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Preface

CALCO brings together researchers and practitioners to exchange new results
related to foundational aspects and both traditional and emerging uses of al-
gebras and coalgebras in computer science. The study of algebra and coalgebra
relates to the data, process and structural aspects of software systems.

This is a high-level, bi-annual conference formed by joining the forces and
reputations of CMCS (the International Workshop on Coalgebraic Methods in
Computer Science), and WADT (the Workshop on Algebraic Development Tech-
niques). The first CALCO conference was held in Swansea, Wales, in 2005; the
second takes place in Bergen, Norway.

The CALCO Young Researchers Workshop, CALCO-jnr, is a CALCO satel-
lite event dedicated to presentations by PhD students and by those who com-
pleted their doctoral studies within the past few years. Attendance at the work-
shop is open to all - it is anticipated that many CALCO conference participants
attend the CALCO-jnr workshop (and vice versa).

CALCO-jnr presentations have been selected on the basis of submitted 2-
page abstracts, by the CALCO-jnr PC. This booklet contains the abstracts of
the accepted contributions.

After the workshop, the author(s) of each presentation will be invited to
submit a full 10-15 page paper on the same topic. They will also be asked to
write (anonymous) reviews of papers submitted by other authors on related
topics. Additional reviewing and the final selection of papers will be carried out
by the CALCO-jnr PC. The volume of selected papers from the workshop will
be published as a Department of Informatics, University of Bergen, technical
report, and it will also be made available through the open access database
http://bora.uib.no/. Authors will retain copyright, and are also encouraged
to disseminate the results reported at CALCO-jnr by subsequent publication
elsewhere.

The CALCO-jnr PC would like to thank the CALCO 2007 local organisers
for their efforts to make this event possible. The support of all sponsoring in-
stitutions is gratefully acknowledged: Department of Informatics, University of
Bergen, Bergen University College, Research Council of Norway, City of Bergen,
and IFIP WG1.3 on Foundations of System Specification.

August 2007 Magne Haveraaen
John Power

Monika Seisenberger
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The Microcosm Principle

and Concurrency in Coalgebras

Ichiro Hasuo1,4, Bart Jacobs1,3, and Ana Sokolova2

1 ICIS, Radboud University Nijmegen, the Netherlands,
2 University of Salzburg, Austria,

3 Technical University Eindhoven, the Netherlands
4 RIMS, Kyoto University, Japan,

{ichiro,bart}@cs.ru.nl, anas@cs.uni-salzburg.at

Our questions. Compositionality is an important property in modular verifi-
cation of complex component-based systems. It is usually expressed as follows:
x ∼ x′ and y ∼ y′ implies (x ‖ y) ∼ (x′ ‖ y′).

When we take final coalgebra semantics as behavior of systems

FX FZ

X
beh(c)

c

Z

∼= final

the following comes natural as a “coalgebraic presentation of compositionality”.
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Here arise some questions which we believe are important for our mathematical
understanding of parallel composition, or concurrency, of systems.

– The operator ‖ on the left gives us composition of systems, being an operation
on the category CoalgF . When is it available?

– The other ‖ appearing on the right has a different domain: it is an operation
on the final coalgebra Z! In this way we observe
• the same algebraic structure (or algebraic “theory”) which concerns the

operation ‖ and possibly some axioms like associativity,
• interpreted on two different levels—on a category CoalgF and on its

object Z ∈ CoalgF —in a nested manner.
What is the mathematical principle behind this?

In the sequel we shall sketch our first answers given in our preprint [2]. Our
title refers to the phenomenon of nested algebraic structures which is called the
microcosm principle [1].

Parallel composition of coalgebras. The “outer” composition (of coalge-
bras) is described as a bifunctor CoalgF ×CoalgF → CoalgF . Such an oper-
ation is usually denoted by ⊗ (rather than ‖) and called a tensor product : we
follow this tradition. Composition of systems is most of the time associative—
(c⊗ d)⊗ e ∼= c⊗ (d⊗ e)—making ⊗ an associative tensor.
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Theorem 1 Let C be a base category equipped with an associative tensor ⊗;
and a functor F : C → C be equipped with the “synchronization” natural trans-

formation FX ⊗ FY
syncX,Y

−→ F (X ⊗ Y ) compatible with associativity in C. They
induce a canonical associative tensor ⊗ on CoalgF .

The final coalgebra carries an “inner associative tensor” ‖ on Z, induced on
the following left. It is associative in the sense of the diagram on the right.

F (Z ⊗ Z) FZ (Z ⊗ Z)⊗ Z
∼=

‖⊗Z

Z ⊗ (Z ⊗ Z)
Z⊗‖

Z ⊗ Z
‖

Z ⊗ Z

ζ⊗ζ = syncZ,Z◦(ζ⊗Cζ)

‖
Z

∼= ζ

Z ⊗ Z
‖

Z

For such compositions we have the compositionality result (1) for free. ⊓⊔

When F = Pω(A× ) for which a coalgebra is a finitely-branching LTS, we can
realize all of the ACP/CCS/CSP-style synchronizations by taking different sync.

The microcosm principle. The microcosm principle is exemplified by the
sentence: “a monoid is defined in a monoidal category”. What we saw above is
one instance of such phenomena. We pursue a mathematical formulation of this
principle for general algebraic theories. In its course we use 2-categorical notions
since a 2-category (“categories in a category”) well accommodates microcosm
phenomena.

For our purpose, a Lawvere theory L is an appropriate categorical presenta-
tion of an algebraic theory. An L-category—a category with the L-structure—is

a product-preserving pseudo-functor L
C
→ Cat. It is “pseudo” because equations

hold only up to isomorphism. Now an object in X ∈ C which has the “inner”

L-structure is defined to be a lax natural transformation L

1

C

⇓χ Cat . The com-

ponent χ1 : 1 → C specifies the object X; the operations in L are interpreted
by the mediating 2-cells of lax naturality.

In this general setting we can state the compositionality (1) as follows. It
subsumes Theorem 1.

Theorem 2 For an L-category C and F : C → C being a lax L-functor, the

functor CoalgF

beh
−→ C/Z as a morphism of L-categories. ⊓⊔

In [2] we also present this framework in less categorical terms, presenting an
algebraic theory concretely by a pair (Σ,E) of operations and equations.
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A Coalgebraic View on Bi-Infinite Streams

Alexandra Silva

CWI, The Netherlands
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Bi-infinite streams arise as a natural data structure in several contexts, such
as signal processing [1], symbolic dynamics [2], (balanced) representation of
real/rational numbers [3] or study of sets invariant under shift transformation [4].

In this paper, we will present a coalgebraic view of the set of bi-infinite
streams which we shall denote by AZ and is formally defined as

AZ = {σ | σ : Z → A}

We can easily prove that AZ ∼= (A × A)ω and therefore the set AZ is the final
coalgebra for the functor FX = (A×A)×X.

This reflects the fact that one can think about a bi-infinite stream denoted
by (. . . , σ−2, σ−1, σ0, σ1, σ2, . . .), as two infinite streams growing in parallel.

σ0 σ1 σ2 . . .
σ−1 σ−2 σ−3 . . .

Using this observation, and defining a semiring structure on A × A, we could
reuse the calculus developed for streams [5] to deal with the bi-infinite case.

However, is this the only/best way to view bi-infinite streams coalgebraically?
Will this reduction to the infinite case be too restrictive and not allow us to fully
benefit from the structure of bi-infinite streams?

We shall now present another possible representation for bi-infinite streams.
We can see (. . . , σ−2, σ−1, σ0, σ1, σ2, . . .) as an infinite binary tree as follows:

σ0 σ2

σ1

σ0

σ-2 σ0

σ-1

The set TA of infinite binary trees is the final coalgebra for the functor GX =
X ×A×X and as showed in [6], by viewing trees as formal power series a very
simple but surprisingly powerful coinductive calculus can be developed. In this
framework, definitions are presented as behavioural differential equations and
very compact closed formulae can be deduced for (rational) trees. For instance,
in this framework the bi-infinite stream (. . . , 0, 1, 0, 1, 0, 1, 0, 1, 0, . . .) would be
represented by the formula (L + R)(1 + (L− R)2)−1, where L and R represent
the following constant trees.
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0 0

0

0

0 0

1L =

0 0

1

0

0 0

0R =

Note that not all t ∈ TA are representations of bi-infinite streams. However,
we can prove that the subset of TA containing valid representations of bi-infinite
streams is a subcoalgebra of TA and therefore, the existing calculus can be used
to reason about bi-infinite streams.

Further questions still remain to be answered. We would like to classify the
closed formulae that we have for trees in such a way that from its syntax could
immediately be deduced if it is a valid representation of a bi-infinite stream.

We would also like to further exploit a specific class of bi-infinite streams,
the ones which correspond to finite-tailed Laurent series and see if they give rise
to a different type of coalgebra/calculus.
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Categorical Design Patterns

Ondrej Rypacek
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1 Introduction

Design patterns [1] in object-oriented programming (OO programming) describe
good software design practise. A design pattern is a systematic yet informal
description of a recurring design problem with its solution. Unfortunately, most
design patterns are not formalisable in OO programming languages and therefore
have to be implemented over and over again. As a result, their abstract structure
is partially lost. In the following text we outline an approach to semantics of
design patterns in the coalgebraic setting of Category Theory. We observe that
many of the fundamental and most common patterns are encodings of primitive
mathematical notions, which can be directly formalised as language features.
Others are instances and combinations of the fundamental ones. This should
ultimately give rise to an algebra of OO design with well founded mathematical
semantics and provable properties of the programs constructed.

2 Products, Sums and Exponentials

We consider functional objects with local state in a suitable category with enough
structure. Here, object implementations correspond to coalgebras [2, 3] and car-
riers of final coalgebras correspond to abstract object types.

Object-oriented programming is based on the notion of object and main-
stream OO languages lack separate notions of products, exponentials and sums.
These are instead inherent in the complex notion of object and the purpose of
some design patterns is to recover them via encodings. For instance, sums are
defined by the Visitor pattern, which essentially describes the impredicative en-
coding of sums as found in System-F [4]. Likewise for products and exponentials
(Command pattern). We argue that formal products, sums and exponentials are
good formalisations of the essence of the above-mentioned patterns and make
good candidates for becoming primitive in an OO calculus.

The idea of impredicative encoding can be generalised to polynomial functors
to define arbitrary initial algebras conservatively within the OO setting as limits
of large functors [5]. This defines algebraic datatypes in object oriented program-
ming and sets the scene for comparison of functional datatypes and induction
(algebras) on the one hand and objects (coalgebras) on the other.
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3 Composites

Algebraic datatypes and catamorphisms (generic folds) [6] play a central role in
functional programming as they allow one to define recursive tree-like data struc-
tures with functions defined uniformly on them. Likewise, instances of the Com-
posite pattern, roughly speaking, recursive hierarchies of objects with the same
interface but different implementations, play a central role in OO programming
as they model essentially the same.

Formally, the composite pattern can be defined coalgebraically as follows. We
formalise the shape of an OO composite by a polynomial functor C. Given a be-
haviour functor B, which captures the interface of each object in the composite,
we observe that a composite is defined by a natural transformation δ : CB→ BC
in the following situation.

νB BνB-
out

CνB CBνB-Cout

?

φ
Bφ��	

BCνB
δνB@@R

The universal arrow φ into the terminal coalgebra defines the joined constructor
of the various kinds of objects in the composite structure. Alternatively, we may
consider putting the behaviour B directly on the algebraic datatype, µC. This
gives rise to the following situation.

µC BµC-
ψ

CµC CBµC-Cψ

?

in
Bin��	

BCµC
δµC@@R

Here, the universal arrow ψ defines an implementation of behaviour B on struc-
tures with shape C. We observe the exact situation occurs in categorical seman-
tics as the adequacy of operational and denotational semantics [7]. We conclude
that these two approaches to defining functions on recursive structures are es-
sentially the same.

4 Conclusion and Future Work

Our work makes a contribution to formalisation of OO programming and its re-
lation to functional programming. We formalise the informal Composite pattern.
We define the notion of object structure with a common interface and formalise
the relation of OO composites to functional traversals of datatypes. We observe
that the relation of functional and OO programming is similar to the relation
of denotational and operational semantics and adopt the notion of adequacy to
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formalise this observation. This allows us to view OO composites as catamor-
phisms and vice versa. We believe this also opens new possibilities in reasoning
about the so-called expression problem [8].

In the future, we want to generalise the approach beyond polynomial func-
tors to cover structures corresponding to nested datatypes and possibly indexed
families of datatypes. This would allow us to capture formally a much wider
range of OO programs defined as hierarchies of nonuniform objects.
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By a substructural logic, we understand an extension of the basic sequent
calculus FL - a sequent system obtained by deleting contraction, exchange and
weakening rules from Gentzen’s sequent calculus LJ. Substructural logics include
well-researched logics, such as many-valued logics, fuzzy logics, relevance logics,
superintuitionistic logics, etc. By the Lindenbaum-Tarski method, we usually
define classes of residuated lattices having a constant 0 as algebraic counterparts
of substructural logics. Therefore, algebraic techniques are often used and have
generated several results (see [4]).

In modal logic, however, relational semantics introduced by Kripke are also
attractive with their intuitive character and connection with applicative struc-
tures like automata or transition systems in computer science, although algebraic
counterparts, like classes of BAOs [1], also exist. Stone’s representation theorem
provides a bridge between algebraic semantics and relational semantics. For ex-
ample, it is known that relational completeness results for canonical modal logics
can be immediately proved using Stone’s duality.

In author’s Master’s Thesis [7], a relational semantics for a large class of sub-
structural logics: distributive substructural logics (DFL logics) was introduced
via Stone’s duality. These logics are including well studied logics like relevance
logics or superintuitionistic logics which have their own relational semantics,
Routley-Meyer semantics or Kripke frames for intuitionistic logic, respectively.
They can be naturally seen as special cases of our relational semantics.

The main results we obtained can be summed up as follows:

– For all basic extensions of DFL, we identified corresponding frame conditions
and proved completeness results.

– We extended Stone’s duality to duality between DFL-algebras and DFL-
frames.

– We have obtained general completeness result: every DFL logic is complete
with respect to a class of descriptive frames.

– We have studied the categorical duality between DFL-algebras and descrip-
tive frames.

– Finally, we have found the topological characterization of descriptive frames.
This is a natural generalization of similar characterization for intuitionistic
[2] or relevance [6] frames: differentiation, tightness and compactness.
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Distinct points of our approach from other authors, like [3] or [5], are the
following:

– Well-researched relational semantics, for example, for relevance logics or su-
perintuitionistic logics, can be thought of as specializations of our semantics.

– Our relational semantics consist of just one underlying set and just one
ternary relation.

– Moreover, the single ternary relation provides an interpretation for almost
all connectives, that is, ∨, ∧, ◦, \ and /.

Through our relational semantics, we have obtained new approaches for re-
search of substructural logics. For example, many modal techniques (eg. [1] or
[2]) will be applicable in substructural logics.
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In this paper we consider topological spaces and open-continuous maps from
a coalgebraic perspective. Our main result is that the coalgebraic modal lan-
guage, defined in the style of Moss [2] has the same expressive power as the
basic modal language with it’s standard topological interpretation.

We will consider topological spaces for the following so-called filter functor
defined in [4].

Definition 1 Let f : A → B be a map and F be a filter over A, then by f(F)
we denote the following family of subsets of B, f(F) = {f(W )|W ∈ F}.

Let ↑f(F) denote the filter generated by f(F), so ↑f(F) = {V | there is
U ∈ f(F) such that U ⊆ V }.

Definition 2 Define the filter functor Φ : Set −→ Set, by putting Φ(A) =
{F|F is a filter over A} and for a morphism f : A → B let Φ(f) : Φ(A) → Φ(B)
be the function associating with every filter F ∈ Φ(A), the filter ↑f(F).

Definition 3 Given a set functor F , the relation lifting F (R) of R is defined
as the image of F (R) under the unique map from F (R) to F (A) × F (B) given
as the pair (F (π1i), F (π2i)), see the diagrams below:

A B F (A)× F (B)

A×B

π2

<<zzzzzzzzz
π1

bbDDDDDDDDD
⇒ F (A) F (B)

R
� ?

i

O

F (R)
F (π1i)

ffMMMMMMMMMM F (π2i)

88qqqqqqqqqq

f

O�
�
�
�
�
�
�

Proposition 4 For a given relation R ⊆ A×B, a pair of filters (F1,F2) (over
A and B respectively) belongs to the relation lifting Φ(R) of R iff

(∀U ∈ F1)(∃U0 ∈ F1)(∃V ∈ F2)(U0 ⊆ U ∧ (U0, V ) ∈ P (R)) (1)

and
(∀V ∈ F2)(∃V0 ∈ F2)(∃U ∈ F1)(V0 ⊆ V ∧ (U, V0) ∈ P (R)) (2)

where P (R) denotes the relation lifting for the power set functor ((U, V ) ∈ P (R)
iff (∀u ∈ U,∃v ∈ V )(uRv)&(∀v ∈ V,∃u ∈ U)(uRv)).
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Definition 5 (Gumm [4]) A Φ-coalgebra (X, τ) is topological iff for every el-
ement x ∈ X and every U ⊆ X we have: U ∈ τ(x) implies, that there exists a
subcoalgebra (X0, τ0) ≤ (X, τ) such that x ∈ X0 ⊆ U .

Fact 6 There is a one-to-one correspondence between topological Φ-coalgebras
and topological spaces.

We give the general definition of finitary coalgebraic modal language and
describe how coalgebras serve as semantical structures for this language.

Definition 7 (Venema[3]) For a given set functor F , finitary F -coalgebraic
modal language ΛF is defined inductively as follows: φ ::= p|¬φ|φ ∨ φ|∇F Σ,
where Σ ∈ F (S) for some finite set S of formulas.

Definition 8 For a given functor F : Set → Set and a F -coalgebra (X, τ), a
coalgebraic F -model based on (X, τ) is a pair (X, υ), where υ : X → F (X) ×
P (Prop) such that π1υ = τ for all x ∈ X.

The semantics for ΛF is given as follows.

Definition 9 We define the truth of formula at a point x ∈ X in the F -
coalgebraic model (X, υ) inductively as follows:
x 
 p iff p ∈ π2υ(x),
x 
 ¬α iff x 1 α,
x 
 α ∨ β iff x 
 α or x 
 β,
x 
 ∇F (Σ) iff (π1υτ (x), Σ) ∈ F (
).

The semantics of the standard modal language on the topological spaces is
defined as follows.

Definition 10 The truth definition of the modal formula at a point x ∈ X in
the topological model (X, Ω, V ) is given in the following way:
x 
 p iff p ∈ V (x),
x 
 ¬α iff x 1 α,
x 
 α ∨ β iff x 
 α or x 
 β,
x 
 ♦α iff x ∈ Cl({y|y 
 α}).

Theorem 11 Over the class of all topological spaces, the language ΛΦ is equiv-
alent to standard modal language.
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The theory of institutions, first introduced by Goguen and Burstall in 1984
([4, 3]), quickly gained ground and proved to be a very useful tool to construct
and reason about logics in a uniform way. Since then, it has found many ap-
plications and has been widely developed. Examples can be found in papers
by Sannella and Tarlecki ([13], [12, chapters 4 and above]), Diaconescu ([1]),
Mossakowski ([7, 8]), and many others.

There are two main ways of moving between institutions, using either insti-
tution morphisms or comorphisms (which were first introduced under the name
“simple maps of institutions” by Meseguer in [6], and then renamed to repre-
sentations by Tarlecki in [15]). Informally, morphisms express how a “richer”
institution is built over a “simpler” one; comorphisms express a relation going
the other way round: how a “simpler” institution can be encoded in a “richer”
one. These intuitions show that there is some duality between the two con-
cepts. A very thorough and systematic paper dealing with various properties of
(co)morphisms is [5].

In my work, I am going to analyse the relationships between limits and col-
imits of diagrams built from institutions linked by morphisms and comorphisms.
As mentioned above, morphisms and comorphisms may seem as dual concepts at
first. However, intuitively similar universal constructions associated with mor-
phisms and comorphisms, turn out to be rather different.

The main motivation behind this work takes source in heterogeneous speci-
fications [9, 16], which are built over a number of institutions linked with mor-
phisms or comorphisms. It is sometimes important to have the underlying dia-
gram of institutions represented in a uniform way, using only morphisms or only
comorphisms; thus the need to translate one into another. Also, given such a
diagram, it may be useful to represent a family of models of a heterogeneous dis-
tributed specification, or specifications themselves in a (co)limiting institution.
Limits/colimits of institutions haven’t proved to be the best tool for “putting
institutions together” (see for example [2, 11]), however it may be suitable to
use them as concise representations of whole diagrams of institutions. This ap-
proach is different from the one taken by, for example, Mossakowski ([8, 10])
and Diaconescu ([1]), where, over a diagram, a corresponding Grothendieck in-
stitution is built. Using this technique, institutions are put into one, essentially
“side by side”, without much interaction. Considering (co)limits, we are after
a more compact representation, where some combination of signatures, models
and sentences of the institutions involved takes place.

Taking morphisms or comorphism, we can build two categories: INS and
coINS, with institutions as objects. It has been proved long ago ([14]) that
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the category INS is complete. It can be quite easily seen and proved, that the
construction of products and equalizers (and hence limits of arbitrary diagrams)
works in a “component-by-component” manner—that is, independently on each
of the 3 parts of a morphism (namely, a functor between signature categories
and natural transformations between model and sentence functors). The con-
struction of limits in coINS is almost the same as above, and this category is
also complete.

The case of colimits is not as straightforward. First of all, it turns out that
both categories (INS and coINS) are not cocomplete. This, however, is due to
purely set-theoretical problems with the size of components of the institutions
that would be the colimit. Restricting attention to institutions, whose signatures
form a small category, solves the problem. However, the construction here cannot
be done for each component separately as before. The problem lies in defining
the model and sentence functors on morphisms of signatures. To do this properly,
when constructing a model category (or sentence set) for a given signature, we
have to take into account all signatures, from which morphisms exists to the
considered one. The definition of the satisfaction relation is also far from trivial.
Firstly, I will explain in more detail the problem with constructing the colimits,
and then show how the construction of arbitrary coproducts and coequalizers
looks.

As the concepts of an institution morphism and comorphism are largely dual,
a question arises if they can be represented by one another. One way to do that
is by spans of (co)morphisms, as introduced for example in [9]. This enables us to
represent a morphism by two comorphisms, each leading from an “intermediary”
institution, which has signatures taken from the domain of the morphism, and
model and sentence functors taken from the second one. This construction can
be also done the other way round, to replace a comorphism with a span of
morphisms.

Now comes the question: how do (co)limits of diagrams relate to (co)limits
of diagrams built by replacing each (co)morphism by a span of (co)morphisms?
Intuitions behind, for example, a limit in INS and a colimit in coINS may
seem to some extent similar. I will try to answer the above question, show what
difficulties arise when trying to construct a (co)morphism between (co)limiting
institutions, when this is possible and when not. When changing morphisms
into comorphisms, the shape of the diagram changes, hence the “procedure” for
constructing (co)limits changes also; but because the new morphisms are of a
special form, it can be sometimes simplified—I will show how. In general, there is,
however, no simple and straightforward way to translate between limits/colimits
of the two diagrams, which again shows that morphisms and comorphisms are
not really dual. For example, considering a product of two institutions. As there
are no morphisms, there is nothing to change. Now, if we look at the categories
of signatures of the limiting and colimiting institutions, one is a product of
categories, the other one a coproduct. The only reasonable functors that can be
defined are projections from the product to the coproduct. However, this does
not “capture” the whole of the limiting institution.
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We present a three layered completeness result, for the logics/institutions
having the sentences of the form (∀X)e, where e is a sentence constructed from
the atoms of the given logic by means of Boolean connectives. Our study isolates
the particular aspects of the logics from the general ones in order to obtain an
abstract completeness result in three steps.

Firstly, we identify a system of proof rules for the atomic sentences which
constitute the bricks for building sentences in concrete institutions. The results
obtained are institution-dependent, and can not be formulated at the abstract
level.

Secondly, we give generic rules that deal with Boolean connectives and prove,
institution-independent, the soundness and completeness of the system of proof
rules obtained by adding the specific rules to the general ones. For this we use the
forcing techniques, a method of construction of models satisfying some properties
by means of consistency results.

One important contribution is the introduction of the notion of forcing prop-
erty in the institution-independent model theory. The forcing construction in set
theory was introduced by Cohen [3], has led to the solution of many classical
problems by means of consistency results. A. Robinson [5] developed an analo-
gous theory of forcing in model theory, and Barwise extended Robinson’s theory
to infinitary logic and used it to give a new proof of Omitting Types Theorem.
We show that this technique is also suitable for this framework. In the case of
institutions admitting also quantifications the definition of forcing property is
the same and the definition of forcing relation and all results regarding generic
models are naturally extended.

Thirdly, we give proof rules that deal with universal quantifications and prove
a completeness result for the institutions having the sentences constructed from a
class of quantifier-free sentences by means of universal quantification over a class
of signature morphisms. This class of sentences may be either all the sentences
constructed from the atoms of the institution by means of Boolean connectives,
or all the sentences of the form H ⇒ C, where H is a finite conjunction of atoms
and C is an atom of the given logical system. In [2] is considered the second
case.

There are several aspects that motivate and justify our study. One of them is
the importance for model theory. The completeness results may be obtained in
the same way as sentences are constructed. In our case, starting from the atoms
of the institution under investigation, the results are institution-dependent. At
the opposite side, for the sentences constructed from the atoms by means of



16 Daniel Găina

Boolean connectives, the proof rules and the results are institution-independent.
The proof rules that deal with universal quantified sentences, namely the Sub-
stitutivity rules, are given at the abstract level and the completeness for the
system of proof rules obtained by adding the Substitutivity rules to the proof
rules given for the second layer is institution-independent.

This result has also great significance for computer science. Modern specifi-
cation languages (such as CafeOBJ [4], CASL [1], Maude) are rigorously based
on logic, in the sense that each feature and construct in a language can be ex-
pressed within a certain logic underlying it. Completeness results are essential
for an operational semantics of executable specification languages. In the context
of proliferation of a multitude of specification languages, these abstract results
provide complete systems of proof rules for the logical systems underlying the
languages.

The present contribution sets a general framework and incorporates many
examples. It introduces new techniques, such as forcing technique, in institutional
model theory and exploits many notions related to this field, yielding to a very
general completeness result which shows the connection between the structure
of the sentences and the structure of the proof of completeness.
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One of the uses of algebraic specifications is to specify, verify and
understand programs. This contribution presents a general framework
enabling the use of programs as model categories in institutions. It shows
how, given any programming language (over an arbitrary signature) and
any compiler (model algebra), we have categorical constructions appro-
priate for representing and reasoning about programs written in the lan-
guage. The constructions are quite general and are not restricted to a
specific programming paradigm.

We show how we can represent concepts such as data structures, data
invariants and equivalence relations (equality). Together with the notion
of encapsulation, we get full data abstraction, taking us from a program
category with only products and a (non-trivial) sum object, to a complete
and cocomplete category for the same programming language constructs
and base signature.

The concepts can be considered at the purely syntactic level (gen-
erated from the programming language), or at the semantical level (as
interpreted by the compiler), or at any intermediate level, as given by al-
gebraic specifications of the base signature. This allows us to control the
legal interpretations (compiler correctness) of the signature using stan-
dard algebraic techniques.

In addition, we will show how quantitative properties of programs,
such as runtime and memory consumption, are captured in this setting.

Seen together, this gives us a basis for reasoning about meaning (se-
mantics) and properties (complexity) of programs at a mathematically
sound and highly abstract level.

The work presented here is illustrated through two simple program-
ming languages, showing how functional and imperative programs can be
treated within the framework.
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Distributed applications such as flight booking systems, web services,
electronic payment systems such as the EP2 standard [1], require parallel
processing of data. Consequently, such systems have concurrent aspects
(e.g. deadlock-freedom) as well as data aspects (e.g. functional correct-
ness). Often, these aspects depend on each other.

In [12], we designed the language Csp-Casl, which is tailored to the
specification of distributed systems. Csp-Casl integrates the process al-
gebra Csp [4, 13] with the algebraic specification language Casl [10, 2].
Its novel aspects include the combination of denotational semantics in
the process part and, in particular, loose semantics for the data types
covering both concepts of partiality and sub-sorting. In [3] we applied
Csp-Casl to the EP2 standard and demonstrated that Csp-Casl can
deal with problems of industrial strength.

The combination of process algebra and algebraic specification raises
various integration issues. In [12] we identified four basic integration prob-
lems, illustrated them by prototypical examples and showed how Csp-
Casl copes with them. Here, we develop theorem proving support for
Csp-Casl by translating Csp-Casl specifications into the input language
of the already established tool Csp-Prover [5, 6, 8, 7]. Csp-Prover is based
on the interactive theorem prover Isabelle [11]. Part of this translation is
carried out by the tool HETS [9]. Fig. 1 shows the overall architectural
concept for Csp-Casl-Prover.

Concerning tool support, the above introduced basic integration prob-
lems, which lead to challenges for integrated theorem proving. At the cur-
rent state of our project, we solved these challenges for the prototypical
examples stated in [12]. As simple as they are, they capture the very na-
ture of the integration problem between processes and data. It turns out
that a systematic analysis of these specifications leads to a set of automat-
ically provable theorems. With these theorems available, reasoning about
the behavioural aspects of a Csp-Casl specification becomes as easy (or
challenging) as reasoning on data and processes separately, where rea-
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Fig. 1. Architecture of Csp-Casl-Prover.

soning on processes usually depends on theorems concerning data. This
view is justified by theoretical results on the Csp-Casl semantics stated
in [12]. Fig. 2 shows the prototypical structure of an Isabelle theory file.

The next steps in our project will be to gain more experience with our
concept of integrated theorem proving, e.g. by analysing the Csp-Casl
specifications of the EP2 system [3], and to implement Csp-Casl-Prover.

Hets Translation of CASL

Alphabet Construction

Integration Theorems

Data Theorems

Process Theorems

To be automatically
generated by CSP-CASL

Application dependent

Fig. 2. Prototypical Structure of a Theory File.
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Abstract. The diversity and heterogeneity of modeling languages make

the needs for formal model speci�cations and automatic model inte-

gration and transformation mechanisms more relevant than ever. These

mechanisms are the corner stones in Model-driven Development, which

is a natural evolutionary step in raising the abstraction level of program-

ming languages. In this talk, we propose a generic formalism, Generalized

Sketches, for specifying modeling languages and their transformations.

1 Model-driven Development (MDD)

MDD is a software development process in which modeling, transformations
and automatization of model transformations are important issues. In MDD, an
application is built by working at the model level. The process starts by speci-
fying an abstract and formal (diagrammatic) model which is independent of the
application's platform, i.e. the implementation technology, design, programming
language ... etc. This kind of model is referred to as Platform Independent Model
(PIM) [1]. In PIM, one can specify the business logic of the application without
restriction to a special system design.

The next step in MDD consists of specifying a transformation for transform-
ing the PIM into a (set of) Platform Speci�c Model(s) (PSM). PSMs are also
formal models, but they are restricted to a speci�c implementation technology
and programming language; like OO-design or relational schemes.

The last step considers transforming the PSMs to application code. There
are many tools that support this step, but existing tools only allow developers
to choose among a prede�ned set of transformation de�nitions, for example,
transforming UML class diagrams to Java, C++, SQL code ...etc.

The challenge in MDD is in �nding a formalism for specifying the mod-
els and choosing mechanisms for de�nition of (and automatically execution of)
transformations between those models.

2 Generalized Sketches (GS)

GS is a graph-based speci�cation format that borrows its main ideas from both
categorical and �rst-order logic, and adapts them to software engineering needs
[2]. The claim behind GS is that any diagrammatic speci�cation technique in
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software engineering can be seen as a speci�c instance of the GS speci�cation
pattern. GS is a pattern, i.e. generic, in the sense that we can instantiate this
pattern by a signature that corresponds to a speci�c speci�cation technique, like
UML class diagrams, ER diagrams or XML. A signature is an abstract structure
consisting of a collection (or a graph) of predicate symbols with a mapping
that assigns a shape (or an arity) to each predicate symbol. A Σ − sketch is
a graph with a set of diagrams labeled with predicates from the signature Σ
[3]. Diagrams drawn using a speci�c speci�cation technique, will appear as a
(possibly ambiguous) visualization of a sketch which is parameterized by the
corresponding signature Σ.

Thus we claim that GS can be used as a standard notation for representing
both the syntax and the semantics of diagrammatic speci�cation languages, as
the syntax and in most cases also the semantics of GS is mathematically well-
de�ned and unambiguous.

3 Generalized Sketches and MDD

As mentioned above, GS can be used to specify modeling languages and transfor-
mations between them. Since GS is a generic speci�cation format, it can be used
to specify PIMs, PSMs and the transformations between them. Also by regard-
ing programming languages as modeling languages, one can use the following
generic mechanism for transformation between PIMs, PSMs and code.

Models M that are speci�ed by a given modeling language ML must conform
to the metamodel MM of ML. MM is considered as a speci�cation technique
which corresponds to a (graphical) signature ΣML in GS, i.e. MM ∼= ΣML [4].
Having abstract de�nitions of signatures (or metamodels,) say MM1 and MM2,
a relationship or transformation between them can be de�ned as a morphism
rel : MM2 →MM1 from the target metamodel MM2 to the source metamodel
MM1 (see the �gure.) Then any model M1 conforming to (i.e. which is an
instance of) MM1 can be transformed automatically to a model M2 conforming
to MM2 by computing the pullback (M2, i2, rel

*) of the sink (MM1, i1, rel)
[5]. The underlying category of the models and metamodels is GRAPH and
thus the pullback exists. The application of the pullback construction opens for
automatization of the transformation as it's needed by MDD [6].

M1

i1

��

M2
rel*oo

i2

��
MM1 MM2

reloo

4 Tools

By developing tools that support GS as a generic pattern for specifying and
developing diagrammatic speci�cation techniques we can prove and exploit the
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practical value of GS in all aspects of (meta)modeling and MDD from transfor-
mation and integration to decomposition and code-generation.

The transformation de�nition in most existing transformation tools is com-
posed of a set of transformation rules that de�ne how elements or constructs
from a source model can be transformed to a target model [1]. These rules are
restricted to element-wise transformations and in the best case to binary rela-
tions between elements. While in the GS methodology, a transformation is a
morphism capable of transforming structures and relationships spanning over
many (meta)model elements. Other drawbacks of the methodologies used today
are that transformation rules are only based on heuristics �they must be de-
�ned and hard-coded for each two metamodels, and you are not guarantied the
existence of compositionality and associativity between rules.

Our tool will be used to design signatures corresponding to existing speci�ca-
tion techniques, like UML class diagrams and ER diagrams. Designing signatures
for existing modeling languages (the so-called �sketching� or �formalizing� in [3])
involves exhausting exploration of the syntax and semantics of those languages
to �nd the adequate set of predicates; like total, partial, jointly mono, disjoint-
cover ... etc needed to express all properties that can be expressed by them.
Then, preferred graphical notations for the predicates can be chosen. (This step
corresponds to the speci�cation of MM1 and MM2 in the �gure.) Diagrams, i.e.
visualizations of sketches, can be drawn using the signatures/speci�cation tech-
niques (this step corresponds to the speci�cation of M1 and M2 in the �gure.)
The tool will also support de�nition of transformation between (meta)models
and automatic construction of pullback.
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Abstract

In [2] we have provided a formal language for specifying contracts, which allows
to write (conditional) obligations, permissions and prohibitions of the di�erent
contract signatories, based on the so-called ought-to-do approach. In such an ap-
proach the above normative notions are speci�ed over (names of human) actions,
as for example �The client is obliged to pay after each delivery�. There, we have
given a formal semantics of the contract language in a variant of µ-calculus, but
we have left the formalization of the underlying action algebra underspeci�ed.

In this paper we introduce a new algebraic structure to provide a well-founded
formal basis for the action-based contract language presented in [2]. Though the
algebraic structure we de�ne is somehow similar to Kleene algebra with tests
[1], there are substantial di�erences due mainly to our application domain. A
�rst di�erence is that we do not include the Kleene star as it is not needed
in our context. A second di�erence is that we introduce an operator in the
algebra to model true concurrency. The main contributions of the paper are:
(1) A formalization of concurrent actions; (2) The introduction of a di�erent
kind of action negation; (3) A restricted notion of resource-awareness; and (4)
A standard interpretation of the algebra over specially de�ned rooted trees.

The algebra of concurrent actions and tests (CAT ) that we present in this
abstract is formed of an algebraic structure CA = (A,+, ·,&,0,1) which de�nes
the concurrent actions, and a Boolean algebra which de�nes the tests. Special
care is taken when combining actions and tests under the di�erent operators.

The algebraic structure CA is de�ned by a carrier set of elements (which
we call compound actions, or just actions) denoted A and by the signature
Σ = {&, ·,+,0,1,AB} which gives the action operators and the basic actions.
The non-constant functions of Σ are: + for choice of two actions, · for
sequence of actions (or concatenation), and & for concurrent composition of
two actions. The constant function symbols of the �nite set AB ⊆ A are called
basic (atomic) actions. The special elements 1 and 0 are also constant function
symbols. The set of basic actions is called the generator set of the algebra. In
Table 1 we collect the axioms that de�ne the structure CA.

We want to have a resource-aware algebra similarly to what has been done
for linear logic. Therefore we do not allow the idempotence property for the &
operator (a&a 6= a). As an example, if α represents the action of paying 100$

? Partially supported by the Nordunet3 project �Contract-Oriented Software Devel-
opment for Internet Services�.
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(1) α + (β + γ) = (α + β) + γ
(2) α + β = β + α
(3) α + 0 = 0 + α = α
(4) α + α = α
(5) α · (β · γ) = (α · β) · γ
(6) α · 1 = 1 · α = α
(7) α · 0 = 0 · α = 0
(8) α · (β + γ) = α · β + α · γ
(9) (α + β) · γ = α · γ + β · γ

(10) α&(β&γ) = (α&β)&γ
(11) α&β = β&α
(12) α&1 = 1&α = α
(13) α&0 = 0&α = 0
(14) α&(β + γ) = α&β + α&γ
(15) (α + β)&γ = α&γ + β&γ
(16) α&(α′ · β) = α(1)&α′(1) · . . . · α(n)&α′(n) · β

where length(α) = length(α′) = n

Table 1. Axioms of CA

then paying 200$ would be represented as α&α. Note that we can represent only
discrete quantities with this approach. We consider a con�ict relation over the

set of basic actions AB (denote by #C ) de�ned as: a#C b
def⇐⇒ a&b = 0. The

intuition of the con�ict relation is that if two actions are in con�ict then the
actions cannot be executed concurrently.

The structure CAT = (CA,B) combines the previous de�ned algebraic struc-
ture CA with a Boolean algebra B in a special way. A Boolean algebra is a
structure B = (A1,∨,∧,¬,⊥,>) where the function symbols (∨, ∧, and ¬) and
the constants (⊥ and >) have the usual meaning. Moreover, the elements of set
A1 are called tests and are included in the set of actions of the CA algebra (i.e.
tests are special actions; A1 ⊆ A). We denote tests by letters from the end of
the Greek alphabet φ, ϕ, . . . followed by ?.

We give the standard interpretation of the actions of A by de�ning a ho-
momorphism ICAT which takes an action of the CAT algebra and returns a
special guarded rooted tree preserving the structure of the action given by the
constructors. A guarded rooted tree has labels (representing basic actions) on
edges and tests as the types of the nodes. We de�ne special operators on these
trees: ∪ join, ^ concatenation, and ‖ concurrent join. In order to have the
same behavior of 1 and 0 from CAT under the interpretation as trees we give a
special procedure for pruning the trees.

For actions α de�ned with the operators +, ·, &, and tests we have a canon-
ical form denoted α! and de�ned as: α! = +ρ∈R ρ · α′!, where R contains
either basic actions, concurrent actions, or tests, and α′ is a compound ac-
tion in canonical form. The action negation is denoted by α and is de�ned as:
α = +ρ∈R ρ · α′ = +b∈R b + +ρ∈R ρ · α′, where ρ and α′ are as before. The set

R is de�ned to contain: {(¬φ)? |φ ∈ R} ∪ {α |α ∈ A&, and ∀β ∈ R, β 6<& α}
where A& contains concurrent actions generated only by means of &, and <& is
a strict partial order which basically compares two actions to see which contains
the other with respect to the & operator. Note that because & is not idempotent
the set R becomes in�nite (thus having in�nite branching in the associated tree).
We overcome this problem by de�ning action schemas and tree schemas.

In conclusion we mention some works which are close related to our work.
J.J.Meyer '88 investigates algebraic properies of the actions he has in its Dynamic
Deontic Logic. D.Kozen's extensive work on Kleene algebras forms a basis for our
algebra. Our work goes well with Pratt's work on pomsets for true concurrency.
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A nice introduction to rooted trees can be found in the work of M.Hennessy on
algebraic theory of processes.
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Modelling distributed and mobile systems at a suitable level of abstraction
maybe considered the main application area of process calculi and graph trans-
formation systems. Analysis and verification methods for the resulting models
abound. Here we focus on two lines of research: on the one hand the work fol-
lowing the influential theory of Reactive Systems (rs) [6] (originally developed
for process calculi), and on the other hand the classical concurrency theory of
the double pushout approach (dpo) to graph transformation[4, 7].

Recall the idea of the theory of rs: one derives from a given set of reac-
tion rules a labelled transition system (lts) such that the induced bisimulation
relation is a congruence. This powerful technique has been adapted to dpo trans-
formation over graphs [3] and even to rewriting in any adhesive category [8]. This
generalization is known as dpo with borrowed contexts (dpobc) and it is the
main object of study in this paper.

The question is whether the natural notion of true concurrency of dpo rewrit-
ing, which is in contrast to the “interleaving only” semantics of process calculi,
carries over to dpobc. In other words, we set out to develop a dpo-style par-
allelism theory for dpobc. Below we illustrate how borrowed context rewriting
faithfully models the concurrency aspects of distributed and mobile systems. As
a proof of concept we present the local Church-Rosser theorem for dpobc.

A reader which is not familiar with dpobc might skim the main ideas from
the following model of an interactive system. We have only one reaction rule
(

�

◦→◦) �−� (◦ ◦) �−� (◦→◦
�
), which models the dispatching of the message

�

from one network node to the other using a channel of unit capacity between
them. Now suppose we have the network ⊕⇆⊙, consisting of two nodes ⊕ and ⊙

which are connected by two complementary channels of unit capacity. However
we do not want the channels themselves to be visible, but only the “access
points” ⊕ and ⊙. This system (state) is succinctly modelled by the inclusion

(⊕ ⊙) �−� (⊕⇆⊙), which we also write as

֌

⊕ ⊙

⊕⇆⊙
.

Now the lts automatically derived using the borrowed context technique
contains for example the following two transitions

֌

⊕ ⊙

	

⊕⇆⊙

(⊕ ⊙)�−�(⊕ ⊙ 	 )�−�(⊕ ⊙)
⇐================

֌

⊕ ⊙

⊕⇆⊙

(⊕ ⊙)�−�(

�

⊕ ⊙)�−�(⊕ ⊙)
================⇒

֌

⊕ ⊙

⊕⇆⊙ �

which correspond to the fact that the system can make transitions if the envi-

ronment supplies messages, namely ⊙ 	 or

�

⊕. Further these two transitions are
independent of each other and actually they form the first two sides of a local
Church-Rosser square which is closed as follows.

֌

⊕ ⊙

	

⊕⇆⊙

(⊕ ⊙)�−�(

�

⊕ ⊙)�−�(⊕ ⊙)
================⇒

֌

⊕ ⊙

	

⊕⇆⊙ �

(⊕ ⊙)�−�(⊕ ⊙ 	)�−�(⊕ ⊙)
⇐================

֌

⊕ ⊙

⊕⇆⊙ �
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Finally note that the two messages also could be sent concurrently, as the two
transmissions use two different channels.

In general, given a dpo grammar in an adhesive category C, a state in the
derived lts is just a mono m : J �−� A, where J is the interface of the sys-
tem A. The labels of the lts describe the minimal contexts that a system needs
to interact with the environment via its interface. Formally they are arrows in
the bi-category of co-spans over C, which has the same objects as C and the
morphisms between objects J and K are monic co-spans J

j
�−� F

k
�−� K. Sum-

marizing, states in the lts are monos

֌

J
A

and transition have the form

֌

J
A

f

=⇒

֌

K
B

where the label f = J
j

�−� F
k

�−� K is an arrow from J to K in the co-span
category over C.

So far we have sketched just enough about the categorical background to be
able to present (the crucial point of) the local Church-Rosser theorem.

Theorem 1 (Local Church-Rosser for DPOBC)

If

֌

J
A

fg

֌

K1

B1

֌

K2

B2
then

֌
J
A

fg

֌
K1

B1

֌

K2

B2

֌

K
B

g′f ′

and

J
fg

K1 K2

K
g′f ′

is a bi-pushout,

where denotes the natural generalization of parallel and sequential indepen-

dence known from dpo rewriting; further the rightmost figure is a bi-pushout in

the bi-category of co-spans over C.

On top of the fact that the labels of the Church-Rosser square actually describe a
bi-pushout in the co-span bi-category, we further have a parallel step

֌

J
A

f′◦g

===⇒

֌

K
B

along the diagonal of the Church-Rosser square (see the authors’ [2] for the
details of parallel dpo rules).

Future work As an application one might want to develop unfolding based ver-
ification techniques for dpobc rewriting generalizing or using the methods im-
plemented in tools like [5]. Especially secrecy properties could be handled natu-
rally since dpobc systems come equipped with a “built in” notion of visibility.
Moreover the additional information of the interfaces might prove useful for
abstraction refinement techniques.

On the theoretical side, we would like to justify our claim that the bisimu-
lation presented in [2] is “aware” or “respects” concurrency. We plan to do so
by comparing it with history preserving bisimulation in the style of [1]. However
the latter work depends on the process semantics of dpo grammars, whence the
need for a theory of dpobc processes arises.

Conclusion We have presented the local Church-Rosser theorem for dpobc. It
exemplifies how the classical parallelism theory known from graph transforma-
tion systems naturally carries over to borrowed context rewriting. Moreover this
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generalized result is in harmony with the rich bi-categorical structure of the la-
bels of the automatically derived ltss. In any case it can serve as a starting point
for future studies of true concurrency in dpobc models of interactive systems.
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