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Abstract

We propose to build an automated reasoning system for first-order logic (FOL) by translating
reasoning problems to a fragment of FOL called coherent logic (CL) and then solving them by a
fast problem solver for CL. Both the translation and the fast CL solver are to be developed in the
project. Automated reasoning in FOL is an established research field with many applications in
mathematics, logic and computer science (e.g., the verification of hard- and software, deductive
databases, semantic web applications etc.) The advantages of the use of CL instead of weaker
logics (for example, resolution logic) are: strong support for interactive problem solving and
for explanation facilities, which is of crucial importance for many applications. Moreover, some
inefficiencies inherent to the translation of FOL to weaker logics than CL are avoided.

1 Introduction to coherent logic

Coherent Logic (CL) is the fragment of first-order logic (FOL) with formulas

∀~x (A1 ∧ · · · ∧An → ∃~y1 C1 ∨ · · · ∨ ∃~ym Cm)

where the Ai are atoms and the Cj are conjunctions of atoms. The strong point of CL is that it has
both quantifiers ∀,∃ together with a simple proof procedure, forward ground reasoning, which is
nevertheless complete. Due to this expressive power, many reasoning problems can be formulated
directly in CL, whereas in less expressive logics (for example, resolution logic) they would have to
be encoded. This has the following important advantages.

• The interaction between the automated reasoning system and the user greatly benefits from
the fact that both work on the same problem.

• The explanation of solutions found by the system is facilitated. Furthermore, proof objects
can be generated and these can be verified by and imported in other systems.

• Inefficiencies inherent to certain encodings are avoided by a direct formulation in CL.
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CL goes back to the Norwegian Thoralf Skolem, who developed CL in 1920 to obtain meta-
mathematical results in lattice theory and projective geometry [30]. The bottom-up proof procedure
used today in deductive databases and the system SATCHMO [25] (for logics weaker than CL),
can already be found in [30]. Only recently CL has been rediscovered: see [14] for its relevance to
computer science and [27] for one example of its interesting proof-theoretic properties. Reasoning
in CL is constructive and can be used for, e.g., the constructivization of classical abstract algebra,
see [21, 20].

CL extends Horn clause logic (on which the programming language Prolog [23] is based) and
resolution logic [29] in that we may have a whole disjunction of existentially quantified conjunctions
of atoms in the conclusion. The point of CL is that coherent formulas can be used as generating
rules, which forms a complete proof procedure for this fragment. Though possible, the reduction to
resolution clauses is unattractive for two reasons: (1) the Skolemization of the existential variables is
not logically equivalent and spoils their dependence on the premiss; (2) Skolem functions complicate
the proof objects in a serious way; (3) the disjunction of conjunctions leads in most clausification
procedures to a multitude of clauses.

CL is still somewhat less expressive than full FOL. However, every first-order theory has a
conservative (definitional) extension which is equivalent to a coherent theory. (The proof theory
of full FOL is generally considered to be too difficult to be automated.) CLs simple proof theory
(forward ground reasoning) can easily be automated and proof objects are easily obtained. Proof
objects are important for explanation facilities, independent verification and use in other systems,
as well as for algorithm extraction.

2 Background

The automation of reasoning (AR) is one of the great dreams of computer science. Together with
natural language processing, AR has proved to be a real challenge. For comparison, chess com-
puters now play at the grandmaster level and occasionally beat the world champion, whereas AR
in the mathematical domain generally stays at the undergraduate level. Yet, in some specialized
mathematical subjects, AR occasionally obtains new results, such as a proof of the Robbins’ Con-
jecture, see [4]. Another application of automated reasoning is the construction and verification of
mathematical proofs that, because of their length and the use of ad-hoc computer solutions, have
not immediately been accepted by the mathematical community. See for example recent issues
of Science [2] and The Economist [3] where the Four Color Theorem and a proof of the Kepler
Conjecture are discussed. Important application areas are that of the verification of computer
hardware and software (see [12]), and so-called deductive databases. An upcoming application area
is the semantic web [1], with its vision that future web content will be marked up with semantical
information. The processing of this semantical information requires software agents that can reason
automatically.

Because of the intrinsic difficulty of automated reasoning, the field has roughly split in two
along the following lines:

1. focusing on useful reasoning problems which are difficult to solve for humans (involving large
quantities of data in combination with weak intuitions about these), but not too difficult for
a machine. This kind of problems is often found in connection with the formal verification of
computer hardware and software, deductive databases and in semantic web applications.
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2. taking the interactive approach, where the reasoning is not fully automatic. Here the spectrum
ranges from proofs largely encoded by hand (where the automation boils down to checking
the proofs) to proofs which to a large extent are generated by the machine.

In principle CL will contribute to both approaches, but is most promising for the second. In the first
approach the best results are obtained with more specialized systems, e.g. for propositional logic,
or even domain-specific logics. In the second approach one finds systems like Automath [26] (only
proof checking), Coq [8], Isabelle [9] and Agda [5]. The latter three systems have some reasoning
power, but far less than desirable and far less than CL.

3 Objectives

The primary aim of the project is to build a system for automated reasoning based on CL to
support logical frameworks, also called proof assistants, such as Coq [8], Isabelle [9] and Agda [5].
This requires an optimal translation of FOL into CL as well as a fast CL theorem prover, which
will both be developed in the project.

As a secondary aim we would like to compare CL to other approaches to automated reasoning
(resolution, tableaux, matrix methods). This includes the tactics offered by the logical frameworks
(Isabelle seems to have the most powerful tactics). But there are some indications [17, Table 1,
p.258] that CL can compete with resolution or tableaux style theorem provers, at least on problems
that fit naturally into the CL format. Our system should be good enough to participate in CASC,
the CADE ATP System Competition [7].

Success can be defined as: our system outperforms the existing tactics in logical frameworks and
has a good performance on problems that other general-purpose theorem provers also can solve.
Although the CASC competition focuses on full automation (no interaction, no standardized proof
objects), we want our system to end among the 5 best. (Winning is very difficult with limited
resources, one competes against systems in which at least 10 man-years have been invested.)

The overall objective is to present the results obtained at good conferences (say, 3 per PhD
project) and/or to publish in good journals (say, 2 publications per postdoc year). Of course the
PhD student will collect his/her results in a PhD thesis.

4 State of the art in automating CL

As yet the potential of CL for AR has only been explored to a limited extent. Based on a depth-first
(incomplete) variant of the proof procedure from [16, 17], a prototype prover has been developed
in Prolog. This prover has been inspired by the system SATCHMO [25] for resolution logic, but
extends it in two essential ways: by the existential quantifications allowed in the CL format and
by generating proof objects in the format of Coq [8].

This prototype has been tested on several examples in fields that can naturally be formalized
in CL: projective geometry, rewriting theory and lattice theory. A small selection of the problems
solved can be found on the website [6]. A typical example is the induction step in the proof of
Newman’s Lemma, as described in [16]. There has been no other system that was able to find
such a short proof in a few milliseconds. This problem and some others have been submitted as
challenges to the TPTP data base [11].

3



De Nivelle [28] has developed a model finder for a rather restricted variant of CL where functions
are encoded as relations. Although this is good for finding finite models, the correspondence
between the original problem and the translated one is lost. Also, proof generation in this system
is problematic.

For a newly found natural translation of FOL to CL, see [17]. The undecidability of CL without
function symbols has been proved in [15].

5 Research plan

The automated theorem prover consists of two main components.
The first component translates an arbitrary first-order problem, that is, a set of formulas forming

the theory and a goal, to CL, the logic of the theorem prover. Starting point is the translation
given in [17]. It is of critical importance that no information gets lost in translation and that it
results in a manageable problem for the prover. The translation itself is seldom time-critical. The
input format should be TPTP format [11].

The second component is the actual proof search. This is the most critical component, both
with respect to time complexity and to space complexity. Depth-first search is fast but incomplete,
breadth-first search is slow but complete. The challenge is to find a good compromise. The first
approach will be to extend the existing prototype based on a depth-first strategy to breadth-first
search.

Both components should be equipped with a back-end that generates proof objects. In case of
the first component we need a proof object for the equivalence of the FOL and CL versions of the
problem. In case of the second component we need a proof object for the solution found (based
on the search log). These proofs should be verified, explained to the user and/or converted to
other formats in which they can be used in various proof assistants. Proof generation is seldom
time-critical, but the size of the proof and its structure are of crucial importance for the success.
(Of course, no proofs will be generated when participating in the CASC competition.)

For each of these two components one can distinguish two phases in the development: the
prototyping phase and the phase in which the final product is produced. For the prototyping
phase we will choose a high-level declarative programming language which is particularly suited to
create executable environments for different logics and theorem provers. There are a number of
good possibilities such as Prolog, Haskell or Maude [10]. There is ample competence with these
languages in the project. Declarative programming languages are excellent for prototyping, but
typically yield slow code which consumes a lot of memory. In particular for the second component,
the proof search, which is highly critical for the overall performance of the system, a language like
C (or C++) will be used. Indexing techniques are crucial.

The next challenge is to extend CL with a native equational logic. Reasoning with equality is
of great importance in mathematics, computer science and almost all applications. It is seldom
good enough to axiomatize equality as a congruence and to treat it thereafter as any other binary
predicate. The proof procedures have to be reconsidered for CL with equality. A good starting
point is a rule in resolution logic called paramodulation.

Finally, to make the system efficient enough, the following refinements have to be taken into
account:

1. Relevancy analysis of CL. Traditionally this means the following: if one infers p ∨ q, splits
and finds in the branch with p that the goal can be proved without using p, then one need not
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consider the branch with q. Both the proof search and the proof object will greatly benefit
from such an optimization. In the case of CL one can do more: if one infers ∃x.p(x), continues
with p(c) for a new constant c and finds that the goal can be proved without using p(c), then
∃x.p(x) is irrelevant and the proof can be simplified. The systems SATCHMORE [24] and
R-SATCHMO [22] can serve as starting points.

2. St̊almarck’s method [31] has been a very important improvement to automated reasoning in
propositional logic. It has been extended to FOL in [13] with some promising results. As
the reasoning in CL is ground, the method can also be applied here with the same expected
success as in propositional logic.

3. Heuristics for proof search will be as important here as in any other system of AR: iterative
deepening, weights and a ‘hot list’ are obvious candidates.

6 Workplan

We ask for support for a PhD student in Bergen and a postdoctoral researcher in Oslo. There
exist good candidates, both in Norway and abroad. The PhD student will develop the prototypes,
guided by the supervisors. The postdoc will undertake the (more difficult) implementation of the
final programs. Therefore the postdoc starts one semester later than the PhD. The postdoc also
develops the ‘missing parts’ of the theory later on, such as, for example, the completeness proof for
forward reasoning in CL with equality. An important part of the workplan are the two workshops,
the first after one year and the second after two years. Here all participants will meet and discuss
future directions in the project. Apart from this, regular visits between the sites are planned,
including two budgetted halfyear stays of the PhD and the postdoc (at Chalmers). The exact
scheduling of the tasks in the workpackages below can be found in the e-application.

6.1 Work packages

W1. Supervision and project management

(T1) Task: Project coordination
Deliverables: Internal reports, work notes, drafts of reports and articles, presentations

(T2) Task: Project reporting
Deliverables: Annual reports to NFR, status reports, web-updates, final report

(T3) Task: Organisation of the two workshops
Deliverables: Proceedings of the workshops

(T4) Task: Supervision of PhD student, postdoc and MSc students
Deliverables: PhD and MSc graduations in the field
The PhD student will join the PhD Research School in Information and Communication
Technology at the Department of Informatics, University of Bergen.

W2. PhD workpackage

(T1) Task: Prototype translation FOL→CL
Deliverables: Code and documentation of working prototype
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(T2) Task: Prototype breadth-first CL prover
Deliverables: Code and documentation of working prototype

(T3) Task: Experiments with the combined T1,2 (FOL prover)
Deliverables: Reports(s) on experiments

(T4) Task: Prototype of proof object generator for T1,2
Deliverables: Code and documentation of working prototype

(T5) Task: Integration of T1,2,4 in proof assistants, experiments
Deliverables: Documented code, report(s) on experiments

(T6) Task: Writing of the PhD thesis
Deliverables: Phd thesis

W3. Postdoc workpackage

(T1) Task: Final translation FOL→CL
Deliverables: Code and documentation of final translation

(T2) Task: Fast implementation CL prover
Deliverables: Documented code

(T3) Task: Extending CL with equality, fast implementation
Deliverables: Publications, documented code

(T4) Task: Experiments with combined system, various search strategies
Deliverables: Report(s) on experiments

(T5) Task: Refinements and experiments
Deliverables: Report(s) on experiments

(T6) Task: CASC participation and accompanying publications
Deliverables: Place among the 5 best!

7 Publication plan: see e-application

8 Competences and collaboration

The main participants below are in italics, Bezem will lead the project.
The Bergen-group in Software Engineering (M. Bezem, M. Walicki, M. Haveraaen, U. Wolter)

has a long-standing collaboration with the Oslo-group Precise Modeling and Analysis. Bezem has
written a depth-first CL prover in Prolog, with a back-end for Coq proof objects. He will supervise
the PhD student based in Bergen.

The Oslo-group has wide experience with Maude (E.B. Johnsen, O. Owe and P. Ølveczky) and
Isabelle (Johnsen). A. Waaler is an expert in tableau and matrix methods [32, 33], and is currently
running a project on matrix methods with 3 PhD students. He will supervise the postdoc based in
Oslo.

T. Coquand is internationally recognized as expert in type theory, proof theory and constructive
mathematics. For example, the widely used proof assistant Coq, based on [19], is named after him.
He is involved in the development of the proof assistant Agda and in particular in preliminary work
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on an interface between FOL and type theory. Coquand will contribute to the prototypes and to
the extension of CL with equality, in particular to the completeness proof. He will supervise the
PhD student and the postdoc during their stay at Chalmers (see the attached letter).

Bezem and Coquand have jointly published on CL [16, 17]. Both have participated in the
ESPRIT working groups on type theory for over more than a decade (currently Coordination
Action TYPES 510996).

The Gothenburg-group (www.cs.chalmers.se/Cs/) has further strong expertise in formal meth-
ods (R. Hähnle, W. Ahrendt, K. Claessen) and functional languages (J. Hughes).

H. de Nivelle is a well-known researcher in the field of AR. Some years ago he has particpated
in the CASC competition with a system called Bliksem (2nd place in 1998). This is an invaluable
experience and he will contribute to the final program that will compete in CASC. The Max Planck
Institute (his current affiliation) is willing to host the PhD student for 3 months (see the attached
letter).
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