
properties involved in the majority axioms are invariants under vibrations (Subsection B.6). With
all this knowledge on hands we proceed with the proof of the main result in Subsection B.7.

B.1 Variations and vibrations

If G is a Σ-plane graph without loops or multiple edges and S ⊆ Σ is an I-arc (simple closed curve)
in Σ then we use the notation κG(S) = (v1, . . . , v|S∩V (G)|) for the ordering (cyclic ordering) of the
vertex set F ∩ V (G) that represents the way the vertices of G are met by S. Notice that κ can

3The multicoloring problem has numerous aplications in job scheduling on multiprocessor systems [22], traffic

intersection control [9], compiler design and VLSI routing [31].
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Figure 1: An example of a Σ-plane graph G drawn i) with its radial RG ii) with a noose S that is
not a cycle of RG and with a noose S′ that is a cycle of RG and a vibration of S.

be applied to both cycles and nooses but also to paths and lines. Especially for cycles and paths
of graphs without multiple edges, we can directly represent them with the output of the function
κ (we will use the same notation for a cycle/path and the (cyclic) ordering of the vertices that it
meets).

The basic idea of the proof is to correspond nooses of G to cycles of RG and try to translate
the slope axioms to majority axioms. Corresponding nooses to cycles is not direct as not every
noose is a cycle of the radial graph (see Figure 1). To overcome this problem we need to introduce
the concepts of variations and vibrations of nooses.

Let S be one of the following structures in G: a noose, a line, or a Θ-structure. A varia-
tion of S is the operation that transforms S to another structure S′ of the same type such that
(S ∪ S′)− (S ∩ S′) is a noose of size 2 and one of the closed discs bounded by this noose, we denote
this disc by dif(S, S′), has the following two properties:

1. dif(S, S′)− bd(dif(S, S′)) contains no vertices of G,

2. dif(S, S′) contains at most one edge of G.

If two structures S1 and S2 are variations each of the other, we denote it as S1 ∼ S2. If a
structure S′ is the result of a finite number of consecutive variations with S as starting point,
we call S′ vibration of S and we denote this fact as S ∼∗ S′. Notice that if S ∼∗ S′ then
V (G) ∩ S = V (G) ∩ S′ and S and S′ have the same length. In fact, it is easy to observe that if
N , N ′ are nooses or lines where N ∼∗ N ′ then κG(N) = κG(N ′). Moreover, if S = (L1, L2, L3)
and S′ = (L′1, L

′
2, L

′
3) are Θ-structures with S ∼∗ S′, then we order the elements of S and S′ such

that for every i, 1 ≤ i < j ≤ 3, Li ∪ Lj ∼∗ L′i ∪ L′j . For examples of the notions of variation and
vibration, see Figure 2.

B.2 Corresponding nooses and lines to cycles and paths

Lemma B.2. Let G be a triangulated Σ-plane graph without multiple edges. If S is a line or a
noose of length 2 then exists a unique path Q in G such that κG(S) = κG(Q). If S is a noose of
length ≥ 3, then there exists a unique Q in G such that κG(S) = κG(Q).

Proof. Let κG(S) = (v0, . . . , vr−1). We prove that for any i = 0, . . . , r − 2, the vertices vi, vi+1 ∈
κG(S) are adjacent via only one edge (in case S is a noose we take i = 0, . . . , r − 1 and indices
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S4

dif(S1, S2)

S1 S2 S3

dif(S2, S3)

Figure 2: A θ-structure S1, a variation S2 of S1, a variation S3 of S2, and a vibration S4 of all
S1, S2, and S3.
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N2
S

S

S

N ′
1

Figure 3: Examples of the proofs of Lemmata B.2 and B.3.
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are taken modulo r). As S is G-normal, the portion of S that is between vi and vi+1 should be a
subset of some, say r, of the regions of G (this region is not well defined only if |V (G)| = 3 and,
in this case, r can be any region of G). Notice that r is a triangle where vi, vi+1 ∈ bd(r) and
therefore {vi, vi+1} is an edge of G. This edge is unique because G does not have multiple edges
(for an example, see the first graph of Figure 3).

Lemma B.3. Let G be a triangulated Σ-planar graph without multiple edges and let N1, N2 be
nooses of G where |N1|, |N2| ≥ 3. Then κG(N1) = κG(N2) implies N1 ∼∗ N2.

Proof. Suppose that N1, N2 are nooses where |N1|, |N2| ≥ 3 and κG(N1) = κG(N2). By Lemma B.2,
there is a unique cycle C where κG(C) = κG(N1) and a unique cycle C ′ where κG(C ′) = κG(N2).
As κG(N) = κG(N ′) we have that κG(C) = κG(C ′) and as G does not have multiple edges, we
have that C = C ′. We use the notation C = (x0, . . . , xr−1). For j = 1, 2, we define the function
σj corresponding to each edge ei = {xi, xi+1} of C the unique line, σj(ei) in Σ that is a subset of
Ni and has endpoints xi and xi+1 (as |N1|, |N2| ≥ 3, σj is well defined). Let ∆1,∆2 be the closed
discs bounded by C in Σ. We define

Dj = {i | σj(ei) ⊆ ∆3−j}, j = 1, 2.

For j = 1, 2 we apply a sequence of variations on Nj as indicated by the following routine. The
target of this routine is to put the whole Ni inside the closed disc ∆i.

1. If Dj is empty then stop and output Nj .

2. Pick an integer i in Dj .

3. Let L be any line L ⊆ Σ where |L| = 1, L ⊆ ∆j , and L ∩ Lj = xi, xi+1.

4. Set Nj ← Nj − σj(ei) ∪ L. (Notice that this is a variation operation on Nj .)

5. Recalculate σj and Dj . (Notice that now i 6∈ Dj .)

6. Go to step 1.

For j = 1, 2, we call N ′
j the resulting nooses and observe that N ′

j ⊆ ∆j and Nj ∼∗ N ′
j . We

now apply the following sequence of variations on N∗
1 : For any i = 0, . . . , r − 1, we set N ′

1 =
N ′

1 − σ1(ei) ∪ σ2(ei). The resulting noose is N2 and therefore, N ′
1 ∼∗ N ′

2. We conclude that
N1 ∼∗ N2 and this completes the proof of the lemma (for an example, see the second and the third
graph of Figure 3).

B.3 Representing nooses by vibrations

Observe that if G is a Σ-plane graph drawn in Σ along with its radial graph RG then any cycle of
RG of length 2k is a noose of length k. Any path of length 2k in RG with both endpoints in V (G)
is a line in G of length k. Notice that if r is a region RG then bd(r) is a cycle of length 4 where r

contains exactly one edge of G. Every edge e of G is contained in r for some region r. From now
on, we use the notation re to denote this region. If T is a triangle of G and |V (G)| ≥ 4 then we
use the notation v(T ) for the unique vertex of RG that is adjacent in RG with all the vertices of
T .
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Figure 4: a) If F contains the edges of the “fat” cycle then the graph HF is the one formed by the
dotted vertices and the white vertices. b) Examples of the constructions (1) and (2) of the proof
of Lemma B.4 when generalized (x)-path is a (x, y)-paths and a cycle.

Let G be a triangulated Σ-plane graph and let F ⊆ E(G). We define the graph HF as the
subgraph of a dual graph G∗ formed by edges F ∗. In other words, its vertices are the triangles of
G that contain some edge in F and two such triangles are connected by an edge if they have an
edge of F in common. To distinguish the vertices of HF from the vertices of the original graph we
refer to the vertices of HF as to triangles.

Notice that, as G is triangulated, the maximum degree of the vertices of HF is 3 (in the extreme
case where the maximum degree is 3 we have that three of the edges in F induce a triangle in G).
This construction will be the basic common ingredient of the proofs of this and the next subsection.
We call two triangles of degree 1 in HF irrelevant if they belong in different connected components
of HF .

We call a subgraph P of a Σ-plane graph G generalized (x)-path if either

• P is a path with an extreme x, or

• it is a cycle of length ≥ 4 passing through x and such that there is no edge connecting the
neighbors of x in P .

Notice that the stressed cycle of the graph of Figure 4 is a generalized (x)-path iff x is one of the
grey vertices.

Lemma B.4. Let G be a triangulated Σ-plane graph without multiple edges and where |V (G)| ≥ 4,
drawn in Σ along with its radial graph RG. Let also P be a generalized (x)-path of G with the
property that HE(P ) is connected. Let also T be a triangle of degree 1 in HE(P ). Then there exists
a generalized (x)-path PR in RG such that κG(PR) = κG(P ) and v(T ) 6∈ PR.

Proof. We use the notation P = (x = v0, . . . , vr = y), r ≥ 1 (in case P is a cycle we have x = y).
As |V (G)| ≥ 4 and G does not have multiple edges, the connectivity of HE(P ) yields that HE(P )

is a path whose extreme vertices are triangles of G. Each of these triangles has only one edge in
common with P . Therefore we can denote them as (a, v0, v1) and (vr−1, vr−2, b) for some a 6= v0

and b 6= vd. Notice that, for j = 2, . . . , r−2 the edge {vj , vj+1} is the common edge of the triangles

19



(vj−1, vj , vj+1) and (vj , vj+1, vj+2) in V (H). Moreover {v0, v1} is the common edge of (a, v0, v1)
and (v0, v1, v2) and {vr−1, vr} is the common edge of (vr−2, vr−1, vr) and (vr−1, vr, b).
If (b, vr−1, vr) = T we set

PR = (v0,v(a, v0, v1), v1,v(v0, v1, v2), v2,v(v1, v2, v3), . . .

. . . ,v(vq−3, vq−2, vq−1), vq−1,v(vr−2, vr−1, vr), vr) (1)

If (a, v0, v1) = T we set

PR = (v0,v(v0, v1, v2), v1,v(v1, v2, v3), v2, . . .

. . . , vr−2,v(vr−2, vr−1, vr), vr−1,v(b, vr−1, vr), vr) (2)

In any case, we guarantee that we can choose a line PR that does not meet the vertex v(T ).
Observe that, by the construction of PR, κG(PR) = κG(P ) and the lemma follows. For examples
of the above constructions see Figure 4.

The next Lemma is a generalization of Lemma B.4 for the general case where HE(P ) is not
necessarily connected.

Lemma B.5. Let G, |V (G)| ≥ 4, be a triangulated Σ-plane graph without multiple edges drawn in
Σ along with its radial graph RG. Let also P be a generalized x-path of G and let T be a collection
of mutually irrelevant degree one triangles in V (HE(P )). Then there exists a generalized x-path PR

in RG such that ∀T∈T ,v(T ) 6∈ PR and κG(PR) = κG(P ).

Proof. Let P1, . . . , Pq be the maximal sub-paths of P with the property that HE(Pi) is connected.
(When P is a cycle these sub-paths still exist because x belongs into two distinct degree one
triangles of HE(P ).) Notice that {Pi | i = 1, . . . , q} is a partition of P and assume that its indices
order it into consecutive segments of P . We assume that the endpoints of Pi are ai, bi, 1 ≤ i ≤ q

where x = a1, b1 = a2, . . . , bq−1 = aq, and bq = y; the equalities follow from the maximality of
each Pi (when P is a cycle, x = y). We denote as H1, . . . , Hq the connected components of HE(P )

indexed in a way that Hi = HE(Pi). Notice that |T ∩V (Hi)| ≤ 1, i = 1, . . . , q (otherwise we should
have two irrelevant degree one triangles in the same component of H). If |T ∩V (Hi)| is non empty,
then let Ti be the unique triangle in it. Otherwise let Ti be any of the triangles of V (Hi) with
degree 1 in Hi. We now apply Lemma B.4 for Hi and Ti and we get a path P i

R connecting ai and
bi in RG and such that κG(P i

R) = κG(P i) and v(Ti) 6∈ P i
R. We set CR =

⋃
i=1,...,q P i

R and observe
that, for any T ∈ T , v(Ti) 6∈ P i

R. As none of the triangles in HE(P ) belongs to two different
connected components of HE(P ), we have that κG(PR) = κG(P ) and the lemma follows (for an
example, see Figure 5.a.).

Lemma B.6. Let G be a triangulated Σ-plane graph with ≥ 4 vertices and without multiple edges,
drawn in Σ along with its radial graph RG. Let also C be a cycle in G and T be an collection of
mutually irrelevant degree one triangles in HE(C). Then there exists a cycle CR in RG such that
κG(CR) = κG(C) and ∀T∈T ,v(T ) 6∈ CR.

Proof. If |C| = 3, then we use the notation C = (x, y, z) and we notice that

bd(r{x,y}} ∪ r{y,z} ∪ r{z,x})
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b.a. c.

Figure 5: a) An example of the proof of Lema B.5. b) Examples of the case |C| = 3 of the proof
of Lemma B.6. c) Example of the first case of the proof of Lemma B.6.

is a subgraph of RG and contains as a subgraph at least one cycle CR of length 6 as required (it
meets all the vertices of C, otherwise, G should have a multiple edge – see also Figure 5.b).

Suppose now that C = (x0, . . . , xr−1, x0), r ≥ 4. As |C| ≥ 4, we have that all the vertices in
HE(C) have degree at most 2 (otherwise C is a triangle). We examine two cases:

Case 1: H is a cycle of r vertices. In this case we should have T = ∅. Observe that

CR = (x0,v(x0, x1, x2), x2,v(x1, x2, x3), . . . , xr−1,v(xr−1, x0, x1), x0)

is the required cycle of RG (all indices are taken modulo r). For an example of this case, see
Figure 5.c.

Case 2: All the connected components of H are paths. In this case, there will exist a vertex x ∈ C

such that its neighbors in C are not adjacent. Therefore C is a generalized (x)-path, it is not a
triangle, and by applying Lemma B.5 for C and T the result follows.

The following lemma is the main conclusion of this subsection.

Lemma B.7. Let G be a triangulated Σ-plane graph with ≥ 4 vertices and without multiple edges,
drawn in Σ along with its radial graph RG. Then any noose N , |N | ≥ 2, of G is a vibration of
some of the cycles of RG.

Proof. If |N | = 2 then let e be the unique edge connecting the extreme points of N (e is unique
because G does not have multiple edges). We directly have that bd(re) is a cycle of RG and it is easy
to verify that it is also a vibration of N . Therefore, we may assume that |N | ≥ 3. From Lemma B.2
there exist a unique cycle C where κG(C) = κG(N). From Lemma B.6, there exist a noose CR

of G where κG(CR) = κG(C). Notice that CR is a cycle of RG and, as κG(N) = κG(CR), from
Lemma B.3, we conclude that N ∼∗ CR.

B.4 Representing Θ-structures by vibrations

Let N be a noose in Σ and let Q be a continuous subset of Σ such that N ∩Q = ∅. then one of the
discs bounded by N does not contain points of Q. We call this disc by Q-avoiding disc bounded
by N .
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Figure 6: The case |P2 ∪ P3| = 3 and |P1| = 2 of the proof of Lemma B.8.

Lemma B.8. Let G be a triangulated Σ-plane graph with ≥ 5 vertices and without multiple edges,
drawn in Σ along with its radial graph RG. Then for any three paths P 1, P 2, P 3 of G that connect
two vertices x and y and are otherwise disjoint, there exists three paths P 1

R, P 2
R, P 3

R in RG that
connect x and y and are otherwise disjoint and such that for any i, 1 ≤ i ≤ 3, κG(P i

R) = κG(P i).

Proof. We first examine the special case where some of P1 ∪ P2, P1 ∪ P3, or P2 ∪ P3 has length
3. W.l.o.g we assume that |P2 ∪ P3| = 3 and, in particular we let P2 = (x, y) and P3 = (x, z, y).
Notice that |P1| ≥ 2 because G has not multiple edges. We examine two subcases:

|P1| = 2. We assume that P1 = (x,w, y). We examine first the case where either x or
y is connected with a vertex u of the {x, y}-avoiding open disc D bounded by (x, z, y, w) (see
Figure 6.a). W.l.o.g. assume that x is adjacent to u and let (w, x, u1) and (z, x, u2) be the regional
triangles containing {w, x} and {z, x} where u1, u2 ∈ D (each of these two triangles can have
{x, u} as an edge). Let also (w, y, z′) be the regional triangle containing {w, y} and such that
z′ ∈ D (notice that z and z′ may be identical). Then we set P 1

R = (x,v(x, u1, w), w,v(y, w, z′), y),
P 2

R = (x,v(x,w, y), y), and P 3
R = (x,v(z, u2, x), z,v(z, x, y), y). Observe that P i

R, i = 1, 2, 3 are
paths and that for every i, 1 ≤ i ≤ 3, κG(P i

R) = κG(P i).

In the remaining case, w and z are adjacent, and the triangles (w, x, z) and (w, y, z) are both
regional (see Figure 6.b). Then, as |V (G)| ≥ 5, there exist a vertex u that is adjacent to either
x or y and is included into either the w-avoiding open disc bounded by (x, y, z) or into the z-
avoiding open disc bounded by (x, y, w). W.l.o.g. we assume that u is adjacent to x and that x

is included in the w-avoiding open disc D bounded by (x, y, z). Let (x, u1, y) and (x, u2, z) be the
regional triangles containing {x, y} and {x, z} where u1, u2 ∈ D (each of these two triangles can
have {x, u} as an edge). Let also (w, y, t) be a regional triangle containing {w, y} where t belongs
in the z-avoiding open disc bounded by (x,w, y). Then we set P 1

R = (x,v(x,w, z), w,v(w, y, t), y),
P 2

R = (x,v(x, u1, y), y) and P 3
R = (x,v(x, u2, z), z,v(w, z, y), y). Observe that for every i, 1 ≤ i ≤

3, P i
R, i = 1, 2, 3 are paths and κG(P i

R) = κG(P i).

|P1| ≥ 3. We assume that P1 = (x = v0, v1, . . . , vr−2, vr = y), r ≥ 3 and observe that
C = (v0, v1, . . . , vr−1, vr) is a cycle of G where |C| ≥ 4. We call D the {x, y}-avoiding closed disc
bounded by P1 ∪P3 in Σ. Let Tz = (x, y, z). Also let Tx = (x, z, a) be the unique regional triangle
different than (x, y, z) that contains {x, z} and where a ∈ D and let Ty = (y, z, b) be the unique
triangle different than (x, y, z) that contains {y, z} and where b ∈ D. We now construct the set T
distinguishing 4 cases (see also Figure 7).
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Figure 7: Examples of the proof of Lemma B.8 for the case where |P2 ∪ P3| = 3 and |P1| ≥ 3
(subcases 1,2,3,4.1).

1. If a 6= v1 and b 6= vr−1 then we set T = ∅.
2. If a = v1 and b 6= vr−1 then we have that Tx is a triangle of degree 1 in HE(C) and we set
T = {Tx}.

3. If a 6= v1 and b = vr−1 then we have that Ty is a triangle of degree 1 in HE(C) and we set
T = {Ty}.

4. If a = v1 and b = vr−1 then we have that both Tx and Ty are triangless of degree 1 in HE(C).
As |C| ≥ 4, any connected component of HE(C) has two triangles of degree 1. This implies
that either {Tz, Tx} or {Tz, Ty} is a collection of mutually irrelevant degree one triangles in
V (HE(C)). We distinguish two subcases:

4.a. If Tz and Tx are irrelevant we set T = {Tz, Tx}.
4.b. If Tz and Ty are irrelevant we set T = {Tz, Ty}.
(If both pairs Tz, Tx and Tz, Ty are irrelevant we make an arbitrary choice.)

For any of the above cases we apply Lemma B.6 for C and T and we get a cycle CR in RG where
κG(CR) = κG(C). Clearly, CR is the union of two internally disjoint paths P 1

R and P 2
R that connect

in RG the vertices x and y. In cases 1–3, we set P 3
R = (x,v(Tx), z,v(Ty), y). In case 4.a, we set

P 3
R = (x,v(Tx), z,v(Tz), y). In case 4.b, we set P 3

R = (x,v(Tz), z,v(Ty), y). It is now easy to see
that, in any case, for all i, 1 ≤ i ≤ 3, κG(P i

R) = κG(P i). This completes the analysis of the special
case.

Assume now that for all i, j, 1 ≤ i < j ≤ 3, |P i ∪ P j | ≥ 4. Let P1 = (x, v1, . . . , vr−2, y), P2 =
(x, u1, . . . , us−2, y) and P3 = (x,w1, . . . , wt−2, y). We consider the cycle C = P 1 ∪ P 2 and the
path P = P 3. As |C| ≥ 4 and |P | ≥ 3, V (HE(C)) and V (HE(P )) can have at most 4 triangles
in common that can be the triangles A = (u1, x, w1), B = (v1, x, w1), C = (us−2, y, wt−2) and
D = (vr−2, y, wt−2). Our target will be to apply Lemmata B.5 and B.6 on P and C in order to
construct a path PR and a cycle CR without common radial vertices. In order not to use the
same interior vertices of RG two times we have to apply them with the restrictions imposed by
suitably chosen collections TC ,TP of mutually irrelevant degree one triangles in V (HE(C)) and
V (HE(P )) respectively. We set C = V (HE(C)) ∩ V (HE(P )) and we distinguish the following cases
(for examples, see Figures 8 and 9).

1. |C| = 0. Then we set TC = TP = ∅.
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Figure 8: Examples of the proof of Lemma B.8 for the case where |P2 ∪ P3| = 3 and |P1| ≥ 3
(subcases 4.2,4.3,4.4,5).
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Figure 9: If F contains the edges of the stressed cycle then the graph HF is the one formed by the
dotted vertices and the white vertices.

2. |C| = 1. Then we set TC = V (HE(C)) ∩ V (HE(P )) and TP = ∅.
3. |C| = 2. Then we put in TC one of the two elements of C and we put in TP the other.

4. |C| = 3. Then we distinguish the following subcases:

4.a. if C = {A,B, C} then TC = {A} and TP = {B,C}.
4.b. if C = {A,C, D} then TC = {C} and TP = {A,D}.
4.c. if C = {A,B, D} then TC = {A} and TP = {B, D}.
4.d. if C = {B,C, D} then TC = {C} and TP = {B,D}.

5. |C| = 4. Then we set TC = {A,D} and TP = {B,C}.

Notice that, in any of the above cases, the triangles in TC and TP are mutually irrelevant degree
one triangles of V (HE(C)) and V (HE(P )) respectively. Therefore, we can apply Lemma B.5 for
P and TP and Lemma B.6 for C and TC and construct the cycle CR and the path PR where
κG(CR) = κG(C) and κG(PR) = κG(P ). Notice that, in each case, the choice of TC and TP do not
allow CR and PR to have common radial vertices. CR defines two paths P 1 and P 2 connecting x

and y and if we set P 3
R = PR we have that κG(P i

R) = κG(P i) for all 1 ≤ i ≤ 3.

Let us remind that a Θ-structure is non-trivial if at least two of its lines have length ≥ 2.

Lemma B.9. Let G be a triangulated Σ-plane graph with ≥ 5 vertices and without multiple edges,
drawn in Σ along with its radial graph RG. If S = (L1, L2, L3) is a non-trivial Θ-structure of G,
then there exist a non-trivial Θ-structure (P 1

R, P 2
R, P 3

R) of G that is a vibration of S where P 1
R, P 2

R

and P 3
R are paths of RG.
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Proof. We apply Lemma B.2 for the noose N = L1 ∪ L2 and we get a cycle C of G where
κG(C) = κG(N). This cycle defines two internally disjoint paths P 1 and P 2 between x and y in G

where κG(P i) = κG(Li), i = 1, 2. Applying now again Lemma B.2 for the line L3, we get a path
P 3 between x and y in G where κG(P 3) = κG(L3). We now apply Lemma B.8 on P i, i = 1, 2, 3
and get three internally disjoint paths P 1

R, P 2
R, P 3

R of RG that connect x an y and such that for
each i, 1 ≤ i ≤ 3, κG(P i

R) = κG(P i). Resuming the previous equalities we get κG(P i
R) = κG(Li),

1 ≤ i ≤ 3. Notice that (P 1
R, P 2

R, P 3
R) is a non-trivial Θ-structure in G. In what remains we will

show that it is also a vibration of (L1, L2, L3). Notice that κG(P 1
R ∪ P 2

R) = κG(L1 ∪ L2) and
applying Lemma B.3 we have that P 1

R ∪ P 2
R ∼∗ L1 ∪ L2 and this, in turn, implies that P 1

R ∼∗ L1

and P 2
R ∼∗ L2. Notice now that P 2

R ∪ L3 is a noose of G. Recall that κG(P 3
R) = κG(L3) which

implies that κG(L2 ∪P 3
R) = κG(L2 ∪L3). From Lemma B.3 we have that L2 ∪P 3

R ∼∗ L2 ∪L3 and
this, in turn, implies that P 3

R ∼∗ L3. Therefore, (P 1
R, P 2

R, P 3
R) is a vibration of (L1, L2, L3).

B.5 A topological property of Θ-structures

Lemma B.10. Let S = (L1, L2, L3) and S′ = (L′1, L2, L3) be two non-trivial Θ-structures of some
Σ-plane graph G where S ∼ S′. Then, for one, say D∗, of the closed discs bounded by L2 ∪ L3,
holds that D∗ ∩ dif(S, S′) ⊆ L2 ∩ L3.

Proof. Let {x, y} = L2 ∩L3. Let also L and L′ be the length-1 lines comprising the length-2 noose
(S ∪S′)− (S ∩S′) = L∪L′, assuming that L ⊆ L1 and L′ ⊆ L′1. In the case analysis that follows,
we will define a disc D∗ bounded by L2 ∪ L3 and we will show that L ∪ L′ ⊆ Σ−D∗.

Case 1. If |L1|, |L′1| ≥ 2, we can choose a vertex v ∈ (L∪L′)∩V (G) that is different that x and y.
Therefore v 6∈ L2 ∪ L3 and we can define D∗ as the closed disc bounded by L2 ∪ L3 that does not
contain v. Notice that L1 ∪ L′1 contains at most one point in common with L2 ∪ L3 = bd(D∗) =
bd(Σ−D∗). We need the following topological fact.

Fact 1. Let ∆ be a closed disc on a sphere Σ and let N be a simple closed curve where N ∩bd(∆)
is either empty or is just a point x. Then (∆− bd(∆)) ∩N 6= ∅ implies N ⊆ ∆.

As (Σ−D∗)∩(L∪L′) 6= ∅, we apply the fact for L∪L′ and Σ−D∗, obtaining L∪L′ ⊆ Σ−D∗.

Case 2. |L1|, |L′1| = 1. Notice that, then, |L2|, |L3| ≥ 2. Notice that L1 − {x, y} cannot have
common points with the noose L2 ∪ L3. Therefore it will be a subset of some of the closed discs
bounded by L2 ∪ L3. Notice also that the same holds for L′1. Observe now that L1 − {x, y},
L′1−{x, y} cannot be subsets of different discs bounded by the noose L2 ∪L3 because then each of
the discs bounded by the noose L1∪L′1 should contain a vertex of G. Let D∗ be the disc containing
none of L1 − {x, y},L′1 − {x, y}. This means that the noose L1 ∪ L′1 is a subset of Σ−D∗. As
L1 = L and L′1 = L′, we have that L1 ∪ L′1 ⊆ Σ−D∗.

Here is the second topological property we use in our proof.

Fact 2. Let ∆ be a closed disc on a sphere Σ and let N be a simple closed curve where N ⊆ ∆.
Then some of the closed discs bounded by N will be a subset of ∆.

Let A and A′ be the discs bounded by L1∪L′1. By Fact 2, one, say A, of A,A′ should be a subset
of Σ−D∗. Notice that A should be dif(S, S′), otherwise A = Σ− dif(S, S′) and as A ⊆ Σ−D∗

we have that Σ− dif(S, S′) ⊆ Σ−D∗ ⇒ D∗ ⊆ dif(S, S′). Hence D∗ ∩ V (G) ⊆ dif(S, S′) ∩
V (G) = {x, y} a contradiction as |(D∗ ∩ V (G)) − {x, y}| ≥ 1 (this follows from the fact that S

is non-trivial). We conclude that dif(S, S′) ⊆ Σ−D∗, therefore dif(S, S′) − bd(dif(S, S′)) ⊆
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Figure 10: An example of the application of the function dif.

Σ − D∗ ⇒ (dif(S, S′) − bd(dif(S, S′)) ∩ D∗ = ∅. As bd(dif(S, S′)) = L1 ∪ L′1, we have that
bd(dif(S, S′)) ∩D∗ = (L1 ∪ L′1) ∩D∗ ⊆ {x, y} and the proof is complete.

B.6 Vibration invariants of Θ-structures

Let N, N ′ be two nooses of some Σ-plane graph G. Let N ∼ N ′ and let D = {D1, D2} and
D′ = {D′

1, D
′
2} be the closed discs bounded by N and N ′ respectively. We set up a bijection

σN,N ′ : D → D′ such that if D ∈ D then

σN,N ′(D) =

{
D − dif(N, N ′) if dif(N, N ′) ⊆ D

D ∪ dif(N,N ′) if dif(N, N ′) 6⊆ D

Also, for notational convenience, we enhance the definition of σ so that σN,N (D) = D. It is easy
to verify that σN,N ′ = σ−1

N ′,N (for an example, see Figure 10).
Let N and N ′ be nooses where N ∼∗ N ′. Then if N = N0 ∼ N1 ∼ · · · ∼ Nr−1 ∼ Nr = N ′,

we define σ∗N,N ′ = σN0,N1 ◦ σN1,N2 ◦ · · · ◦ σNr−1,Nr . Notice that σ∗N,N ′ is well defined as it does not
depend on the way N is transformed to N ′ (however we stress that this fact is not used in our
proofs). Again it follows that σ∗N,N ′ = σ∗−1

N ′,N .
The following lemma is a direct consequence of the fact that dif(N, N ′) does not contain

vertices that are not met by both N and N ′.

Lemma B.11. Let N1, N2 be nooses of G where N1 ∼∗ N2. If D is some disc bounded by N1 then
V (G) ∩ σ∗N1,N2

(D) = V (G) ∩D.

We need the following lemma.

Lemma B.12. Let G be a Σ-plane graph and S = (L1, L2, L3) and S′ = (L′1, L
′
2, L

′
3) be non-trivial

Θ-structures in G where S ∼∗ S′. If D is a closed disc bounded by the noose L1 ∪ L2 and L3 ⊆ D

then L′3 ⊆ σ∗L1∪L2,L′1∪L′2
(D).

Proof. It is sufficient to prove the statement of the lemma only for the case L′3 ⊆ σL1∪L2,L′1∪L′2(D).
(Using this case as an induction assumption, one can prove the lemma by making use of induction
on the number of variations required in order to transform S to S′.)

We set {x, y} = L1 ∩ L2 ∩ L3. We also set ∆ = dif(S, S′) and notice that a variation affects
only one of the lines in S. Therefore, we can distinguish the following cases.

Case 1. L2 ∪ L3 = L′2 ∪ L′3. Then ∆ = dif(L1 ∪ L2, L
′
1 ∪ L′2).

Subcase 1.a. If ∆ 6⊆ D then σL1∪L2,L′1∪L′2(D) = D ∪∆. Therefore, L′3 = L3 ⊆ D ⊆ D ∪∆ =
σL1∪L2,L′1∪L′2(D).
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Subcase 1.b. If ∆ ⊆ D, apply Lemma B.10 on S and S′ and let D2,3 be the closed disc bounded
by L2∪L3 where D2,3∩∆ ⊆ {x, y}. As (L1−{x, y})∩∆ 6= ∅, it implies that L1−{x, y} ⊆ Σ−D2,3.
This means that D2,3 ⊆ D. We now have D2,3 − {x, y} ⊆ D2,3 − (D2,3 ∩∆) = D2,3 −∆ ⊆ D−∆.
Therefore, L3 ⊆ D2,3 = D2,3 − {x, y} ⊆ D −∆ = σL1∪L2,L′1∪L′2(D).

Case 2. L1 ∪ L3 = L′1 ∪ L′3. This case is symmetric to the Case 1.

Case 3. L1 ∪ L2 = L′1 ∪ L′2. Again we apply Lemma B.10 on S and S′ and let D1,2 be the
disc bounded by L1 ∪ L2 where D1,2 ∩ ∆ ⊆ {x, y}. As (L3 − {x, y}) ∩ ∆ 6= ∅, we imply that
L3 − {x, y} ⊆ Σ − D1,2. Applying the same argument for L′3 we get L′3 − {x, y} ⊆ Σ − D1,2.
Therefore, L3 and L′3 are both included in the same disc bounded by L1 ∪ L2. As L3 ⊆ D we
conclude L′3 ⊆ D = σL1∪L2,L′1∪L′2(D).

Lemma B.13. Let G be a Σ-plane graph and S = (L1, L2, L3) and S′ = (L′1, L
′
2, L

′
3) be non-trivial

Θ-structures in G where S ∼∗ S′. If D1,2 is a closed disc bounded by the noose L1 ∪ L2 and D1,3

is a closed disc bounded by the noose L1 ∪ L3 such that D1,3 ⊆ D1,2 then σ∗L3∪L3,L′1∪L′3
(D1,3) ⊆

σ∗L1∪L2,L′1∪L′2
(D1,2).

Proof. As in the previouse lemma, it is sufficient to prove only the case S ∼ S′. (And then use the
induction on the number of variations required in order to transform S to S′.)

We set {x, y} = L1 ∩ L2 ∩ L3. We also set ∆ = dif(S, S′) and notice that a variation affects
only one of the lines in S. Therefore, we can distinguish the following cases.

Case 1. L2 ∪ L3 = L′2 ∪ L′3. Notice that ∆ = dif(L1 ∪ L3, L
′
1 ∪ L′3)

Subcase 1.a. If ∆ 6⊆ D1,2 then, from, D1,3 ⊆ D1,2 we also have that ∆ 6⊆ D1,3. Therefore,
σL1∪L2,L′1∪L′2(D1,2) = D1,2 ∪∆, σL1∪L3,L′1∪L′3(D1,3) = D1,3 ∪∆ and the required relation follows
as D1,3 ⊆ D1,2.

Subcase 1.b. If ∆ ⊆ D1,2 we apply Lemma B.10 on S and S′ and let D2,3 be the disc bounded by
L2 ∪L3 where D2,3 ∩∆ ⊆ {x, y}. As (L1−{x, y})∩∆ 6= ∅, we imply that L1−{x, y} ⊆ Σ−D2,3.
This means that D2,3 ⊆ D1,2. Combining this with the fact that D1,3 ⊆ D1,2, we have that
D1,2 = D1,3 ∪ D2,3. So, we can assume that D1,2 − D2,3 ⊆ D1,3. Notice that ∆ − {x, y} ⊆
∆− (D2,3 ∩∆) = ∆−D2,3 ⊆ D1,2 −D2,3 ⊆ D1,3. As also {x, y} ⊆ D1,3, we have that ∆ ⊆ D1,3

and therefore σL1∪L3,L′1∪L′3(D1,3) = D1,3 −∆. Moreover, σL1∪L2,L′1∪L′2(D1,2) = D1,2 −∆ and the
result follows as D1,3 −∆ ⊆ D1,2 −∆.

Case 2. L1 ∪ L2 = L′1 ∪ L′2. Notice that ∆ = dif(L1 ∪ L3, L
′
1 ∪ L′3).

Observe that in this case the variation does not affect the noose L1∪L2. Therefore, σL1∪L2,L′1∪L′2(D1,2) =
D1,2. In both subcases that follow, our target will be to prove that D1,2 ⊇ σL1∪L3,L′1∪L′3(D1,3).

Subcase 2.a. If ∆ 6⊆ D1,3, we apply Lemma B.10 on S and S′ and let D∗ be a disc bounded by
L1 ∪L2 where D∗ ∩∆ ⊆ {x, y}. As (L3−{x, y})∩∆ 6= ∅, we imply that L3−{x, y} ⊆ Σ−D∗. As
L3 ⊆ D1,2, we get that D∗ = Σ−D1,2. Combining this with D∗ ∩∆ ⊆ {x, y} we take ∆ ⊆ D1,2.
Therefore σL1∪L3,L′1∪L′3(D1,3) = D1,3 ∪∆ ⊆ D1,2 ∪∆ ⊆ D1,2.

Subcase 2.b. If ∆ ⊆ D1,3 then σL1∪L3,L′1∪L′3(D1,3) = D1,3 −∆ ⊆ D1,3 ⊆ D1,2.

Case 3. L1 ∪ L3 = L′1 ∪ L′3. Notice that ∆ = dif(L1 ∪ L2, L
′
1 ∪ L′2).

Observe that in this case the variation does not affect the noose L1∪L3. Therefore, σL1∪L3,L′1∪L′3(D1,3) =
D1,3. In both subcases that follow, our target will be to prove that D1,3 ⊆ σL1∪L2,L′1∪L′2(D1,2).

Subcase 3.a. If ∆ 6⊆ D1,2 then σL1∪L2,L′1∪L′2(D1,2) = D1,2 ∪∆ ⊇ D1,2 ⊇ D1,3.
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Subcase 3.b. If ∆ ⊆ D1,2, we apply Lemma B.10 on S and S′ and let D∗ be a disc bounded by
L1∪L3 where D∗∩∆ ⊆ {x, y}. As (L2−{x, y})∩∆ 6= ∅, we imply that L2−{x, y} ⊆ Σ−D∗. This
means that D∗ = D1,3. We now have D1,3 − {x, y} ⊆ D1,3 − (D1,3 ∩∆) = D1,3 −∆ ⊆ D1,2 −∆.
Therefore σL1∪L2,L′1∪L′2(D1,2) = D1,2 −∆ ⊇ D1,3 − {x, y} = D1,3.

B.7 Proof of Theorem B.1

Lemma B.14. Let G be a triangulated Σ-plane graph without multiple edges and let ins be a
uniform slope of order k + 1 in RG for k ≥ 2. Then, for any region r of RG, ins(bd(r)) = r.

Proof. As ins is uniform we have that there exists a cycle C ′ of length ≤ 2k such that r ⊆ ins(C ′).
This means that bd(r) ⊆ ins(C ′) and from axiom [S1] we have that ins(bd(r)) ⊆ ins(C ′).
Therefore, ins(bd(r)) = r.

We are now ready to prove the main technical result of this paper.

of Theorem B.1. Let ins be a uniform slope of order k + 1 in RG. We define the function big as
follows. Let N be a noose of G with size ≤ k. As G is triangulated, Lemma B.7 implies that N is
the vibration of some of the cycles, say C of RG. Observe that C has length ≤ 2k. In the trivial
case |N | ≤ 1 we define big(N) as the closed disk bounded by N and containing all the vertices of
G. For |N | ≥ 2 we set big(N) = σ∗C,N (Σ− ins(C)).

We claim that the function big satisfies the majority axioms on G.

Proof of [M1]: Let S = (L1, L2, L3) be a Θ-structure of size ≤ k where L3 ⊆ big(L1 ∪ L2).
We will prove that big(L1 ∪ L3) ⊆ big(L1 ∪ L2) or big(L2 ∪ L3) ⊆ big(L1 ∪ L2). For this we
distinguish two cases.

Special case. S = (L1, L2, L3) is trivial. Notice that Li, i = 1, 2, 3 have the same vertices, say x, y

of G as endpoints. Also, from Lemma B.2, e = {x, y} is an edge of G. We will first prove the
following claim.

Claim. If |Li ∪ Lj | = 2, 1 ≤ i < j ≤ 3, then one, say ∆, of the closed discs bounded by Li ∪ Lj

contains all the vertices of G and big(Li ∪ Lj) = ∆.

Proof of Claim. The fact that G is triangulated and without multiple edges implies that G is
3-connected. Therefore, one of the closed discs, we denote it ∆, bounded by Li ∪ Lj contains all
the vertices of G. It remains to prove that big(L1 ∪ L2) = ∆.

By Lemma B.7, the noose Li ∪ Lj , is a vibration of some cycle C of RG. As |Li ∪ Lj | = 2,
the only cycle of RG with this property is the boundary of r{x,y}. By Lemma B.14, ins(C) =
ins(bd(r{x,y})) = r{x,y}. From the definition of big we have that for all i, j, 1 ≤ i < j ≤
3, big(Li ∪ Lj) = σ∗C,Li∪Lj

(Σ− r{x,y}). Notice that Σ− r{x,y} ∩ V (G) = V (G) and Lemma B.11
yields that for 1 ≤ i < j ≤ 3, σ∗C,Li∪Lj

(Σ− r{x,y}) ∩ V (G) = V (G), therefore big(Li ∪ Lj) should
be equal to ∆ and the claim holds.

We now distinguish the following subcases of the special case.

Subcase 1. |Li| = 1, i = 1, 2, 3. Applying the claim above, we have that for i, j, 1 ≤ i < j ≤ 3,
big(Li ∪ Lj) is the closed disc bounded by Li ∪ Lj and containing all the vertices of G. L3 ⊆
big(L1∪L2) implies that either L2−{x, y} ⊆ Σ−big(L1∪L3) or L1−{x, y} ⊆ Σ−big(L2∪L3).
Then either big(L1 ∪ L3) ⊆ big(L1 ∪ L2), or big(L2 ∪ L3) ⊆ big(L1 ∪ L2).
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Subcase 2. |Li| = 1, i = 1, 2 and |L3| = 2. From Lemma B.3 we have that L1 ∪ L3 ∼∗ L2 ∪ L3.
From the claim above, big(L1 ∪ L2) is the closed disc bounded by L1 ∪ L2 and containing all
the vertices of G. Therefore, Σ− big(L1 ∪ L2) = dif(L1 ∪ L3, L2 ∪ L3). We now assume that
big(L2∪L3) 6⊆ big(L1∪L2). This can be rewritten as Σ−big(L1∪L2) 6⊆ Σ−big(L2∪L3) which
implies that dif(L1∪L3, L2∪L3) 6⊆ Σ− big(L2 ∪ L3) and thus dif(L1∪L3, L2∪L3) ⊆ big(L2∪L3).
We now have

big(L1 ∪ L3) = σL2∪L3,L1∪L3(big(L2 ∪ L3))

= big(L2 ∪ L3)− dif(L1 ∪ L3, L2 ∪ L3)

⊆ Σ− dif(L1 ∪ L3, L2 ∪ L3)

= big(L1 ∪ L2).

Subcase 3. |L1| = 2 and |Li| = 1, i = 2, 3. Observe that L3 ⊆ big(L1 ∪ L2) implies that
dif(L1 ∪ L2, L1 ∪ L3) ⊆ big(L1 ∪ L2). Therefore,

big(L1 ∪ L3) = σL1∪L2,L1∪L3(big(L1 ∪ L2))

= big(L1 ∪ L2)− dif(L1 ∪ L2, L1 ∪ L3)

⊆ big(L1 ∪ L2).

Subcase 4. |L1| = 1 and |L2| = 2 and |L3| = 1. This case is symmetric to Case 3.

General Case. S = (L1, L2, L3) is non-trivial. Then, from Lemma B.9, there exist a non-trivial
Θ-structure (P 1

R, P 2
R, P 3

R) of G that is a vibration of S where P 1
R, P 2

R and P 3
R are all paths of RG.

Lemma B.12 implies that P3 ⊆ big(P1 ∪ P2). As big(P1 ∪ P2) is a cycle of RG, the definition of
big implies that

P3 6⊆ ins(P1 ∪ P2) (3)

Suppose now that big(P1 ∪P3) 6⊆ big(P1 ∪P2) and big(P2 ∪P3) 6⊆ big(P1 ∪P2) and we will show
that this assumption leads to a contradiction. As Pi ∪ Pj , 1 ≤ i < j ≤ 3, are cycles of RG, the
definition of big implies that

ins(P1 ∪ P2) 6⊆ ins(P2 ∪ P3) and (4)

ins(P1 ∪ P2) 6⊆ ins(P1 ∪ P3). (5)

From (3) (4), and (5) we have that ins(P1 ∪ P2) ∪ ins(P1 ∪ P3) ∪ ins(P2 ∪ P3) = Σ and this is a
contradiction to [S2]. Therefore, we get that

big(P1 ∪ P3) ⊆ big(P1 ∪ P2) or big(P2 ∪ P3) ⊆ big(P1 ∪ P2). (6)

Applying now Lemma B.13 on each of the relations of (6), we conclude that either big(L1 ∪L3) ⊆
big(L1 ∪ L2) or big(L2 ∪ L3) ⊆ big(L1 ∪ L2).

Proof of [M2]: Let N be a noose in G where |N | = 2 and C be a path of RG where N ∼∗ C

(in the case where |N | ≤ 1, [M2] follows from the bi-connectivity of G). By Lemma B.2, there
exist an edge e = {x, y} such that (x, y) = κG(N). Clearly, if r = re then C = bd(r). By
Lemma B.14, ins(C) = r and thus, Σ− ins(C)∩V (G) = V (G). By Lemma B.11, big(N)∩V (G) =
σ∗C,N (Σ− ins(C)) ∩ V (G) = V (G) and [M2] follows.
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