Asynchronous Methods and Least Squares:
An Example of Deteriorating Convergence*

Trond Steihaug’ and Yasemin Yalcinkayat
University of Bergen,
Department of Informatics,
Bergen, Norway

Abstract

We use block iterative methods for solving linear least squares prob-
lems. The subproblems are solved asynchronously on a distributed mem-
ory multiprocessor. It is observed that increased number of processors
results in deteriorating convergence. We illustrate the deteriorating con-
vergence by some numerical experiments. The deterioration of the con-
vergence can be explained by contamination of the residual. The residual
is contaminated by old information. Our purpose is to reduce the effect
of old information. The issues investigated here are the effect of the num-
ber of processors, the role of essential neighbors [8] and heterogeneous
processors. We include two heuristics to identify the information to be
discarded and reduce the effect of old information: a relaxation factor and
synchronization. The characterization of old information remains as an
open problem.

1 Introduction

In this paper we use block iterative method for solving sparse linear least squares
problems. A general framework for this method is introduced by Dennis and
Steihaug [4], and their preliminary tests indicate that this leads quickly to cheap
solutions of limited accuracy.

Due to the rapid development and increasing usage of parallel computers
and distributed computing it has become important to adapt these methods to
the new architectures. Baudet’s [1] experimental results on systems of linear
equations show a considerable advantage for iterative methods on parallel com-
puters with no synchronization at all. This statement has led us to experiment
with totally asynchronous [2] block iterative methods for the solution of lin-
ear least squares problems. We partition the columns of the coefficient matrix
into (non)disjoint blocks of columns and then project the updated residual into
each column subspace. This algorithm which is called column oriented succes-
sive subspace correction (CSSC) in [7], is, in fact, Gauss-Seidel iteration on the
normal equations. Each subproblem is substantially smaller than the original
problem and hence is solved directly using QR factorization and semi-normal
equations on one processor. Each processor computes a correction of the so-
lution vector restricted to the variables associated with the blocks of columns.
The computation requires the residual which is the global data. The processors

*This work has been partially supported by VISTA and Norwegian Research Council
fE-mail:Trond.Steihaug@ii.uib.no
{E-mail:yasemin@ii.uib.no

use the residual available at the start of their computations without waiting for
the newest data. This way, the disadvantages resulting from the execution of
synchronization primitives are avoided.

We do not address the issues of timing and speedup in this paper. Some
timing and speedup results can be found in [10]. In the asynchronous imple-
mentation it is observed that increased number of processors results in con-
taminated residual and hence deteriorating convergence. This is due to the
existence of old information in the system. Our purpose is to reduce the effect
of old information, thus decreasing the deteriorations in convergence.

In the following, we first give the framework of block iterative method for
the linear least squares problem and state the sequential algorithm. We also
mention an example problem that makes use of successive solution of linear least
squares problem. The subproblems in this algorithm are to be solved using a
direct method. We give a short discussion of factorization techniques in this
context. Then, we introduce the totally asynchronous algorithmic model and
the algorithm for the asynchronous implementation of our method. In Section
5, the results of our experiments are presented. It is followed by a section on
open problems and concluding remarks.

2 The Linear Least Squares Problem

Let A be an m by n real matrix, m > n,b € IR™. Let M be an m by m positive
definite matrix. The weighted linear least-squares problem is:

in |Az — b || ar, (1)

where [ly[13; = y" My.

We divide the columns of A into g blocks Ay, As, ..., Ay, where A; € R™*™,
We assume, without loss of generality, that each A; has full rank. The least
squares problem (1) is then equivalent with

min{||A1zy + Asxo + -+ Agzg — b|lpr 1 21 € R™ 20 € R™,...,2, e R"} .
(2)
We will later allow for A; to share columns with A;, i.e., overlapping column
blocks.
Suppose that we have an approximation z* to a solution z* to (1) and we
divide z* into 2§, 5, ..., z¥ as above. Then from (2) we can write the following
successive replacements iteration:

fori=1,2,...,9 do

Solve for xk'H R™ :

min || 00} Ajat 4 A+ 0 Ak — bl
Consider:
Zl 1 A; 93k+1 + At o+ G=it1 A 1’

= Aifath -)+21 L Aph T Ak b
= As -}—rk"'(z 1)/9

k k+1

where s¥ = ;™! — ¥ is the step or correction, and

i—1
At/ = N " Apahtt 4 ZA of —b (3)
Jj=1 Jj=i

is the residual. The least squares subproblem, now, is:

Solve for s¥ € R™ : min{||Ass; + rFHE-D/9|) .
The residual can be shown to satisfy

phH/9 — phH=D/g 4 Ak

The new approximate solution is

E+1 _ ok kg
;T =xi +s, i=1,...,9 .

For z; € IR™, introduce the vector Z; € IR", which is obtained by starting with
a zero vector and placing the nonzero entries of z; in the right positions. Then

g
P gk
i=1

Introducing 7 we get:

fori=1,2,...,9do
7 = pk+(-1)/g
Solve for s¥: min{||Ais; + 7||ar 15 € R™}. 4)
Update the residual: r#+i/9 = pht(i-1)/9 4 A5k
Update the solution: zF1+i/9 = gh+(i-1)/g 4 Ef.

We have a block Gauss-Seidel iteration on the normal equations for (1).
When we use the residual as # = ¥, we get Jacobi iteration. The intermediate
residual is a combined Jacobi and Gauss-Seidel method. With the introduction
of a relaxation parameter successive over-relaxation (SOR) method is obtained.

The formulation above has a direct extension to overlapping column blocks.
Let n = ny + ...n,y, where 4; € R™ and A = (A1|4s]...|4,),A € R™*".
The new m by n least squares problem can be written as

min [[Ax = bl
where x = (21,22,...,7,)7, x € R™.
We can now define the block SOR algorithm for the solution of (1).

Algorithm 1
Subdivide A into g blocks.
Choose 0 < w; < 2,1=1,2,...,9.
Choose #¥,i=1,...,g, 2° = le Y.
Compute r® = Az® —b.
for £ =0 step 1 until convergence do
fori=1,2,...,9 do
7 = pkt(i-1)/g
Solve for s¥ : min{||A;s¥ + #||a}.
rk"‘i/g =7+ wiAisf.
ok tile = ght(=D/9 4 ;55

Check for convergence.

The series of approximations {z*} we get from Algorithm 1 converge to z*,
a solution of the least squares problem (1), and ||r¥|| s is strictly monotonically
decreasing [4].

Applications of least squares arise in a great number of fields. Efficient
methods for the solution of weighted least squares problems are becoming in-
creasingly important. One of those fields that need the successive solution of
linear least squares problems is the primal dual interior point method. We define
this problem next.

2.1 Successive Solution of Linear Least Squares Problems

Let ce R", b€ R™, A € R™*". The linear programming problem

minimize Tz
s.t. Az =D
z >0,
has its dual in the form
maximize bTy
st. Aly+z=¢
z >0,

where y € IR™ is the dual variable and z € IR" is the dual slack. A primal
dual interior point method for this problem will attempt to solve the following
Newton step equation [9]

0 AT I Az —Tre
A 0 0 Ay | = —Tp (5)
Z 0 X Az —XZe+ope

where X =diag(z), Z =diag(z), rp = Az — b, r. = ATy + 2z — ¢, p is the duality
gap, o is an algorithm-dependent parameter between [0,1], and e is the vector
of all ones.

Equation (5) can be reformulated eliminating Az to give

X-1z AT Az \ [c—ATy—opX~le (©6)
A Ay | Az —b ’
Az = X Yope + ZAz) — 2,

which is known as the augmented system.
Let M = (X~'Z)~!. Then, from (6), we get

AMATAy = AM(c — ATy —opX~'e) + b — Az,
and
Az = M(c— AT (y + Ay) —opX"te) .

We need to solve a (weighted) linear least squares problem:
min [|A7 Ay — dl|ar,

where
d=c— ATy —opuXte+ Mz — 1),

and Z is any feasible point AZ = b.

3 Factorization

In (4), the system to be solved is substantially smaller than the original problem.
This enables us to use a direct method in our computation for sf, and brings out
the need for a good factorization of A;. The criteria for the best factorization
algorithm in our case is that the algorithm should store and operate only on
the nonzero entries of the matrix, should try to minimize the creation of new
nonzeros as computations proceed, and the trade-offs between sparsity of the

system and numerical stability should be taken into consideration. Here, we
will consider three methods: Method of normal equations, QR factorization
and semi-normal equations (SNE).

In the method of normal equations we form the matrix C = AT A and ap-
ply Cholesky algorithm to compute R such that C = RT R. This transfers the
system of normal equations AT Az = ATbto RT Rx = ATb, with R upper trian-
gular, so that the system can be solved by forward and backward substitution.
When the same system is to be solved for several right-hand sides, we need to
store matrices R and A.

For well-conditioned problems the method of normal equations is quite sat-
isfactory. However, for ill-conditioned or stiff problems this method may lead
to substantially less accurate solutions than methods based on the QR decom-
position.

The potential numerical instability of the method of normal equations is due
to loss of information in explicitly forming AT A and ATb, and to the fact that
the condition number of AT A is the square of that of A. Orthogonalization
methods avoid both of these sources of inaccuracy by working directly with A.
An orthogonal matrix @ € IR™*™ is computed which reduces [A4, b] to the form

R c
or-[5] on-[]

where B € R™" and ¢ € R"®. Matrix R can be computed row sequentially
using Givens rotations. Givens rotations should be applied simultaneously to
b to form QTb. In the implementation by George and Heath [6] the Givens
rotations are not stored but discarded after use. Hence, only enough storage to
hold the final R and a few extra vectors for the current row and right-hand side
is needed in the main memory during the factorization phase.

Discarding () creates a problem since we wish to solve additional problems
having the same matrix A but different right-hand sides b that are not known at
the time of the QR factorization. If the original matrix A is saved in addition
to R, one can use the semi-normal equations (SNE)

RTRx = A"bp .

This approach is intermediate in numerical stability between normal equations
and orthogonalization [3].

4 Parallelization

In this section, we will consider the parallel implementation of Algorithm 1,
and formulate the main algorithm used in the experiments. First we will see
how we can get the parallel version of the sequential algorithm at hand and
then we will point out the (dis)advantages of asynchronous computation over
the synchronous mode.

Jacobi type of iterations are straightforward to implement in parallel. In Al-
gorithm 1, if use # = r*, we get Jacobi method. The main computation in the
inner loop is now the solution of (4). This system can be solved concurrently
for each block 7 on multiple processors provided that the submatrices A; are
available on the processors. The processors, after computing their corrections
on block components of x have to synchronize at the end of the current itera-
tion before starting with the next iteration. Now that we are able to compute
the corrections from each block in one step, we have gained a considerable ad-
vantage over the sequential algorithm. But we can do better. In synchronized

algorithms, the faster processors waiting for the slower ones to complete their
computations before they can enter the critical section causes an overhead. To
get higher utilization of the available CPU power we can remove synchronization
and the restriction on the order of the updates. By removing synchronization
from the synchronous Jacobi algorithm and letting # get the latest available
value of the residual in the system we obtain a totally asynchronous algorithm.

Asynchronous algorithms can potentially reduce the synchronization penalty
caused by fast processors waiting for slow processors to complete their compu-
tations, and for slow communication channels to deliver messages. The reason
is that processors can execute more iterations when they are not constrained to
wait for the results of the computation on other processors. In the computation
of an iterate, nothing is imposed on the use of the values of the previous iterates.
The only thing that is required is that, eventually, the values of an early iterate
cannot be used any more in further evaluations. This condition is met as long
as no processor falls out of the system. However, removing restrictions on the
former iterates used in computations brings out the danger that the iterations
are performed on the basis of outdated (old) information, and their results will
not be effective. We will consider some heuristic experiments in Section 5 and
6 to decrease the effect of old information in the system.

An important disadvantage of asynchronism is that it can destroy conver-
gence properties that the algorithm may possess when executed synchronously
or sequentially. In some cases, it is necessary to place limitations on the size
of communication delays to guarantee convergence. In all cases, the analysis
of asynchronous algorithms is considerably more difficult than for their syn-
chronous counterparts. Necessary conditions for the convergence of linear prob-
lems is given by Bertsekas and Tsitsiklis in [2]. They also provide a rate of
convergence analysis and a comparison between synchronous and asynchronous
algorithms.

Before giving the asynchronous implementation of Algorithm 1, we will in-
troduce the totally asynchronous algorithmic model.

4.1 The Totally Asynchronous Algorithmic Model

Let T = {1,2,...} be a set of times at which one block z; of z is updated by
some processor and T* = set of times at which 2; is updated.
The processor computing s; may not have access to the most recent values

9
of z; in (3). For t € T%, s;(t) is computed using a residual # = Z Ajx; (T;) —b,
j=1

where 7/(t) are times satisfying

0<7j(t)<t—1.
At all times t € T, z; is left unchanged:
zi(t) = zi(t 1), t ¢ T,
or

z(t) =zt —1)+ &) .

4.2 Asynchronous Implementation

We will now give the main algorithm for the asynchronous implementation of
Algorithm 1 on an MPMD machine with p = g+ 1 processors. In the algorithm,
processor py is used as the master and processors p;, ¢ = 1,2,..., g act as slaves.

Send and Receive are communications with the master. Broadcast is done
by the master processor, and Gsum is a global vector sum operation executed
on all the processors.

Algorithm 2
Initialization:
Subdivide A into g blocks.
Choose 0 < w; < 2,1=1,2,...,9.
Choose z;(0),i =1,...,g9, z(0) = >9_, :(0).
Compute r(0) = Az(0) — b.
Initiate each processori=1,...,9:
Receive(A;, po).
Receive(Z;(0), po).
Receive(w;, po)-
Preprocess.
Broadcast(r(0)).
Loop :
Let t be a global counter of corrections, and let ti and t} be two
consecutive elements in 7.
t=0.
while not termination do
if slave then
Solve for s;:
min{||A;s; +r(t)||ar : 5s € R™}.
Update Z; : T; = T; + w;5;.
Send(Aisi,pO).
Receive(r(t}),po).
else {master}
Receive(A;s;,p;). {s; computed using r at t¢}
r(t+1) =r(t) + wid;s;.
Check for termination.
if termination then
Gsum(Z;).
else
t=t+1;
Send(r(t),p;). {th =t}

5 Experiments

In this section we will present the results of some numerical experiments. The
first four experiments illustrate the deteriorating convergence when one passes
from sequential to parallel implementation, and from few processors to many.
The next two experiments aim at decreasing the contamination of the residual.

Test problems used in the experiments are taken from Harwell-Boeing sparse
matrix test collection. Groups are formed by taking blocks of consecutive
columns. If not otherwise stated g is 30. Each subproblem is solved using
QR factorization and SNE. Both parallel and sequential implementations are
done on Intel Paragon. Static assignment of blocks to processors is chosen to
avoid the overhead of assignments during the computation phase. The number
of processors p reported is the number of slave processors.

Before the asynchronous implementations, in the first two experiments, we
simulate the behavior of the residual on the master processor for different num-
ber of slaves where g > p. A random block order is used for the updates in the
simulation giving an effect of asynchronism.

We first keep the residual ”fixed” for p-updates, i.e., # = r*+¢/9 in (4) and
¢ = p(i//p). Here, c is a counter and we assume for simplicity that g mod p =
0. This routine simulates Gauss-Seidel sweeps with Jacobi iteration on blocks
of g/p block components. When p = g, we get pure Jacobi. We stated in
Section 2 that in Algorithm 1 we have a block Gauss-Seidel iteration which can
be converted to Jacobi type iteration by taking # = r*, and the intermediate
residual is a combined Jacobi and Gauss-Seidel result. We see in Figure 1
that the resulting residual from the experiment is between sequential Gauss-
Seidel and Jacobi methods acknowledging our statement. Increased number of
processors results in increased deterioration of the convergence of the residual.

In the second experiment, we keep a ”time lag” of p, where # = rk+(i=p)/9 in
(4). This is the simulation of asynchronous Gauss-Seidel method on p processors,
where the processors update the residual on the master in a fixed order. The
same block assignment as in the former case is used. Again, increased number
of processors result in increased deterioration as seen in Figure 2. To state this
result in a more formal way, let

p(p) = suplimsup ||z* — z*||'/*
z0 k—oo
be the average rate of convergence using p processors. A minor modification of

Elsner, Neumann and Vemmer [5] gives

plp+1) > p(p) -

Figure 3 depicts the main result of [10]. Here, a totally asynchronous im-
plementation on p = g processors is compared to sequential Gauss-Seidel and
Jacobi methods. The figure shows the deterioration of convergence when one
moves from sequential Gauss-Seidel and Jacobi to totally asynchronous imple-
mentation.

To confirm the simulation result from the second experiment we implement
totally asynchronous iterations on different number of processors p, p < g and
g mod p = 0. We see in Figure 4 that for some small number of processors the
rate of convergence lies in the neighborhood of sequential Gauss-Seidel method.
If we increase the number of processors further to make better use of the avail-
able CPU power, the rate of convergence is degraded. This is in accordance
with the simulation results in Figure 2.

The above experiments are done on homogeneous processors where the com-
puting speed of each processor is nearly the same. When we use heterogeneous
processors with computing speeds varying between approximately 1-7 the de-
terioration in the residual is damped (Figure 5). However, the improvement in
the convergence rate is not significant.

We need to consider the effect of dependence between blocks on the con-
vergence rate in the asynchronous implementation. Let E; = {j| block 7 and
block j have nonzero elements on the same row positions} be called the essen-
tial neighbors [8] of block i. Let t1,ts € T* be consecutive times of update from
block i. When we compute

min{||4;s; + r(t1)) s},
r(ta) =r(ta — 1) + w; A;s;

at time to, ATr(t5) = 0 unless any block j,j € E; has sent an update between
t1 and t3. In the next experiment, to avoid zero corrections, block 4 is forced
to wait until an update from block j,j € E; arrives at the master. In Figure
6, the curve marked WFE illustrates the implementation where the processors
wait for their essential neighbors. We see a decrease in the deteriorations and
as a result an improvement in the convergence.

log]Irl|

.
0 200 400 600 800 1000 1200
nr. of updates

Figure 1: Residual ”fixed” for p updates. (1): Gauss-Seidel (p = 1)
(2:p=2 3):p=3 4):p=6 (5):p=10 (6): p=15 (7): p=30
(8): Jacobi

2

10

log]Irl|

. . . .
0 200 400 600 800 1000 1200
nr. of updates

Figure 2: ”Time lag” of p. (1): Gauss-Seidel (p=1) (2): p=2 (3): p=3
4):p=6 (5):p=10 (6):p=15 (7):p=30

6 Open Problems

6.1 The Effect of Synchronization

Elsner, Neumann and Vemmer [5] showed that increasing the number of pro-
cessors means that older information is used to calculate any new iterate. This
reduces the rate of convergence. They assume that the order of the blocks is
fixed. In their experiment there is a time-lag of p on the updates. To avoid
that too old information is used to update the residual in the asynchronous
implementation we introduce a limit (Np) on the magnitude of time-lag, i.e.,
t— Np < T;(t) < t—1for all i and j, and all t > 0,¢ € T:In [2], this is
called a partially asynchronous iterative method. We use p = g processors in
a heterogeneous environment. When each processor has updated the residual a
fixed number of times (IV), we flush the queue at the master and broadcast the

log]lr|

.
0 200 400 600 800 1000 1200
nr. of updates

Figure 3: Sequential versus totally asynchronous. (1): Gauss-Seidel (2): Jacobi
(3): Totally asynchronous

logr]|
Py
1S

.
0 200 400 600 800 1000 1200
nr. of updates

Figure 4: Totally asynchronous on p processors. (1): p=6 (2): p=3
(3): Gauss-Seidel (4): p=10 (5): p=15 (6): Jacobi (7): p=30

new residual. Letting N = 1,2, 3, we observe that N = 1 gives (approximately)
Jacobi’s method and N > 3 gives (approximately) totally asynchronous method

(Figure 7).
6.2 The Effect of a Relaxation Parameter

Let t; and 5 be two consecutive updates of block i. At to the correction s;(t1)
is the solution of:

min{|[Asi +r(t1))lm} -

The updated solution and residual are:

z(te) = x(ta — 1) + w;8;(t1), r(t2) =r(te — 1) + w;Aisi(t1) .

For t3 > t; old information is contaminating the residual.

10

log]lr|

0 200 400 600 800 1000 1200
nr. of updates

Figure 5: Homogeneous versus heterogeneous processors. (1): p = 30 identical
processors (2): p = 30 processors with computing speed varying with 1-7

log]ri]

.
0 200 400 600 800 1000 1200
no. of updates

Figure 6: ” Wait-for-essential-neighbor” (WFE) versus totally asynchronous.
(1): WFE on p = 30 processors (2): Totally asynchronous on p = 30 processors

It is observed in the sequential case that the residual ||7(¢)||s is monotoni-
cally decreasing for SOR method, and ||r(t)||ar < ||r(t — g)||a for Jacobi [4]. In
our experiment we choose w; such that ||7(t2)||a is minimized. The values of s;
that give (A;s;)T Mr > 0 are discarded. Otherwise, w; is chosen as

_ —(Aisi)" Mr

= U T 0<w <2 .
' lAisill3; '

As seen in Figure 8, this choice for w; reduces the effect of old information on
the residual.

11

log]lr|

10'4 L L L L L
0 200 400 600 800 1000 1200
nr. of updates

Figure 7: Synchronization after NV updates versus totally asynchronous.
(1): N=1 (= Jacobi) (2): N=2 (3): N=3 (4): Totally asynchronous

log]lr|

. . . .
0 200 400 600 800 1000 1200
nr. of updates

Figure 8: Asynchronous SOR. (1): w =1.0, (2): Line search

7 Concluding Remarks

Elsner, Neumann and Vemmer [5] have proved, under certain assumptions, that
increasing the number of processors decreases the convergence rate, since the
effect of old information is increased. This is shown in our implementation of
asynchronous iterations on linear least squares problems.

We do some experiments to illustrate the deteriorating convergence, and at-
tempt to decrease the effect of old information. First, we check the effect of
heterogeneous processors. We find out that though the deterioration of conver-
gence is damped, the damping effect is not significant.

The role of essential neighbors is also a factor that has to be taken into
consideration. In the least squares problems the set E; = {j | block ¢ and block

12

j have nonzero elements on the same row positions} is a characterization of
essential neighbors of block i. Let t1,t2 be consecutive times of update from
block . When we compute a correction on block i using the global residual
at time t; and update the residual again at time %, the correction computed
using this new residual will be zero unless a block 7,57 € E; has sent a correction
between t; and t2. Groups are thus forced to wait before receiving a new
residual until a correction from their essential neighbors is received. The result
is an improvement in convergence and degradation in the deteriorations.

We want to determine the data that should be discarded. In order to achieve
this, we choose w as a line search and prevent the contamination of the residual
by old data.

Another attempt to decrease deteriorations in the residual is the introduction
of synchronization into the system. It is seen that synchronization after an a
priori chosen number of corrections on the solution vector lessens the effect of
old information and improves the convergence rate. However, the effect of the
synchronization decreases rapidly with the ”age” of the updates.

To our knowledge, the results of using asynchronous iterations on linear least
squares problems have not been discussed in literature. We have introduced two
open problems: the effect of a relaxation parameter and synchronization. So far
there is no theory to characterize old information, only heuristics. A relaxation
parametercan be used to reduce the deteriorations. Synchronization is needed
in many cases, but there is no theory to support when to synchronize. Synchro-
nization after only one or two updates from each block has a damping effect on
the old information, but later synchronizations do not cure the deteriorations.

References

[1] G. M. Baudet, Asynchronous Iterative Methods for Multiprocessors, J. of
the ACM 25, pp. 226-244 (1978).

[2] D. P. Bertsekas, J. N. Tsitsiklis, Parallel and Distributed Computation,
Numerical Methods, Prentice-Hall Inc., Englewood Cliffs, NJ (1989).

[3] A. Bjorck, Numerical Methods for Least Squares Problems, SIAM,
Philadelphia, PA (1996).

[4] J. E. Dennis, Jr., T. Steihaug, On the Successive Projections Approach to
Least Squares Problems, STAM J. Numer. Anal 23, pp. 717-733 (1986).

[5] L. Elsner, M. Neumann, B. Vemmer, The Effect of the Number of Pro-
cessors on the Convergence of the Parallel Block Jacobi Method, Lin. Alg.
Appl 154-156, pp. 311-330 (1991).

[6] J. A. George, M. T. Heath, Solution of Sparse Linear Least Squares Prob-
lems Using Givens Rotations, Lin. Alg. Appl. 34, pp. 69-83 (1980).

[7] P. Kolm, P. Arbenz, W. Gander, Generalized Subspace Correction Meth-
ods for Parallel Solution of Linear Systems, Tech. Rep. TRITA-NA-9509,
C2M2, Nada, KTH, Sweden (1995).

[8] S. A. Savari, D. P. Bertsekas, Finite Termination of Asynchronous Iterative
Algorithms, Parallel Computing 22, pp. 39-56 (1996).

[9] S.J. Wright, Primal-Dual Interior-Point Methods, STAM, Philadelphia, PA
(1997).

13

[10] Y. Yalcinkaya, Asynchronous Solution of Linear Least Squares Problems
Using Generalized Group Iterative Methods, Master’s thesis, University of
Bergen, Norway (1995).

14

