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Abstract

The bandwidth minimization problem has a long history and a number of prac-
tical applications. In this paper we introduce a generalization of bandwidth to par-
tially ordered layouts. We consider this generalization from two main viewpoints:
graph searching and tree decompositions. The three graph parameters pathwidth,
profile and bandwidth related to linear layouts can be defined by variants of graph
searching using a standard fugitive. Switching to an inert fugitive, the two former
parameters are generalized to treewidth and fill-in, and our first viewpoint consid-
ers the analogous tree-like generalization that arises from the bandwidth variant.
Bandwidth also has a definition in terms of ordered path decompositions, and our
second viewpoint generalizes this in a natural way to ordered tree decompositions.
In showing that both generalizations are equivalent we employ the third viewpoint
of elimination trees, as used in the field of sparse matrix computations. We call the
resulting parameter the treespan of a graph and prove some of its combinatorial
and algorithmic properties.

1 Motivation through graph searching games

Different versions of graph searching has been attracting the attention of researchers from
Discrete Mathematics and Computer Science for a variety of elegant and unexpected
applications in different and seemingly unrelated fields. There is a strong resemblance
of graph searching to certain pebble games [15] that model sequential computation.
Other applications of graph searching can be found in VLSI theory since this game-
theoretic approach to some important parameters of graph layouts such as the cutwidth
[19], the topological bandwidth [18], the bandwidth [9], the profile [10], and the vertex
separation number [8] is very useful for the design of efficient algorithms. There is also
a connection between graph searching, pathwidth and treewidth, parameters that play
an important role in the theory of graph minors developed by Robertson & Seymour
[3, 7, 22]. Furthermore, some search problems have applications in problems of privacy
in distributed environments with mobile eavesdroppers (‘bugs’) [11].

In the standard node-search version of searching, a single searcher is placed at a vertex
of a graph G at every move, while from other vertices searchers are removed (see e.g. [15]).
The purpose of searching is to capture an invisible fugitive moving fast along paths in G.
The fugitive is not allowed to run through the vertices currently occupied by searchers.
So the fugitive is caught when a searcher is placed on the vertex it occupies, and it has
no possibility to leave the vertex because all the neighbors are occupied (guarded) by
searchers. The goal of search games is to find a search strategy to guarantee the fugitive’s
capture while minimizing some resource usage.

Because the fugitive is invisible, the only information the searchers possess are the
previous search moves that may give knowledge about subgraphs where the fugitive
cannot possibly be present. This brings us to the interesting interpretation of the search
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problem [3] as the problem of fighting against damage spread in complex systems, e.g.
the spread of a mobile computer virus in networks. Initially all vertices are viewed as
contaminated (infected by a virus or damaged) and a contaminated vertex is cleared
once it is occupied by a searcher (checked by an anti-virus program). A clear vertex v
is recontaminated if there is a path without searchers leading from v to a contaminated
vertex. In some applications it is required that recontamination should never occur and
in this case we are interested in the so-called ’monotone’ searching. For most of the
search game variants considered in the literature it can be shown, sometimes by very
clever techniques, that the resource usage does not increase in spite of this constraint
[15, 16, 4, 7]. The ‘classical’ goal of the search problem is to find the search program
such that the maximum number of searchers in use at any move is minimized. The
minimum number of searchers needed to clear the graph is related to the parameter
called pathwidth. Dendris et al. [7] studied a variation of the node-search problem with
inert, or lazy, fugitive. In this version of the game the fugitive is allowed to move only just
before a searcher is placed on the vertex it occupies. The smallest number of searchers
needed to find the fugitive in this version of searching is related to the parameter called
treewidth [7].

Another criteria of optimality in node-searching, namely search cost was studied in
[10]. Here the goal is to minimize the sum of the number of searchers in use over all moves
of the search program. The search cost of a graph is equal to the interval completion
number, or profile, which is the smallest number of edges in any interval supergraph of
the given graph. Looking at the monotone search cost version but now with an inert
fugitive, it is easy to see that this parameter is equal to the smallest number of edges in
the chordal supergraph of a given graph, so called fill-in. (It is not clear if in this version
of searching recontamination can help and this is an interesting open question.) We thus
have the following elegant relation: the parameters related to standard node searching
(pathwidth, profile) expressible in terms of interval completion problems, correspond in
inert fugitive searching to chordal completion problems (treewidth, fill-in).

In this paper we want to minimize the maximum length of time (number of interme-
diate moves) during which a searcher occupies a vertex. A similar problem for pebbling
games (that can be transferred into search terms) was studied by Rosenberg & Sudbor-
ough [23]. In terms of monotone pebbling (i.e., no recontamination allowed) this becomes
the maximum lifetime of any pebble in the game. It turned out that this parameter is
related to the bandwidth of a graph G, which is the minimum over all linear layouts
of vertices in G of the maximum distance between imagesof adjacent vertices. The fol-
lowing table summarizes the knowledge about known relations between graph monotone
searching and graph parameters.

Number of Searchers Cost of Searching Occupation Time
Standard Search pathwidth [15] profile [10] bandwidth [23]

Inert Search treewidth [7] fill-in ???

One of the main questions answered in this paper concerns the entry labeled ???
above: What kind of graph parameter corresponds to the minimum occupation time
for inert fugitive search? In section 2 we introduce a generalization of bandwidth to
tree-like layouts, called treespan, based on what we call ordered tree decompositions. In
section 3 we give the formal definition of the parameter mot(G), and then in section 4
we show that it is equivalent to a parameter arising from elimination trees, as used in
the sparse matrix computation community. In section 5 we show the equivalence also
between this elimination tree parameter and treespan, thereby providing evidence that
the entry labeled ??? above indeed corresponds to a natural generalization of bandwidth
to partially ordered (tree) layouts. Finally in section 6 we obtain some algorithmic and
complexity results on the treespan parameter.
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2 Motivation through tree decompositions

We assume simple, undirected, connected graphs G = (V, E), where |V | = n. We let
N(v) denote the neighbors of vertex v, and d(v) = |N(v)| is the degree of v. The
maximum degree of any vertex in G is denoted by ∆(G). For a set of vertices U ⊆ V ,
N(U) = {v 6∈ U | uv ∈ E and u ∈ U}. H ⊆ G means that H is a subgraph of G. For a
rooted tree T , and a vertex v in T , we let T [v] denote the subtree of T with root in v.

A chord of a cycle C in a graph is an edge that connects two non-consecutive vertices
of C. A graph G is chordal if there are no induced chordless cycles of length ≥ 4 in G.
Given any graph G = (V,E), a triangulation G+ = (V,E+) of G is a chordal graph such
that E ⊆ E+.

A tree decomposition of a graph G = (V,E) is a pair (X, T ), where T = (I, M) is a
tree and X = {Xi : i ∈ I} is a collection of subsets of V called bags, such that:

1.
⋃

i∈I Xi = V

2. uv ∈ E ⇒ ∃i ∈ I with u, v ∈ Xi

3. For all vertices v ∈ V , the set {i ∈ I | v ∈ Xi} induces a connected subtree of T .

The width of a tree decomposition (X, T ) is tw(X, T ) = maxi∈I |Xi|−1. The treewidth
of a graph G is the minimum width over all tree decompositions of G. A path decompo-
sition is a tree decomposition (X,T ) such that T is a path. The pathwidth of a graph
G is the minimum width over all path decompositions of G. We refer to Bodlaender’s
survey [5] for further information on treewidth.

For a chordal graph G, the treewidth is one less than the size of the largest clique
in G. For a non-chordal graph G, the treewidth is the minimum treewidth over all
triangulations of G. This is due to the fact that a tree decomposition (X, T ) of G actually
corresponds to a triangulation of the given graph G: Simply add edges to G such that
each bag of X becomes a clique. The resulting graph, which we will call tri(X,T ) is a
chordal graph of which G is a subgraph. In addition, any triangulation G+ of G is equal
to tri(X,T ) for some tree decomposition (X,T ) of G.

Another reason why tree decompositions and chordal graphs are closely related is that
chordal graphs are exactly the intersection graphs of subtrees of a tree [14]. Analogously,
interval graphs are related to path decompositions, and they are the intersection graphs
of subpaths of a path. A graph is interval if there is a mapping I of its vertices into sets
of consecutive integers such that for each pair of vertices v, w the following is true: vw is
an edge ⇔ I(v)∩I(w) 6= ∅. Interval graphs form a subclass of chordal graphs. Similar to
treewidth, the pathwidth of a graph G is one less than the smallest clique number over
all triangulations of G into interval graphs.

The bandwidth of G, bw(G), is defined as the minimum, over all linear orders of the
vertices of G, maximum difference between labels of two adjacent vertices. Similar to
pathwidth and treewidth, bandwidth can be defined in terms of triangulations as follows.
A graph isomorphic to K1,3 is referred to as a claw, and a graph that does not contain an
induced claw is said to be claw-free. An interval graph G is a proper interval graph if it
is claw-free [21]. As it was observed by Parra & Scheffler [20], the bandwidth of a graph
G is one less than the smallest clique number over all triangulations of G into proper
interval graphs. One can define bandwidth in terms of ordered path decompositions. In
an ordered path decomposition, the bags are numbered 1, 2, ..., n from left to right. The
first bag X1 contains only one vertex of G, and for 1 ≤ i ≤ n−1 we have |Xi+1 \Xi| = 1,
meaning that exactly one new graph vertex is introduced in each new bag. The number
of bags a vertex v belongs to is denoted by l(v). It is easy to show that bw(G) is the
minimum, over all ordered path decompositions, max{l(v)− 1 | v ∈ V }.

The natural question here is, what kind of parameter corresponds to bandwidth when,
instead of path decompositions, we switch to tree decompositions? This brings us to the
definition of ordered tree decomposition and treespan.
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Definition 2.1. An ordered tree decomposition (X, T, r) of a graph G = (V, E) is a tree
decomposition (X, T ) of G where T = (I,M) is a rooted tree with root r ∈ I, such that:

• |Xr| = 1, and if i is the parent of j in T , then |Xj \Xi| = 1.

Definition 2.2. Given a graph G = (V,E) and an ordered tree decomposition (X,T, r)
of G,

• l(v) = |{i ∈ I | v ∈ Xi}| (number of bags that contain v), for each v ∈ V .

• ts(X, T, r) = max{l(v) | v ∈ V } − 1.

The treespan of a graph G is ts(G) = min{ts(X, T, r) | (X, T, r) is an ordered tree
decomposition of G}.

Since every ordered path decomposition is an ordered tree decomposition, it is clear
that for every graph G, ts(G) ≤ bw(G).

3 Search minimizing occupation time with inert fugi-
tive

In this section we give a formal definition of minimum occupation time for inert fugitive
searching. A search program Π on a graph G = (V, E) is the sequence of pairs

(A0, Z0), (A1, Z1), . . . , (Am, Zm)

such that

I. For i ∈ {0, . . . , m}, Ai ⊆ V and Zi ⊆ V . We say that vertices Ai are cleared,
vertices V − Ai are contaminated and vertices Zi are occupied by searchers at the
ith step.

II. (Initial state.) A0 = ∅ and Z0 = ∅. All vertices are contaminated.

III. (Final state.) A0 = V and Z0 = ∅. All vertices are cleared.

IV. (Placing-removing searchers and clearing vertices.) For i ∈ {1, . . . , m} there exists
v ∈ V and Yi ⊆ Ai−1 such that Ai − Ai−1 = v and Zi = Yi ∪ {v}. Thus at every
step one of the searchers is placed on a contaminated vertex v while the others are
placed on cleared vertices Yi. The searchers are removed from vertices Zi−1 − Yi.
Note that Yi is not necessarily a subset of Zi−1.

V. (Possible recontamination.) For i ∈ {1, . . . ,m} Ai − {v} is the set of vertices
u ∈ Ai−1 such that every uv-path has an internal vertex in Zi. This means that
the fugitive awakening in v can run to a cleared vertex u if there is a uv-path
unguarded by searchers.

Dendris, Thilikos & Kirousis [7] initiated the study of inert search problem, where the
problem is to find a search program Π with the smallest maxi∈{0,...,m} |Zi| (this maximum
can be treated as the maximum number of searchers used in one step). It turns out that
this number is equal to the treewidth of a graph. We find an alternative measure of search
to be interesting as well. For a search program Π = (A0, Z0), (A1, Z1), . . . , (Am, Zm) on
a graph G = (V, E) and vertex v ∈ V we define

δi(v) :=
{

1, v ∈ Zi

0, v 6∈ Zi
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Then the number
∑m

i=0 δi(v) is the number of steps at which vertex v was occupied by
searchers. For a program Π we define the maximum vertex occupation time to be

ot(Π, G) = max
v∈V

m∑

i=0

δi(v).

The vertex occupation time of a graph G, denoted by ot(G), is the minimum maximum
vertex occupation time over all search programs on G.

A search program (A0, Z0), (A1, Z1), . . . , (Am, Zm) is monotone if for each i ∈ {1, . . . , m},
Ai−1 ⊆ Ai. Note that recontamination does not occur when a searcher is placed on a
contaminated vertex thus awaking the fugitive.

Finally, for a graph G we define mot(G), as the minimum maximum vertex occupation
time over all monotone search programs on G. We do not know whether mot(G) = ot(G)
for every graph G, and leave it as an interesting open question.

4 Searching and elimination trees

In this section we discuss a relation between mot(G) and elimination trees of G. This
relation is not only interesting in its own but also serves as a tool in further proofs.

For a graph G = (V,E), an elimination order α : {1, 2, ..., n} → V is a linear order
of the vertices of G. For each given order α, a unique triangulation G+

α of G can be
computed from the following procedure: Starting with vertex α(1), at each step i, make
the higher numbered neighbors of vertex α(i) in the transitory graph into a clique by
adding edges. The resulting graph, which is denoted G+

α , is chordal [12], and the given
elimination ordering decides the quality of this resulting triangulation. The following
lemma follows from the definition of G+

α .

Lemma 4.1. uv is an edge of G+
α ⇔ uv is an edge of G or there is a path u, x1, x2, ..., xk, v

in G with k ≥ 1 such that all xi are ordered before u and v by α (in other words,
max{α−1(xi) | 1 ≤ i ≤ k} < min{α−1(u), α−1(v)}).
Definition 4.2. For a vertex v ∈ V we define madj+(v) to be the set of vertices u ∈ V
such that α(u) ≥ α(v) and uv is an edge of G+

α . (The higher numbered neighbors of v
in G+

α .)

Given a graph G, and an elimination order α on G, the corresponding elimination
tree is a rooted tree ET = (V, P ), where the edges in P are defined by the following
parent function: parent(α(i)) = α(j) where j = min{k | α(k) ∈ madj+(α(i))}, for
i = 1, 2, ..., n. Hence the elimination tree is a tree on the vertices of G, and vertex α(n)
is always the root. The height of the elimination tree is the longest path from a leaf to
the root. Minimum elimination tree height of a graph G, mh(G) is the minimum height
of an elimination tree corresponding to any triangulation of G. For a vertex u ∈ V we
denote by ET [u] the subtree of ET rooted in u and containing all descendants (in ET )
of u. It is important to note that, for two vertices u and v such that ET [u] and ET [v] are
disjunct subtrees of ET , no vertex belonging to ET [u] is adjacent to any vertex belonging
to ET [v] in G or G+

α . In addition, N(ET [v]) is a clique in G+
α , and a minimal vertex

separator in both G+
α and G when v is not the only child of its parent in ET .

Let α be an elimination order of the vertices of a graph G = (V,E) and let ET be
the corresponding elimination tree of G. Observe that the elimination tree ET gives
enough information about the chordal completion G+ of G that ET corresponds to. It
is important to understand that any post order α of the vertices of ET is an elimination
order on G that results in the same chordal completion G+

α = G+. Thus given G and
ET , we have all the information we need on the corresponding triangulation.
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Definition 4.3. Given an elimination tree ET of G, the pruned subtree with root in x,
ETp[x], is the subtree obtained from ET [x] by deleting all descendants of every vertex
y ∈ ET [x] such that xy ∈ E(G) but no descendant of y is a neighbor of x in G.

Thus, the leaves of ETp[x] are neighbors of x in G, and all lower numbered neighbors
in G+ of x are also included in ETp[x]. In addition, there might clearly appear vertices
in ETp[x] that are not neighbors of x in G. However, every neighbor of x in G+ appears
in ETp[x], as we prove in the following lemma.

Lemma 4.4. Let α be an elimination order of graph G = (V, E) and let ET be a
corresponding elimination tree. Then for any u, v ∈ V , u ∈ ETp[v] if and only if v ∈
madj+(u).

Proof. Let u ∈ ETp[v] and let w be a neighbor of v in G such that u is on a vw-path
in ET . By the definition of pruned tree such a vertex w always exists. Because ET
is an elimination tree, there is a uw-path P+ in G+

α such that for any vertex x of P+,
α−1(x) ≤ α−1(u). By Lemma 4.1, this implies that there is also an uw-path P in G such
that for any vertex x of P , α−1(x) ≤ α−1(u). Since w is adjacent to v in G, we conclude
that v ∈ madj+(u).

Let v ∈ madj+(u). Then there is an uv-path P in G (and hence in G+
α ) such that all

inner vertices of the path are ordered before u in α. Let w be the vertex of P adjacent
to v. Because ET is elimination tree, we have that u is on vw-path in ET . Thus
u ∈ ETp[v].

We define a parameter called elimination span, es, as follows:

Definition 4.5. Given an elimination tree ET of a graph G = (V,E), for each vertex
v ∈ V we define s(v) = |ETp[v]| and es(ET ) = max{s(v) | v ∈ V } − 1. The elimination
span of a graph G is es(G) = min{es(ET ) | ET is an elimination tree of G}.
Theorem 4.6. For any graph G = (V,E), es(G) = mot(G)− 1.

Proof. Let us prove es(G) ≤ mot(G)− 1 first. Let Π = (A0, Z0), (A1, Z1), . . . , (Am, Zn)
be a monotone search program. At every step of the program exactly one new vertex
Ai −Ai−1 is cleared. Thus we can define the vertex ordering α by putting for 1 ≤ i ≤ n

α(Ai −Ai−1) = n− i + 1.

At the ith step, when a searcher is placed at a vertex u = Ai−Ai−1 every vertex v ∈ Ai

such that there is a uv-path with no inner vertices in Ai should be occupied by a searcher
(otherwise v would be recontaminated). Therefore, v ∈ madj+(u) and the number of
steps when a vertex v is occupied by searchers, is |{u | v ∈ madj+(u)}|. By Lemma 4.4,
|{u | v ∈ madj+(u)}| = s(v) and we arrive at

es(ET ) ≤ mot(Π, G)− 1.

We now show that es(G) ≥ mot(G)− 1. Let ET be an elimination tree and let α be
a corresponding elimination vertex ordering. We consider a search program Π where at
the ith step of the program, 1 ≤ i ≤ n, the searchers occupy the set of vertices madj+(v),
where v is a vertex with α(v) = n − i + 1. Let us first prove that Π is recontamination
free. Suppose, on the contrary, that a vertex u is recontaminated at the ith step after
placing a searcher on a vertex v. Then there is a uv-path P such that no vertex of P
except v contains a searcher at the ith step. On the other hand, vertex u is after v
in ordering α. Thus P should contain a vertex w ∈ madj+(u), w 6= u, occupied by a
searcher. This is a contradiction. Since every vertex was occupied at least once and
no recontamination occurs, we conclude that at the end of Π all vertices are cleared.
Every vertex v was occupied by searchers during |{u | v ∈ madj+(u)}| steps and using
Lemma 4.4 we conclude that es(ET ) ≥ mot(Π, G)− 1.
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5 Ordered tree decompositions and elimination trees

In this section we discuss a relation between the treespan ts(G) and elimination trees
of G, establishing that ts(G) = mot(G). We first give a simplified view of ordered tree
decompositions and then proceed to prove some of their properties.

There are exactly n bags in X of an ordered tree decomposition (X, T, r) of G. Thus,
the index set I for Xi, i ∈ I can be chosen so that I = V , with r ∈ V . Then T is a tree
on the vertices of G. To identify the bags and to define the correspondence between I
and V uniquely, name the bags so that Xr is the bag corresponding to the root r of T .
Regarding the bags in a top down fashion according to T , name the bag in which vertex
v appears for the first time Xv and the corresponding tree node v. Thus if y is the parent
of v in T then Xv \Xy = {v}. This explains how to rename the bags and the vertices of
T with elements from V given a tree decomposition based on I. However, if we replace
i with v and I with V in Conditions 1 - 3 of the definition of a tree decomposition, and
change condition in the definition of ordered tree decompositions to “Xr = {r}, and if y
is the parent of v in T then Xv \Xy = {v}”, then this will automatically give a tree T
on the vertices of G as we have explained above. For the remainder of this paper, when
we mention an ordered tree decomposition (X, T, r), we will assume that T is a tree on
the vertices of G as explained here. The following lemma will make the role of T even
clearer.

Lemma 5.1. Given a graph G = (V, E) and a rooted tree T = (V, P ), there exists an
ordered tree decomposition (X, T, r) of G ⇔ for every edge uv ∈ E, u and v have an
ancestor-descendant relationship in T .

Proof. Assume that T corresponds to a valid ordered tree decomposition of G, but there
is an edge uv in G such that T [u] and T [v] are disjunct subtrees of T . Xu is the first
bag in which u appears and Xv is the first bag in which v appears, thus u and v do
not appear in any bag Xw where w is on the path from u to the root or from v to the
root in T . Thus if u and v appear together in any other bag Xy where y belongs to
T [u] or T [v] or any other disjunct subtree in T , this would violate Condition 3 of a tree
decomposition. Therefore, u and v cannot appear together in any bag, and there cannot
exist a valid decomposition (X, T, r) of G.

For the reverse direction, assume that for every edge uv in G, u and v have an
ancestor-descendant relationship in T . Assume without loss of generality that v is an
ancestor of u. Then the bags can be defined so that 1) Xv contains v, 2) no bag Xy

contains v where y is an ancestor of v, 3) for every vertex w on the path from v to u in
T , Xw contains v (and w of course), and 4) Xu contains both u and v. We can see that
all the conditions of an ordered tree decomposition are satisfied.

Lemma 5.2. Let (X, T, r) be an ordered tree decomposition of a given graph. For every
edge uv in tri(X, T ), u and v have an ancestor-descendant relationship in T .

Proof. As we have seen in the proof of Lemma 5.1, if u and v belong to disjunct subtrees
of T , then they cannot appear together in the same bag. Since only the bags are made
into cliques, u and v cannot belong to the same clique in tri(X, T ), which means that
the edge uv does not exist in tri(X, T ).

Lemma 5.3. Let (X, T, r) be an ordered tree decomposition of a given graph. Let uv be
an edge of tri(X, T ) such that v is an ancestor of u in T . Then v belongs to bag Xw for
every w on the path from v to u including Xv and Xu.

Proof. Vertex v appears for the first time in Xv on the path from the root, and u appears
for the first time in Xu. For every vertex w on the path from v to u, exactly vertex w
is introduced in Xw. Thus Xu is the first bag in which u and v both can belong to. In
order for this to be possible, v must belong to bag Xw for every vertex w on the path
from v to u in T .
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Lemma 5.4. For each graph G, there exists an ordered tree decomposition (X, T, r) of
G of minimum treespan such that if u is a child of v in T then v ∈ Xu.

Proof. Assume that u is a child of v in T and v 6∈ Xu. Clearly, uv is not an edge of G.
Since v does not belong to any bag Xy for a descendant y of u, we can move u up to be
a child of a node w in T where uw is an edge of G and where w is the first node on the
path from v to the root that is a neighbor of u.

Lemma 5.5. Let (X, T, r) be an ordered tree decomposition of G, and let α : {1, ..., n} →
V be a post order of T . Then G+

α ⊆ tri(X, T ).

Proof. Let uv be an edge of G+
α , and assume without loss of generality that u has a lower

number than v according to α. If uv is an edge of of G, then we are done. Otherwise, due
to Lemma 4.1, there must exist a path u, x1, x2, ..., xk, v in G with k ≥ 1 such that all
xi are ordered before u. Since α is a post order of T , none of the vertices xi, i = 1, ..., k,
can lie on the path from u to the root in T . Consequently and due to Lemma 5.1, since
ux1 is an edge of G, x1 belongs to T [u]. With the same argument, since x1, x2, ..., xk is
a path in G, all the vertices x1, x2, ..., xk must belong to T [u]. Now, since vxk is an edge
in G, v must be an ancestor of xk and thus of u in T , where u lies on the path from v
to xk. By Lemma 5.3, vertex v must be present in all bags Xw where w lies on the path
from v to xk, and consequently also in bag Xu. Therefore, u and v are both present in
bag Xu and are neighbors in tri(X, T ).

Lemma 5.6. Let (X,T, r) be an ordered tree decomposition of G, and let α be a post
order of T . Let ET be the elimination tree of G+

α . Then for any vertex u, if v is the
parent of u in ET , then v lies on the path from u to the root in T .

Proof. Since v is the parent of u in ET , uv is an edge of G+
α . By Lemma 5.5, uv is

also an edge of tri(X, T ). By Lemma 5.2, u and v must have an ancestor-descendant
relationship in T . Since α is a post order of T , and α−1(u) < α−1(v), v must be an
ancestor of u in T .

Theorem 5.7. For any graph G, ts(G) = es(G).

Proof. First we prove that ts(G) ≤ es(G). Let ET = (V, P ) be an elimination tree of G
such that es(G) = es(ET ), and let r be the root vertex of ET . We define an ordered
tree decomposition (X = {Xv | v ∈ V }, T = ET, r) of G in the following way. For each
vertex v in ET , put v in exactly the bags Xu such that u ∈ ETp[v]. Regarding ET top
down, each vertex u will appear for the first time in bag Xu, and clearly |Xu \Xv| = 1
whenever v is the parent of u. It remains to show that (X,ET ) is a tree decomposition
of G. Conditions 1 and 3 of a tree decomposition are trivially satisfied since ETp[v] is
connected and includes u for every vertex v. For Condition 2, if uv is an edge of G, then
the lower numbered of v and u is a descendant of the other in ET . Let us say u is a
descendant of v, then u ∈ ETp[v], and v and u will both appear in bag Xu. Thus (X,ET )
is an ordered tree decomposition of G, and clearly, ts(X, ET ) = es(G). Consequently,
ts(G) ≤ es(G).

Now we show that es(G) ≤ ts(G). Let (X, T, r) be an ordered tree decomposition of
G with ts(X,T, r) = ts(G). Let α be a post order on T , and let ET be the elimination
tree of G+

α . For any two adjacent vertices u and v in G, u and v must have an ancestor-
descendant relationship both in T and in ET . Moreover, due to Lemma 5.6, all vertices
that are on the path between u and v in ET must also be present on the path between
u and v in T . Assume, without loss of generality, that u is numbered lower than v. By
Lemma 5.3, v must belong to all the bags corresponding to the vertices on the path from
v to u in T . Thus for each vertex v, s(v) in ET is at most l(v) in (X, T, r). Consequently,
es(G) ≤ ts(G), and the proof is complete.

Theorems 4.6 and 5.7 imply the main combinatorial result of this paper.
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Corollary 5.8. For any graph G, ts(G) = es(G) = mot(G).

6 Treespan of some special graph classes

The diameter of a graph G, diam(G), is the maximum length of a shortest path between
any two vertices of G. The density of a graph G is defined as dens(G) = (n−1)/diam(G).
The following result is well known

Lemma 6.1. [6] For any graph G, bw(G) ≥ max{dens(H) | H ⊆ G}.
A caterpillar is a tree consisting of a main path of vertices of degree at least two with

some leaves attached to this main path.

Theorem 6.2. For any graph G, ts(G) ≥ max{dens(H) | H ⊆ G and H is a caterpillar}.
Proof. Let the caterpillar H be a subgraph of G consisting of the following main path:
c1, c2, ..., cdiam(H)−1. We view the bags of an ordered tree decomposition as labeled by
vertices of G in the natural manner (as described before Lemma 5.1). Let (X,T, r) be an
ordered tree decomposition of G with (X ′, T ′, r′) being the topologically induced ordered
tree decomposition on H, i.e. containing only bags labeled by a vertex from H, where
we contract edges of T going to vertices labeled by vertices not in H to get T ′. Let Xci

be the ’highest’ bag in (X ′, T ′, r′) labeled by a vertex from the main path, so that only
the subtree of (X ′, T ′, r′) rooted at Xci contains any vertices from the main path. Let
there be h + 1 bags on the path from Xci to the root Xr′ of (X ′, T ′, r′). Since vertex
r′ of H (a leaf unless r′ = ci) is adjacent to a vertex on the main path it appears in
at least h + 1 bags, giving ts(G) ≥ h. Moreover, by applying Lemma 5.1 we get that
T ′ between its root Xr′ and Xci consists simply of a path without further children, so
that the subtree rooted at Xci has |V (H)| − h bags. Each of these bags contain a vertex
from the main path since every leaf of H is adjacent in H only to a vertex on the main
path, and by the pigeonhole principle we thus have that some main path vertex lives in
at least d(|V (H)| − h)/(diam(H) − 1)e bags. If (|V (H)| − h)/(diam(H) − 1) is not an
integer, then immediately we have the bound ts(G) ≥ b(|V (H)| − h)/(diam(H)− 1)c. If
(diam(H)− 1) on the other hand does divide (|V (H)| − h) then we apply the fact that
at least diam(H) − 2 bags must contain at least two vertices from the main path, to
account for edges between them, and for diam(H) ≥ 3 (which holds except for the trivial
case H a star) this increases the span of at least one main path vertex and we again get
ts(G) ≥ b(|V (H)| − h)/(diam(H)− 1)c.

Thus ts(G) ≥ max{h, b(|V (H)| − h)/(diam(H) − 1)c}. If h ≤ dens(H) we have
that b(|V (H)| − h)/(diam(H)− 1)c ≥ (|V (H)| − 1)/diam(H) and therefore b(|V (H)| −
h)/(diam(H) − 1)c ≥ dens(H). We conclude that ts(G) ≥ dens(H) and the lemma
follows.

With this theorem, in connection with the following result from [2], we can conclude
that bw(G) = ts(G) for a caterpillar graph G.

Lemma 6.3. [2] For a caterpillar graph G, bw(G) ≤ max{dens(H) | H ⊆ G}.
Lemma 6.4. For a caterpillar graph G, bw(G) = ts(G) = max{dens(H) | H ⊆ G}.
Proof. Let G be a caterpillar graph. Then, bw(G) ≥ ts(G) ≥ max{dens(H) | H ⊆ G} ≥
bw(G). The first inequality was mentioned in Section 5, the second inequality is due to
Theorem 6.2, and the last inequality is due to Lemma 6.3 since G is a caterpillar. Thus
all of the mentioned parameters on G are equal.
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A set of three vertices x, y, z of a graph G is called an asteroidal triple (AT) if
for any two of these vertices there exists a path joining them that avoids the (closed)
neighborhood of the third. A graph G is called an asteroidal triple-free (AT-free) graph if
G does not contain an asteroidal triple. This notion was introduced by Lekkerkerker an
Boland [17] for the following characterization of interval graphs: G is an interval graph
if and only if it is chordal and AT-free.

A graph G is said to be cobipartite if it is the complement of a bipartite graph. Notice
that cobipartite graphs form a subclass of AT-free claw-free graphs. Another subclass of
AT-free claw-free graphs are the proper interval graphs, which were mentioned earlier.
Thus G is a proper interval graph if and only if it is chordal and AT-free claw-free. A
minimal triangulation of G is a triangulation H such that no proper subgraph of H is a
triangulation of G. The following result is due to Parra and Scheffler.

Theorem 6.5. [20] Let G be an AT-free claw-free graph. Then every minimal triangu-
lation of G is a proper interval graph, and hence, bw(G) = pw(G) = tw(G).

Theorem 6.6. For an AT-free claw-free graph G, ts(G) = bw(G) = pw(G) = tw(G).

Proof. Let G be AT-free claw-free and let H be its minimal triangulation such that
ts(G) = ts(H). Such a graph H must exist, since for an optimal ordered tree decom-
position (X, T, r), the graph tri(X, T ) is chordal and ts(tri(X,T )) = ts(G). Thus any
minimal graph from the set of chordal graphs ’sandwiched’ between tri(X,T ) and G
can be chosen as H. By Theorem 6.5, H is a proper interval graph. Thus ω(H) − 1 =
bw(H) ≥ bw(G). Since ts(H) ≥ ω(H) − 1, we have that ts(G) = ts(H) ≥ ω(H) − 1 ≥
bw(G) ≥ ts(G).

By the celebrated result of Arnborg, Corneil & Proskurowski [1], tree-width (and
hence path-width and bandwidth) is NP-hard even for cobipartite graphs. Thus Theo-
rem 6.6 yields the following corollary.

Corollary 6.7. Computing treespan is NP-hard for cobipartite graphs.

We conclude with an open question. For any graph G, ts(G) ≥ d∆(G)/2e. For
trees of maximum degree at most 3 it is easy to prove that ts(G) ≤ d∆(G)/2e. It is an
interesting question whether treespan can be computed in polynomial time for trees of
larger max degree. Notice that bandwidth remains NP-complete on trees of max degree
3 [13].
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