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Chapter 1

Introduction

In many binary communication systems, the probabilities of the crossovers
1 — 0 and 0 — 1 are approximately the same, and the systems are well
modeled by the binary symmetric channel (BSC). Error correcting codes for
BSCs have been studied extensively, see e.g. [61].

In other communication systems, the probability of a 1 — 0 crossover
is much larger than the probability of a 0 — 1 crossover. This applies, for
instance, to some data storing systems, see Constantin and Rao [14| and
optical communication, see McEliece and Rodemich [64]. Neglecting the low
probability 0 — 1 crossover, the communication system is modeled by the
Z-channel. Error correcting codes for the Z-channel have been much less
studied than the codes for the BSC.

In the following notes, I give a unified account of error correcting codes
for the Z-channel. The notes are based on lectures given at the University
of Bergen, in the autumn term 1980, and more resent results (up to 1983)
have been included. At the end of each chapter, I have given references for
the results of that chapter.
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Chapter 2

Definitions and basic results

2.1 The Z-channel

Definition 2.1 The binary (completely) asymmetric channel (the Z-
channel) is the channel with {0,1} as input and output alphabets, where
the crossover 1 — 0 occurs with positive probability p, whereas the crossover
0 — 1 never occurs, cfr. Fig 2.1.

Figure 2.1: The binary asymmetric channel

Interchanging the role of "0" and "1" (complemenatation) we get a "com-
plementary Z-channel". Any code for the Z-channel will by complementation
give a code with the same properties for the complementary channel. How-
ever, it turns out that a code for the Z-channel will be a code with the same
error correcting capabilities for the complementary Z-channel also without
complementation.
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2.2 Codes
Definition 2.2 A code of length n is a subset of {0,1}".

Definition 2.3 A code C is a t-code (i.e. t asymmetric error correcting
code) if it can correct up to t errors, that is, there exists a rule (a decoder)
such that if x € C and v is obtained from x by changing at most t 1s in X
in 0s, then the rule will recover x from v.

Definition 2.4 The set of all t-codes of length n will be denoted by A(n,t).

Definition 2.5 The mazximal size of a t-code of length n will be denoted by
a(n,t).

2.3 Asymmetric distance

Definition 2.6 For x = (z1,%2,... ,%,),y = (Y1,%2, ... ,yn) € {0,1}" let

i) N(x,y):=#{i|z;=0 and y; = 1},
(i) Alx,y) :=max{N(x,y), N(y,x)},
(ii7) d(x,y) = N(x,y) + N(y,x),

) x <y if and only if N(y,x) = 0.

Here and in the following #X denotes the cardinality of the set X.

Both A and d are metrics on {0, 1}", we leave the easy verification to the
reader. d is the Hamming metric and A the asymmetric metric (the
name may be confusing, the metric is of course symmetric, i.e. A(x,y) =
A(y,x). "Asymmetric" refers to the metric’s importance in the study of
codes for the asymmetric channel).

Definition 2.7 Forx € {0,1}" let
w(x) = #{i|x; =1},
w(x) is known as the (Hamming) weight of x. Note that
w(x) = d(x,0) = A(x,0).
Here and in the following we use the notations

0=1(0,0,...,0)and 1 =(1,1,...,1).
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Sometimes we find it convenient to illustrate parts of proofs by figures.
This will be done as in Figure 2.2. The figure has the following interpretation:
x and y are binary vectors of the same length, say n. There are a positions
i such that z; = y; = 0 (these positions need not be adjacent), b positions
i such that z; = 0 and y; = 1, etc. Hence b = N(x,y), ¢ = N(y,x),
b+c=d(x,y),c+d=w(x),a+b+c+d=n, etc.

0 0 1 1

0 1 .0 1

S S
Figure 2.2:

The two metrics d and A are related as shown by the following lemma.
Lemma 2.1 Forx,y € {0,1}" we have
Proof: First we note that (cfr. Figure 2.3)
N(x,y) +w(x) = N(y,x) + w(y).
By symmetry, we may assume that w(x) > w(y). Then N(x,y) < N(y, x).

0 0 1 : 1
01 0 1
) N()E, y) ) w(ix)
N
w(y)
Figure 2.3:

Hence
2A(x,y) = 2N(y,x)
= N(x,y)+ N(y,x) + (N(y,x) — N(x,y))
= d(x,y)+w(x) —w(y).
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Definition 2.8 Forx € {0,1}", let

Sy(x) = {v € {0,1}"

v <x and N(v,x) < t}.
S(x) is the set of vectors obtained by changing ¢ or less 1s in x into 0s.

Lemma 2.2 C € A(n,t) if and only if Si(x) N Si(y) = 0 for all x,y € C,
X #Yy.

Proof: 1t Si(x) N Si(y) = 0 for all x,y € C, x # y, then a decoding rule is
to decode v into the unique x such that v € S;(x). Hence C' € A(n,t). On
the other hand, if v € S;(x) N S;(y) for some x,y € C, x # y, then there is
no way to tell if v is obtained from x or from y. Hence, C &€ A(n, ).

Theorem 2.1 C € A(n,t) if and only if A(x,y) >t forallx,y € C, x #y.

Proof: It C € A(n,t) and x € C, let u be any vector such that u # x and
A(u,x) < t. Define v by

v — 1 1fxz:uz:1,
71 0 otherwise.

Then v € Si(x) N S(u) (cfr. Figure 2.4). By Lemma 2.2, u ¢ C. Hence
A(x,y) > t for all x,y € C, x # y. On the other hand, if C ¢ A(n,t),

0 0 1 1
X
0 1 0 1
ut
0 0 0 1
v : S
N(v,u) N(v,u)
= N(x,u) = N(u,x)
<t <t
Figure 2.4

then there exist x,y € C, x # y, and a v € Si(x) N Si(y). Then (cfr.
Figure 2.5) N(x,y) < N(v,y) < t and N(y,x) < N(v,x) < t. Hence
A(x,y) <t. O
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N(v,x)
0 0 1 1 1
0 1 0 1 1
0 : 0 : 0 0 1
N(x,y) N(y,x)
:N (v, Y):
Figure 2.5:

If we use Lemma 2.1, we see that C' is a t-code if and only if d(x,y) +
|lw(x) —w(y)| > 2t for all x,y € C, x # y. This may be compared with the
fact that a code C corrects ¢ errors on the binary symmetric channel if and
only if d(x,y) > 2t for all x,y € C.

Finally, we prove another lemma which generalizes Lemma 2.2 and which
will be applied in the next chapter.

Definition 2.9 For s >0, s >0, and x € {0,1}", let
Sya(x) = {v € {0,1}"

U{v e {0,1}"

v < x and N(v,x) Ss}

x <vand N(x,v) < 3'}.

Note that Si(x) = Sp.(x).

Lemma 2.3 Let C € A(n,t) and 0 < s < t. Ifx,y € C, x #y, then
Stfs,s (X) N Stfs,s(y-) = 0.

Proof: Suppose that v € S;_; ,(x) NS s(y). Without loss of generality, we
may assume that y < x, i.e. N(x,y) =0, and so A(x,y) = N(y,x). We
consider three cases, which also are illustrated by figures.

Case I, v <y < x. Then

N(y,x) = N(v,x) = N(v,y) < N(v,x) < s < .

Hence A(x,y) < t, contradicting Theorem 2.1.
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N(v,x)
0 11 1
0 0 1 1
0 0 0 1

N(y,x) N(v,y)

Figure 2.6: Case I, v <y < x.

Case I, y < v < x. In this case
A(x,y) = N(y,x) = N(v,x) + N(y,v) < s+ (L —s) = ¢,

again contradicting Theorem 2.1.

N(}:‘,x)
0 1 1 1
00 0 1
0 : 0 1 . 1
N(w,x) N(y,v)

Figure 2.7: Case I, y < v < x.

Case Il1I, y < x < v. In this case
A(x,y) = N(y,x) < N(y,v) <t —s<t,

again contradicting Theorem 2.1.

2.4 Notes

2.1. The capacity of the Z-channel was determined by Silverman [74].

2.3. Our definition of asymmetric metric is due to Rao and Chawla |69].
Varshamov [82] introduced a metric p defined by

p(x,y) = d(x,y) + [w(x) — w(y)|.
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N(}:‘,v)
0 0 1 1
0 0 0 1
0 1 1 1

N(x,v) N(y,x)

Figure 2.8: Case II, y < x < v.

By Lemma 2.1, p(x,y) = 2A(x,y).

Theorem 2.1 is essentially due to Kim and Freiman [50]. They proved
that C' € A(n,y) if and only if for all x,y € C, x # y we have

()

—w |Z
—w(y)| <tand d(x,y) > 2(t+ 1) — Jw(x) — w(y)|.

Varshamov |82] formulated the same result in terms of the metric p.

Lemma 2.3 is due to Delsarte and Piret [18|.
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Chapter 3

Upper bounds

3.1 The Varshamov bound

In this chapter we give some upper bounds on «(n,t). We first give a bound
due to Varshamov which is easy to formulate and prove. We use the following
notations.

Definition 3.1 For x = (x1,%2,... ,x,) € {0,1}" let

x:=1—-z1,1—29,...,1 —x,).

Definition 3.2 For C' C {0,1}" let
C:={x|xeC}.

Definition 3.3 For C C {0,1}" let

Cr=#{xeC|wkx) =r}
Lemma 3.1 If C € A(n,t), then C € A(n,t).
Proof: We have

NE&Y) = #{i|1—2=0and1 -y =1}
= #{i |5 =1and y; = 0} = N(y,x).

Hence A(X,y) = max{N(X,y), N(¥,X)} = A(y,x). By Theorem 2.1

CeAn,t) = Aly,x)>tforally,xeC, y#x
= ARXYy)>tforallx,yeC, X4y
= C € A(n,t).

15
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Theorem 3.1 Forn>1 andt > 1 we have

( ) 2n+1
a(n,t) < " - .
= (757) + ()

Proof: Let C € A(n,t). By Lemma 2.2, Uyce Si(x) is a disjoint union.
Further, if w(x) = 7, then #5,(x) = X}_ ( ) Hence

> 4 U Sit0) = X #5(x) =zcz (j)

xeC xeC

By Lemma 3.1, C € A(n,t). Since C, = C,_,, we similarly get
n t n t n—r
reyony())=xex ("))

Adding the two inequalities, we get

gt z;og{o * (ng_r)}
0-(7)-(7)-(7)

for all r and j, we get

2n+1>zoz{<”/2) ((nj/ﬂ)} Z{(W) ((nj/_ﬂ)}.

Hence

Since

2n+1

S CE )

for all C' € A(n,t). O

For t =1 we get a(n,1) < 2" /(n + 2).
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3.2 The programming bound

Lemma 3.2 Let n >t > 1. If C € A(n,t), then there exists a code C' €
A(n,t) such that 0,1 € C" and #C' > #C.

Proof: If w(x) < t, then 0 € Si(x). Hence C contains at most one codeword
of weight ¢ or less. We remove this from C (if it exists) and include O.
Similarly, there is at most one codeword of weight n — ¢ or more. This
we replace with 1. The resulting code is C' which clearly has the stated
properties. U

Lemma 3.3 Let C € A(n,t), 0 <r <mn, and 0 < s <t. Then

s . t—s o 1
(e £ e ()
=1

0 n—r

Proof: By Lemma 2.3, Uxcc Si—s,s(x) is a disjoint union. If x € C and
w(x) = r + j, where 0 < j < s, then S;_;,(x) contains (Tjj) vectors of
weight r. If x € C and w(x) = r — i, where 1 < i <t — s, then S;_;(x)

n—r4i
n—r

rin Ugee St—s,s(x) is

S (r+7 s in—r+1
Z ( r ]>Cr+j +Z ( )Cr—i-
=1

i n—r

contains ( ) vectors of weight r. Hence the number of vectors of weight

Since the total number of vectors of weight r in {0,1}" is (:), the lemma
follows. O

Definition 3.4 A(n,d,w) denotes the mazimal number of vectors in {0,1}"
of weight w and with Hamming distance at least d apart.

Lemma 3.4 Let C € A(n,t) and 0 <r <n. Then

,
S A(r—s,2t+2,r—5)C; < Aln+r — 5,2t +2,7).
j=s
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Proof: For s < j <r,let E; be a code of length r — s, constant weight r — 7,
and Hamming distance at least 2¢ 4+ 2 between distinct codewords, and such
that #E; = A(r — s,2t + 2,7 — j). Let

X = Qs{(xw) ‘ x€C, wx)=j, ve E,}.

Then X is a code of length n+ (r — s) and constant weight r. We shall prove
that the Hamming distance between distinct codewords in X is at least 2¢+2.
Let (x|v), (X'|v') € X, (x|]v) # (x'|v"). Then

d((x|v), (X'|v")) = d(x,x") + d(v, V).
If x =/, then v,v' € E,x) and v # v'. Hence
d((x|v), (X'|v") =d(v,Vv') > 2t + 2.
If x # x', then A(x,x") > t+ 1. Further,
d(v,v) > fov) — w(v')| = folx) — w(x)].

Hence
d((x|v), (X'|v")) > d(x,x") + |w(x) — w(x")| = 2A(x,x") > 2t + 2.

Therefore

Aln+r—s2t+2,r) > #X = i#{X€C|w(x) = j}#E;

j=s

= Y CjA(r—s,2t+2,1 — j).
j=s

([l
Theorem 3.2 Forn > 2t > 2, let
M(n,t) :=max )z
r=0
where the mazimum is taken over all (2y, 21, ... , zn) satisfying the following

constraints.
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(i)  z are non-negative integers,

(1)) zo=2zn=1, 2, =2, =0 for 1 <r <t,

(iii) S0 (Tj )zrﬂ + iy (";le)zT i < ( ) for0<s<t,0<r<n,

(i) i Alr —s,2t+2,7r —j)z; < Aln+r — 5,2t +2,7) for 0 < s <,
(v) Yi_gAlr—8,2t+2,1r —jlzny < Aln+r—5,2t+2,7) for 0 < s <.

Then a(n,t) < M(n,t).

Proof: Let C' € A(n,t) be a code of size a(n,t). By Lemma 3.2 we may
assume that 0,1 € C. Hence Cy =C,, =1land C, =C,,_, =0for 1 <r <t
Therefore z, = C, for r = 0,1,... ,n satisfies (i) and (ii). By Lemma 3.3 it

satisfies (iii). By Lemma 3.4 it satisfies (iv), and by Lemma 3.4 applied to
C it satisfies (v). Hence

M(n,t) > iC’r = #C = a(n,t).

U

The bound given by Theorem 3.2 is the best upper bound known for
a(n,t). The bound is not explicit, it is given as the solution of an integer
programming problem. Other bounds which are weaker, but are simpler to
compute, are given below.

3.3 The constant weight code bound

Theorem 3.3 Forn > 2t > 2, let By, By, ... , Bu_t—1 be defined by

Bt = 2,
B, = mm{B +An+r—j5—1,2t+ 2, r)}forr>t.
t<j<r

Then a(n,t) < B4 1.
Proof: By the definition of the B,, there exist ry,rq,... , 7, such that
t=rop<m<- - <rp=n—t—1

and
By, =By + Alntrj—rj = 1,204 2,1))
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for 1 < j < m. Therefore

m
B, .1=2+ ZA(TI/ +ry—ri1— 1,2t + 27Tj)'
j=1

Let C’ € A(n,t) be such that 0,1 € C and #C = «(n,t). By lemma 3.4,
< A(n+7r—s,2t+2,r), and so we get

n—t—1
a(n,t) = ZC’ =2+ > G
i=t+1
= 2+Z Z C;
j:].i:Tj,];I»].

m
< 2+ Aln+rj—rji1—1,20+2,1;) =B, ¢ 1.
j=1

3.4 An almost explicit bound

By relaxing some of the constraints in Theorem 3.2, we can obtain a linear
programming problem which can be solved.

Theorem 3.4 Forn > 2t > 2, let yo,y1, ... ,Yn be defined by

Yo = ]-7
yr = 0 forl1<r<it,
1 n =1 r+7 n
r o= N - r+7j . 1<r< __ta
Yt+ (t-l-?“) {(7") Zy +J< ] fO’f‘ <r< 5
t J=
n
Yn—r = Yr fO’f' 0<r< 5

Then a(n,t) < >0 o Y-

Proof: Let M*(n,t) := max )., z., where the maximum is taken over the
following constraints.

(i) % are non-negative integers,

(i) z2p=1,2=0 forl<r<t,

(i) S ("H)ay<(f) foro<r<i-t,
(iv) 2y =2 for0<r <3,
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Let 2y, Z1,...,Z, be integers satisfying (i)-(v) in Theorem 3.2, and such
that Y0 2z, = M(n,t). Let z, = (Z + Z,—)/2 for 0 < r < n. Then
20,21, .- - , 2y clearly satisfy (i), (ii) and (iv) in Theorem 3.4. They also
satisfy (iii) since this is obtained from (iii) in Theorem 3.2 by putting s =t
and s = 0 and adding. Finally, we note that

M*(n,t) > izT = M(n,t) > a(n,t).

We shall prove that yg, y1, ... , y, is the unique solution giving the maximum
M*(n,t).
Let 29, 21, . - . , 2, be real numbers satisfying (i)-(iv) and Y.I'_, 2, = M*(n, t).

Let Z, = Z;ZO Zrij (T;’]) We shall prove that Z, = (TT‘) for0 <r <% -t
We split the proof in three lemmas.

Lemma 3.5 If Z; < (Z) for some k, 0 < k < 3 — 1, and zpy4ypq = 0 for
1 <u<s, where 1 < s < min {t, §—t— k}, then Zj,s < (kis)
Proof:

¢ k+s+7
Zk;+s = sz+s+j< )

j=s k+
t k Z
= E Rk+j ( Z J) (Ig—sl—)s)

. (S:Z)jzszk*j( :)
.0,

- ()

0

GB (&) < ()

Lemma 3.6 If0 <k
then Z), = (Z)

IN

5=t and zgyepy = 0 for 1 Sugmin{t,% —t—k},
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Proof: Suppose that 7, < (Z) Let

n\ _ g s
A_min{w

By Lemma 3.5, A > 0. Let

Ogsgmin{t,g—t—k}}.

Zppe = et A,
n
Zn = 2 f0r0§r§§, r#k+t,
n
Z_y = 2 forOSrSi.
Then 2§, 21,... , 2. clearly satisfy (i), (ii) and (iv). They also satisfy (iii): if

r<korT>k+t,thenZ;‘:Z,«<(:),andifogsgt,then

k+t n
75 = T A< .
ks = Dhts <k+s> = <k+s>

On the other hand,

Yoz >z 4+ A> M (n,t).

r=0 r=0
This contradicts the definition of M*(n,t). Hence Z; = (Z)

Lemma 3.7 If 0 < k < § —t and there exists a J such that 1 < J <

min {t,g —t— k}, Zartrg > 0, and zgypy =0 for 1 < u < J, then Z, = (Z)

Proof: Suppose that 7, < (Z) Let

(k+t+J) ( n ) _7
. k+t . k+s k+s
A =min ¢ ~——~% 2147, Min § —Z———

(%) ()

and
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By Lemma 3.5, A > § > 0. Let

Zppt = Zr+t T A,
Zhstd = Zhitys — O,
n
zw = 2z for0<r §,r7ék+t r#k+t+J,
n
Zn o, = &z for0<r< 5
Clearly z, 21, ... ,z; clearly satisfy (ii)

and (iv). They also satisfy (i) since
0 < Zgit+s. To show that they satisfy (iii) we consider the various cases:

Z7 = Z,<<n> forr<korr>k+t+J,
r

b+t A< " for 0 < s < J,
k+s k+s

k+t+J
Zyiy = Zk+s—< T >6<(kj-s> fort <s<t+J,

kot iy
+ )A—( + +J)5gzk+sg<kis> fort <s<t+J

Z;c(-i-s = Zk—l—s"‘

le;(+s = Zk!+8 +

since

- ()= (e iy )=

As in the proof of Lemma 3.6 we get Y. 2z > M*(n,t), a contradiction.

To complete the proof of Theorem 3.4, we observe that if 0 <r < & — ¢,
then, by Lemmas 3.6 and 3.7,

’ T+ n
ZZT_'_J'( i = ZV‘ = .
j=0 J r

Together with (ii) and (iv), this determines the z, uniquely, and by induction
we get z, =y, for all r. Hence, a(n,t) < M*(n,t) =",y O

The bound given by Theorem 3.4 is usually weaker than M (n,t). How-
ever, it is quite simple to compute. Moreover, there exists a more explicit
expression for y,.
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Theorem 3.5 Let 3;(m) be defined by

Be(m) = 0  form <0,

Bi(0) = 1,
Bi(m) = —Zﬁtm—i-]—t)j for m > 0.
7=0
Then
tm! [n
k <k < — — 1, 1
Y+t = mzl Be( m) G+ ) ( ) for 0 5 (3.1)
and there exist complex numbers (1, (o, ..., (i, 01,0s, ... ,0; such that

t
m) =Y 0;¢;*  for all m > 0. (3.2)
j=1

In particular, for m > 0 we have

fim) = (1"
o) = (1 (i

Proof: We prove (3.1) by induction on k. For k = 0 we get y; = 0 which is
true. Let k£ > 0 and suppose that (3.1) is true for lower values. Then

(1) _ti(’““) e tm) (n)

Y+ = (ttk) = (ttk) Z ﬂt k +j—t— )W m
tkl (n) A thm! gl
= ﬂt(O)m<k> - Z SCE] < )Z Sk —m+j 1)
k tm! (n
3 k- mm ()

L \m

To prove (3.2), we note that 3;(m) is the solution of a linear recurrence whose
characteristic polynomial is

ft(il') = Z t_'xj

— J!
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Since & fi(z) = fi(z)—a" and f,(0) # 0, all the zeros of the equation fy(z) =0
are simple. Hence (;(m) = §:1 0;¢i" for > 0, where (1, C, ..., (; are the
zeros of fy(x) and 6,0, ... ,0; are suitable complex numbers. In particular,
fi(zr) =z + 1 with the zero ¢(; = —1 and fy(z) = 2% + 22 + 2 with the zeros
(= —1+i.
3.5 The Borden bounds
Definition 3.5 Let u: Z — {0,1} be defined by

u(w) = (s(w),s(w+1),...,s(w; — 1))

where

s(w) = 0ifw=0,1,...,t (mod 2t+2),
= lifw=t+1,t+2,...,2t+1 (mod 2t+ 2).

Further, let

(Z) f(w7 wl) = f(wlv U)),
(ii)) flw+t+1,uw)=t— flww),
(ii) f(0,0) =0,
fO,w)=w"—1 for1<w' <t+1,
flw,w')=w"—w foril<w<w <t+1,
flw,w)=w—w-1 forl1<w<t+landt+2<w <w+t+1,
(iv) ifw<w <w+t+1, thenw —w—-1< f(w,w) <w —w.

Proof: (i) is obvious and (ii) follows from the fact that u(w + ¢+ 1) = u(w).
Combining this and the fact that u(0) = u(1l) = 0 and

u(w) =(0,0,...,0,1,1,...,1)

for 1 <w <t+1, we get (iii). Finally, we get (iv) by combining (i), (ii) and

(ii).
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Definition 3.6 A(n,t) is the mazimal number of codewords in a binary code
of length n and Hamming distince d between distinct codewords.

Theorem 3.6 Forn >t we have a(n,t) < A(n+1t,2t + 1).

Proof: Let C € A(n,t). Define

D= {(X|u(w(x)) ‘ x € c}.
Clearly, D C {0,1}"**. We shall prove that if x,y € C, x # y, then

d((x[u(w(x))), (y[u(w(y)))) = 2t + 1.

This implies that #C = #D < A(n+t,2t + 1), and the theorem follows.

Hence, let x,y € C, x # y. Without loss of generality assume that
N(y,x) > N(x,y). This implies that N(y,x) = A(x,y) > t + 1 and that
w(x) > w(y). We have

d((x[u(w(x))), (ylu(w(y)))) = dx,y)+d(u(w(x)),u(w(y)))
= N(xy)+ Ny, x) + fwx), w(x)).
If N(x,y) + N(y,x) > 2t + 1, then we are finished. If, on the other hand,
N(x,y) + N(y,x) < 2t, then N(x,y) <t — 1. We consider two cases.

Case I, N(y,x) — N(x,y) <t+ 1. Then w(y) < w(x) < w(y)+t+1, and
hence

fw(x), w(y))

Y

wx) — w(y) - 1
N(YJX) —N(X,y) -1
> 2t+1—- N(y,x) — N(x,y).

Case II, t+2 < N(y,x)—N(x,y) < 2t. Then w(y)+t+2 < w(x) < w(y)+2t
and so w(y) < w(x) —t —1(2?) < w(y) +t — 1. Hence

flwx),w(y)) = t—flwX),wly)—t-1)
t—(w(x) —t—1-w(y))

2t +1— (w(x) —w(y))
2t+1— (N(y,x) — N(x,y))
2t+1—- N(y,x) — N(x,y).

Y,

v

Hence N(x,y) + N(y,x) + f(w(x),w(y)) > 2t + 1 in both cases.
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Theorem 3.7 For n >t we have a(n,t) < (t + 1)A(n, 2t + 1).
Proof: Let C € A(n,t) with #C = a(n,t). For r =0,1,... ,t, let

S,:{XEC"UJ(X)EZT or 2r +1 (mod 2t+2)}.

We shall prove that S, is a code with Hamming distance at least 2¢ + 1
between distinct codewords. Let x,y € S,, x #y. Then
|lw(x) — w(y)| < 1, in which case

d(x,y) = 28(x,y) — [w(x) —w(y)| = 2(t +1) =1 =2t + 1,
or lw(x) —w(y)| > 2t + 1, in which case
d(x,y) > |w(x) —w(y)| > 2t + 1.
Hence #5S, < A(n,2t +1) for r =0,1,... ,t and so

a(n,t) = #C = th #S, < (t+1)A(n, 2t + 1).
r=0

Corollary 3.1 Forn >t we have
(t+1)2"  (t+1)12"

a(n,t) < = (n) = <1 +0(n)>.

i=0

Proof: The Hamming bound, see e.g. MacWilliams and Sloane [61] states

that
2n

-0 (5)

An,2t+1) <

3.6 Notes

3.1. Lemma 3.1 and Theorem 3.1 are due to Varshamov [82].
3.2. The first programming bound was given by Goldbaum [41|. The present
presentation follows Klgve [56].

Lemma 3.3 is due to Delsarte and Piret [18], the special case s =t had
been proved by Goldbaum [41].

Lemma 3.4 is due to Klgve [56]; Delsarte and Piret [18| gave the result
i Ci < Aln+r—s8,2t+2,7).
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3.3 and 3.4 are from Klgve [56].

3.5. The bound «(n,1) < A(n+1,3) was proved by Stanley and Yoder [76].
The general Theorems 3.6 and 3.7 was given by Borden [6]. Bassalygo
|4] gave the bound a(n,t) < (2t 4+ 1)A(n, 2t + 1).

It appears that for large n, Theorem 3.4 gives the best explicit bound
on «(n,1) and Theorem 3.7 combined with known bounds on A(n, d)
gives the best explicit bound on «(n,t) for ¢ > 1.



Chapter 4

Codes correcting single errors

In this chapter we describe the known 1-codes. For each code we give a
decoding algorithm in a Pascal-like language. The existence of a decoding
algorithm of course proves that the code is a 1-code. In the next chapter,
we describe the known t¢-codes for ¢ > 1. A code correcting t errors on
the binary symmetric channel is in particular a t-code. However, we will
restrict ourselves to codes which are designed to correct asymmetric errors
(i.e. 1 — 0 errors). The decodings algorithms, may or may not be efficient,
the main emphasis is to show that unique decoding is possible, i.e. that the
codes are able to correct ¢ errors.

4.1 Kim-Freiman codes

For m > 1, let H,, be a code of length m which is able to correct one
symmetric error.

Code construction.

If n = 2m, then
C- {(x|x®h) ‘ x € {0,1}", w(x) even, h € Hm\{O}}U{(x|x) ‘ x € {0, 1}m}.
If n =2m+ 1, then

C = {(x|(x|0)@h) ‘ x € {0,1}™, w(x) even, h € Hm+1\{0}}u{(x|x|0) ‘ x € {0, 1}m}.

29
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Decoding algorithm for n = 2m.

Comment: The received vector is (y|y’) where y,y’ € {0,1}™.

if (there exist ¢ € H,, such that d(y @ y’,c) <1)
then g :=c
else decoding has failed;
if (g =0) then
if (w(y) < w(y’)) then z := (y'ly’)
else z:= (yly)
else
if (w(y) is even) then z := (y|ly @ g)
else z:=(y' ®gly');
decode into z.

The decoding algorithm is similar when n = 2m + 1.

Proof of the decoding algorithm.

Case I, (x|x @ h) is sent, where w(x) is even, and h # 0.

Subcase la, no errors occurs or one error occurs in the second part. Then
y=xand y' = (x® h) — e where w(e) < 1. Hence y #y’' = h & e and so
g = h # 0. Further, w(y) = w(x) is even, and so z = (y|y ®@h) = (x|x®h).
Subcase Ib, one error occurs in the first part. In this case y = x — e and
y' = x @ h where w(e) < 1. Hence g = h, w(y) is odd, and so z =
(y' @hly') = (x[x®h).

Case II, (x|x) is sent.

Subcase Ila, no errors occurs or one error occurs in the first part. Then
y=x—e€,y =x,8=0, w(y) <w(y'). Hence z = (y'|y’) = (x|x).
Subcase IIb, one error occurs in the second part. This subcase is similar.

The size of the codes.

Let h,, = #H,,. The size of the Kin-Freiman code is
2" N1+ hy) if n=2m,
2" N1+ hypyq) if m=2m+1.

Remark. If n = 2" — 1, the Kim-Freiman code of length n is smaller than
the Hamming code of the same length, for all other values of n it is larger.
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4.2 Stanley-Yoder codes

Code construction.

Let G be a group of order n + 1 such that every element commutes with its
conjugates (i.e. abab™! = bab la for all a,b € G). Let g1,92, ..., 9n, Gns1
be an ordering of the elements of G such that every conjugacy class appears
as a set of consecutive elements, ¢, gm+1,--- ,9m+k, in the ordering, and
gni1 = €, the identity. For every g € G, let

C, = {($1,$2,... ,Ty) € {0,1}"

n
[To = g}-
=1

Decoding algorithm for C|,.

Comment: The received vector is y; e is the k’th unit vector.

h=1I 97"
k.= 0;
while (h # g and k < n) do
begin
k:=k+1;
if (y,, = 1) then begin h := g;'h; g := g;'g end
else if (gyh =g) then h:=g¢
end;
if (k =0) then decode into y
else if (k < n) then decode into y + e
else decoding has failed.

Proof of decoding algorithm.

Let x € Cy be sent. If no errors has occurred, then y = x. In this case h = g
initially, we do not run through the while-loop at all, and we decode into
y = X.

Suppose an error has occurred in position j. Then

yi =wx; for 1 # 7],
y; =0, zj = L.
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We shall prove the following statement:
(*) If the while-loop has been repeated & times, then

() k<jog= II ¢, h=1I ¢ andh#g
i=k+1 i=k+1

or (ii) k =j and g = h.

First we note that if & < j, g = [IiL;419;", and h = [[}L;,, ¢/, then g =
w1g;we and h = wiw,, and so g # h. We prove (*) by induction. Clearly
(i) is true for £ = 0. Suppose (*) for some k£ > 0. If £ < j, then we repeat
the loop once more. We first increase k by one to K =k + 1. If ygx = 1,
then zx = 1 also. Hence we change g to [}k, 9;" and h to [[_ k.1 97"
Hence (i) of (*) is true for K = k + 1 in this case. On the other hand, if
yx = 0, then there are two possibilities for zx. If K = j, then zx = 1 and
so h = [lig19; and g = gr [[7-x,19;'- Hence gxh = g and so (ii) is
true for K = k = 1 in this case. Finally, if K < j, then xx = 0. Hence,
9=k 9 and h =[[j_x,, g/". Suppose gxh = g. Then

j—1 j—1
g ] g?’:( II gf")gj-

1=K+1 i=K+1

Hence gk and g; are conjugates. This implies that g, gk 11, ... , g; all belong
to the same conjugacy class and hence they commute. Therefore gx = g;
which is impossible since K < j. Therefore (i) is true in this case also. From
(*) it follows that the while-loop is repeated until £ = j. Then we go on and
decode into y + e;.

The size of the codes.
Since {C, | g € G} is a partition of {0, 1} into n + 1 parts,

n

c, > )
I;leaé(# g_n—|—1

Determination of #C'; has been done only for the codes based on an Abelian
group G.
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4.3 Constantin-Rao codes

These codes are the Stanley-Yoder codes based on an Abelian group G.
Hence, if the group operation is written +, then

Cy,= {(a:l,:cQ,...xn)

n
> w9 = g} :
=1

where ¢1, g2, ... , g, are the non-identity elements of G.
For these codes there is a simpler decoding algorithm than the one given
for Stanley-Yoder codes in general. Let gy be the identity element.

Decoding algorithm.

Comment: The received vector is y;
Comment: ey is the £’th unit vector for £ > 0; ey = 0.

h=g— 21 vigs;
decode into y + ej where £ is the index such that g, = h.

Proof of decoding algorithm.

Let x € C, be sent. If no errors occur, then y = x and hence h = 0 = gy,
and we decode into y + ey = x. If an error occurs in position j, then y; = x;
for i # j and y; =0, z; = 1. Hence h = Y2}, (z; — y;)g; = g;, and we decode
into y +e; = x.

4.4 Ananiashvili codes

Code construction.

Let u : {0,1}* — {0,1}™, where m = [log,(k + 1)], be defined as follows:
for (1, m2,... ,x1) € {0,1}*, let s be defined by

k
s=> z;i (modk+1), 0<s<k,

=1
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and let 377" u;2'! be the binary expansion of s. Finally, let

m—1
U = > u;  (mod 2), wu, € {0,1}.
i=1

Then
u(x) = (ug, ug,y ... ,Up).
The code is
C = {(X|u(x)) ‘ x € {0, 1}k}.

Decoding algorithm.

Comment: The received vector is (y|v) where y € {0,1}*, v € {0,1}™.
Comment: e; is the j'th unit vector for j > 0, ey = 0.

if (X", v; =1 (mod 2)) then decode into (y|u(y))

else

begin
determine b by b= Y"1 0,20 — 3 g i (mod k+1), 0 < b < k;
y =y + e
decode into (y|u(y))

end.

Proof of decoding algorithm.

Let (x|u(x)) be sent.
If no errors occur, then ¥, v; =0 (mod 2), and

m—1 k
b= > w2 = > mi=s—s=0 (modk+1).
i=1 i=1
Hence we decode into (y|u(y)) = (x|u(x)).

If an error occurs in u(x), then y = x and ¥1" 0, = (X7, u) — 1 =1

(mod 2), and we decode into (y|u(y)) = (x|u(x)).

Finally, if an error occurs in position j of x, then v = u(x), y; = «; for

i # 7,y; =0, and z; = 1. Hence

b=s—(s—j)=j modk+1.

Hence b = j and we decode into (y + ejlu(y +e;)) = (x|u(x)).
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The size of the codes.

The length of the code C is n =k + [logy(k + 1) and #C = 2%,

4.5 Delsarte-Piret Codes

The Delsarte-Piret codes are 1-codes of lengths between 7 and 11, and with
related constructions.

The main idea of the constructions.

As before, let C,, denote the number of codewords in C' of weight w. The
main idea of Delsarte and Piret’s constructions is to let C,, = 0 for w =
wy, Wa, ..., ws and use some known combinatorial construction to get code-
words of weights w; +1,w; +2,... ,w;41—1,%=1,2,.... The point is that if
w(cy) < w; and w(cy) > w;, then A(cy, cz) > 2, hence the various construc-
tions may be done independently. For all the constructions, 0,1 € C and so
Co=C,=1land Cy =C,,_1 =0.

Construction for n = 11.

We let 04 = 07 =0.

We get Cy + C3 = 20 by the following construction: It is known that
A(12,4,3) = 20. Let X be a code of length 12, constant weight 3, minimum
distance 4, and size 20. Let

T11 = {(2171,.’172,. .. ,.’1711) (1'1,332,. .. ,21711,.’1712) € X for T12 — 0 or T12 — ]_}

For x,y € T1;, x # y, we have
w(x) = w(y) and d(x,y) > 4,

lw(x) — w(y)| =1 and d(x,y) > 3.

In any case A(x,y) > 2. Moreover, w(x) € {2,3} for all x € T3;.
We get Cs + Cy = 20 by the choice {X | x € T1; }.
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Finally, we get C5 + Cg = 132 by the following construction: Starting
from a (5, 6,12) Steiner system and deleting one coordinate we get

12
Rll = U R(Z),
i=1
where R(i) is the set of cyclic shifts of r(i) defined by
r(1) := (11011100010),

r(2) := (10110010011),
r(3) := (01101011010),
r(4) := (10000111110),
r(5) := (11110001100),
r(6) := (11001010101),
r(i) :=r(i — 6) for 7 < i < 12.

The size of the code is i1, C; = 174.

Construction for n = 10.

We let C3 = C7 = 0.
We can get Cy = Cg = 5 since A(10,4,2) = 5.
We get Cy + Cs + Cg = 96 by the following construction:

Ry = {(371,1'27--- ,T10) | (T1,%2,... ,710,0) € Ru}

12
U{(I‘l,xg,... ,1'10) (2171,1'2,... ;1'10;]-) c U R(Z)}
=7

The size of the code is 108.

Construction for n = 9.

We let Cy = C7 = 0.
We get C3 + Cy + Cs + Cg = 60 by the following construction:

Rg = {(.Z'l,él'g,... ,1'9) (.Z'l,il'Q,--- ,1'9,0) € Rlo}

U{(Z’l,l'g,... ,1’9) X = (Z‘l,l'z,... ,.7,'9,].) € RlO; w(x) = 4}

The size of the code is 62.
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Construction for n = 8.

We get Cs + C3 + Cy + C5 + Cg = 34 by the following construction:

RS — {(;171,1‘2,...,1‘3) ($1,$2,...,$3,0)€R9}

U{(xl,acg,... , Tg) ‘ x = (£1,%s,...,%,1) € Ry, w(x) = 3}.

The size of the code is 36.

Construction for n = 7.

By shortening Rg we get a code R; with 18 code words.

4.6 The size of 1-codes

We give a table of the size of the maximal known 1-code in each of the classes
constructed above. The table also contains the best upper bounds given in
Chapter 3.

4.7 Notes

In addition to correcting one single error, many of the codes are also able
to detect many combinations of multiple errors. Decoding algorithms taking
this into account would be less simple than the ones we have given. We have
decided to give the simpler algorithms to make the underlying ideas clearer.
In most cases it is straight-forward to rewrite the algorithms so as to detect
many multiple errors.

Varshamov |82] proved that almost all linear codes which are able to cor-
rect ¢t asymmetric errors are also able to correct ¢ symmetric errors. There-
fore, to go beyond t-symmetric-error correcting codes, non-linear construc-
tions are needed.

4.1. The codes were defined by Kim and Freiman [50]. They used Hamming
codes as the codes H,, in the construction.

4.2 and 4.3. The main idea of the construction is due to Varshamov and
Tenengolts [91]. They used a cyclic group G. The general construction
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n S KF CR A DP U
5 4 6 6 4 - 6
6 8 12 10 8 - 12
7 16 12 16 - 18 18
8 20 24 32 16 36 36

9 38 40 92 32 62 64
10 72 80 94 64 108 | 118
11| 144 144 172 128 174 | 210

12| 256 288 316 - - | 410
13| 512 544 586 256 - | 786
14 | 1024 1088 1096 512 - | 1500
15 | 2048 1344 2048 1024 - | 2828
16 | 2560 2688 3856 2048 - | 5486
Key to abbreviations:

S: code correcting one symmetric error

KF: Kim-Freiman code
CR: Constantin-Rao code
A: Ananiashvili code
DP: Delsarte-Piret code
U: upper bound
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was given by Stanley and Yoder |76]. The construction was rediscovered
by Constantin and Rao [14] who used an Abelian group. The properties
of Constantin-Rao codes will be discussed in detail in the next chapter.

4.4. The construction is due to Ananiashvili [1]. The codes are separable,
the x part of (x|u(x)) may be used for information. However, for most
code lengths, the Ananiashvili codes are smaller than the Hamming
codes. On the other hand, Ananiashvili codes are able to detect a large
fraction of all double errors.

4.5. The constructions are due to Delsarte and Piret [18].
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Chapter 5

Properties of Constantin-Rao
codes

5.1 Definitions

In this chapter we shall give the main properties of the Constantin-Rao codes.
It is clear that isomorphic groups define the same set of codes. Since any
Abelian group is isomorphic to a unique direct sum of cyclic groups of prime
power order, it is no restriction to assume that G is so defined, i.e.

where

The order of G is N := HJJ:1 p?j. Each element of GG is represented by a
J-tuple g = (g1, 92, ... ,gs) where 0 < g; < p;” for 1 < j < J, let

271
Cj = exp <TJ> .
Pj

J
(g:h) == [ ¢
j=1

For g,h € G let

41
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We note that (g, h){(g, k) = (g,h + k) and (g, jh) = (g, h)?. The Constantin-
Rao codes are defined by

N-1

Z Tigi = g}
i=1

Cg := {X c {0, 1}V !

where G = {gy =0,81,... ,8n 1}

5.2 The weight distribution

Definition 5.1 Forge G and 0 <w < N — 1, let

tleg,w) = #{ wix) = w},

Te(y) := Zl t(g, w)y”.

Our aim is to determine (g, w) for all w, or equivalently, the polynomial
T¢(y). Note that #Cy = Tg(1).

For h € G, let X
Tu(y) == D>_(~h,g)Ty(y).
gelG
Lemma 5.1 Forg e G we have
1
)=y L el
heG
Proof: First we note that
J P I .
hEG ]Ih—O 0 ifg#0.

Hence

Y (hg)Tu(y) = D Y (hg) —h, k) Ty (y)

heG heG keG

= Y Tk(y) Y (h,g —k) = N Ty(y).

keG heG
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Lemma 5.2 For h € G we have
A 1 N/d
A = (1 o)™
n(y) =1 y (=)
where d s the order of h.

Proof:

R N-1 N-1 N-1

Tu(y) = Z Z (=h, g>yw#{(1?1a$2, oo, TN1) Z Ligi = &; Z Tp = w}
geG w=0 i=1 i=1

N-1 N
= > (=h, > zg) yiz @

x€{0,1}V-1 i=1

N-1
= > I ((—h, gz’)miym")
xe{0 V-1 i=1
N-1

= II (1 +(~h, gz~>y>-

=1

Let o(h) denote the order of h. If o(h) = d, then g — (—h, g) is a homomor-
phism from G onto the complex d’th roots of unity. Hence, if { is a primitive
d’th root of unity, then

I:i;[:<1 _n gi>2> _ (‘::1_[:(1 B Ciz)> N/d _ <1 B Zd> N/d.

Putting z = —y, the lemma follows.
Definition 5.2 Forg e G, let

Se(d) == > (h,g).

heG
o(h)=d
Theorem 5.1 For g € G we have
1 Cc
) =LY (1 () i
g( ) N(l—l—y) CC;N ( ) g( )

and

1
40 =512 3 25,(d).

cd=N
d odd
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Proof: From Lemmas 5.1 and 5.2 we get

Te(y) = m hZG<h7 g) (1 _ (_y)o(h)>N/0(h)
1 2\
= iy 2 (1) > (el
and ) .
#Cg = Tg(1) = IN < <1 - (_1)d> Sg(d).

5.3 The function 5,

The usefulness of Theorem 5.1 depends on having an explicit expression for
Sg(d) and we shall derive such an expression (Theorem 5.3 below).

Lemma 5.3 Let h € G. If o(h) = didy, where ged(dy,ds) = 1, then h has
a unique decomposition h = h; + hy such that o(h;) = d; and o(hsy) = ds.

Proof: Let a; and as be integers such that aid; + asdy = 1. Let hy = asdsh
and hy = a;dih. Then h; +hy = h, o(h;) = d;, and o(hy) = ds. Suppose
that h = h} + h}, where o(h}) = d; and o(h}) = dy. Then h; —h} = hi, — h,.
Hence h; — h} = a;d;(h; — h)) + asdz(hy — h}) = 0 and so h; = h] and
h2 — hlz

Theorem 5.2 The function Sg(d) is multiplicative.
Proof: 1f ged(dy, ds) = 1, then, by Lemma 5.3,

Sgldidy) = Y (h,g)= > (hy,g)(hy,g) = Sg(d1)Sg(dz).

heG hy,ho €@
o(h)=djdg o(hy)=d;
o(hg)=dy

Definition 5.3 Forg e G let

Wg(n) := Z Sg(d),

cd=n

Wg(j)(n) = Z

gg]’h]‘
i
hJEG]'

o(h])|n
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Lemma 5.4 Forg € G we have

(i) Wy is multiplicative,
(i) Wg(n) =TI, W (n),
(iv) if q is a prime, then
W) =1 if 4 #0;,
W (ph)= pr @) i 5 < ¢,
=0 if 0 > €,

where p;j is the exact power of p dividing g; (we put €; = oo if g; =0).

Proof: (i) follows from the definition and Theorem 5.2.
(i) follows by the Moebius’ inversion formula.
(iii). We have

W) = > > (hg)= > [[¢"

d|n hed heG j=1
o(h)=d o(h)|n
J h J
gih; .
=11 X @7 =1Imm).
j=1 nyec; j=1
o(h]')\n

(iv). First we note that if ¢ # p;, then o(h;)|¢’ if and only if o(h;) = 1, i.e.
h; = 0. Next, suppose ¢ = p;. If § > «;, then o(hj)|p§ for all h; € G;. Hence

r,’ o ,
Dy = S o [ B g =0 (e g =)
W' (p) Powdt G { 0 if g; #0 (i.e. € < 00).
-

If 0 < c, then o(h;)|p} if and only if pjo-‘j76|hj. Hence

B (g = 5 (
Gy _ N pur [Py ifg =0 (mod p))  (ie. ¢ > 4),
W () h;@ { 0 ifg;#0 (modps) (ie ¢ <9).

Therefore, if § > ¢; (in which case €; < 00), then Wéj)(pg) =0, and if § <,
then
d if 0 < Qa;,

Dy — d P
Wg (p_y) { p;‘J if 6 > .
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Definition 5.4 (i) For p|N let J, :=={j | p; = p},
(ii) for g € G and p|N, let

e (g) = minjez €;  if €; # oo for some j € Jp,
p\8) = max;jcz, «; if € =00 for all j € Jp,

and

Ag) = [[»~®

pIN
where €; is defined in Lemma 5.4 (iv).
(iii) Let
() - T
p

pIN
Theorem 5.3 For g € G we have

Se(d) = > n(m)We(n).

mn=d
n|A(g)

Proof: By Theorem 5.2 and Lemma 5.4, if n =[], p% . then

v =) I ) -T2 )

1 p jeJg

J

Hence

Wg(n) — H H Wg(j) <pmin(5p:aj)>
if p’»|g; for all p and all j € J,, and Wg(n) = 0 otherwise, i.e.

_ | Wa(n) if n|A(g),
We(n) = { 0 otherwise.

Therefore

%@ZZMM%@ZEﬂWWM)



5.4. MAXIMAL CONSTANTIN-RAO CODES 47

5.4 Maximal Constantin-Rao codes

Theorem 5.4 Ifg,h € G and A(g)|A(h), then #Cg < #Ch.
In particular, #C1 < #Cg < #Cy for all g € G.

Proof: By Theorems 5.1 and 5.3 we have

#Ox= 50 32 Y plmWeln) = 5 3 Waln) 3 um)2°.

cd=N mn=d en=N mc=e
d odd n|A(g) n|A(g) m odd
n odd

Since

> p(m)2° >0

mc=e

m odd

for all e, the first part of the theorem follows. Further, A(1) = 1 and
A(0) = [1, p™*ve7%. Hence A(1)|A(g)|A(0) for all g € G.

Theorem 5.5 If g € G = Ziyoss DH, g € G' = Lipe & Ly ® H, and
A(g) = A(g'), then #Cqg < #Cyr.

Proof: First we note that

Wer (Hp p6p> qmin(ﬁq,a)+min(6q ,6)

- > 1.
min(dq,a+03) -
Wo(M,m) ¢
Hence
1
#Cg —#Cg = 5 > {WG,(n) _ WG(n)} S p(m)2 > 0.

en=N mc=e
n|A(g) m odd

n odd

Theorem 5.6 The largest Constantin-Rao code of length N — 1 is the code
Co based on the group

GZ@égZp

pIV i=1

where N = [l n p"™.
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5.5 Shortened Constantin-Rao codes

Definition 5.5 Let G be an Abelian group. Forg € G and 1 < j < N —1,
let

Cé]) = {(.Z'l, Ce ,.Z'jfl, $j+17 A ,Z‘N,I) (.Z'l, A ,:l'j,l, 0,2L'j+1, A ,.Z'Nfl) € Cg}
where Cg is the Constantin-Rao code.

Remark. We can in the same way construct a shortened code from all code-
words in Cy having a 1 in position j. However, this is the same code as

Cg_)gj, and we get nothing new.

Definition 5.6 Forge G, 1<j<N—-1,and0<w <N —2, let

t9 (g, w) = #{x € C’g) w(x) = w},
. N_2 .
TP ) =3 V(g w)y"-
w=0

We shall determine Téj )(y). The determination is similar to the determi-
nation of Tg(y) and so parts of the proof is sketchy.

Theorem 5.7 Forge G and 1< 35 < N —1 we have

c—1 d-1

Tg(j)(y) = m dZN<1 - (_1)d> ZO(_y)mngmgj(d)'
Proof: Let
T () = X (-hg) TP W)
Then
19) = 3 (b))
Further
N/o(h)
o (1)
T (y) = (1 +(=h, gi>y> T (1+y A+ (~hg)y)
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Hence
Ny L Cna\ 1-(=9?
0=y B V) D ey
and
S e —— S g S (Chogy) ()
g Irhel g T s
= S (" Y (hg-me)
m=0 o?he)id
- ZO(_y)mSg—mgj(d)'
5.6 Notes

The exposition in 5.1-5.5 is based on Helleseth and Klgve [48|.

5.2. The exposition follows closely McEliece and Rodemich |64].

5.3. The function Sg for g in a cyclic group is known as von Sterneck’s

function. For the cyclic group case, Theorem 5.1 and Theorem 5.3 were
proved by von Sterneck, see Bachmann [3, Chapter 5|. The results have
been rediscovered several times. Ginzburg [40] gave the expressions
for #Cg and Stanley and Yoder |76] and Mazur [62| gave the weight
distribution. Dynkin and Togonidze [22] determined the size and weight
distribution of Cy when G is the additive group of a finite field and
n = #G — 1. The expression for Sg in general was given by Helleseth
and Klgve [48].

5.4. Constantin and Rao [14] proved that #Cy < #Cj, and they conjectured

Theorem 5.6. The first proof of Theorem 5.6 was given by McEliece
and Rodemich |64].

5.5. Theorem 5.7 has not been published before.
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Chapter 6

Generalized Varshamov codes

6.1 Preliminaries

Varshamov gave several classes of codes to correct multiple errors. Var-
shamov’s constructions have been generalized in various ways and we shall
describe these generalizations below. A common feature for all these codes
is that a vital step in the decoding is the solution of an equation over a finite
field. Therefore we start by summarizing a few facts about finite fields and
equations.

Throughout the chapter, p denotes a prime, ¢ a power of p, and Fj is the
finite field with ¢ elements (it is unique up to isomorphism). Fy := Fy \ {0}
is a cyclic group under multiplication, i.e. there exists a (primitive element)
B € F, such that 9" =1 and 8" # 1 for 0 < i < ¢ — 1. If # is a primitive
element of Fy and m := (¢* —1)/(¢ — 1), then  := ™ is a primitive element

of F,. Moreover, 1,3,4% ..., is a basis for Fp as a vector space over
F,.

Let x,u1,us, ... ,u, be variables and u := (uy, us, ... ,u,). The elemen-
tary symmetric functions o;(u), [ =0,1,2,... are defined by

T

(@ +w) = i or(u)z" .

1=1 =0

ol
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Alternatively,

0'0(11) 1,

oi(u) Z Wiy Wi, -+ - wy, for 1 <1<,
1<i1 <ig << <r

oi(u) =0 for I > r.

If I = {iy,ia,...,i5}, where 1 < i3 < iy < --- < iy < 7, then
ur: (u’ll)u’lz?"' 7u’is)‘

Lemma 6.1 (i) If m is a permutation of {1,2,...,r}, then
01(Ur(1), Un(2), - - - > Un(r)) = Or(10).
(ii) We have
Ul<(u|0)> — ou(u).
(111) If {1, J} is a partition of {1,2,...,r}, then

l

ZO'] uI o— —j UJ)
7=0

(iv) We have

autr1) =Y (::';)aj(u).

j=0
Proof: (i).
%al(um)’ Un(2), -+ Un(r)) 2 = _ﬁl(xﬂ-un(i)) = ﬁl(a:—l—w) = %oﬁ(u)xrl,
(;i) If 0 € {0}*, then . B =
i o <(u|0)>xr+sl — (ﬁ(iﬁ + Uz)) (z +0)° = ial(u)xrfhks‘
" =t 1=0

(15i) If #1 = s and #J = r — s, then

Iial(u)xrl = [[(@+w) [](z + w)

icl icJ
o0 . o0

= Z o;(ap)z®? Z ak(uj)xT_s_k
7=0 k=0

= iﬂ > oj(ur)or(uy).

=0 J+k=l
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(iv) Y ou+1)2" = J[#+uw+1)=][((z+1)+u)
1=0 i=1 i=1
r . r r—Jj r—j N
- Yower T =Y awy ()
3=0 3=0 k=0
r l .
r— r—17
=0 j=0
The lemma follows by equating coefficients in each case. ]
Let oy, 0,...,a, € F,. If a; == oy(ay,e,...,q,) for { =0,1,...,7,

then the equation
r

Y (-Da, gzt =0

1=0
has as its roots exactly the set {ay,as,...,a,}. Hence we recover this set

by solving the equation. Moreover, to find the roots of an equation over F,
is a finite job since there are exactly g possibilities.

6.2 First construction

Let G be a finite Abelian group.

Definition 6.1 A V;-set in G is a subset H = {hy, hs,... ,h,} of G con-
taining n elements such that all the sums

hiy + hiy + -+ -+ hy

where 1 <11 <t < --- <1, <n, 0<r <t are distinct.

Code construction.

Let H be a Vi-set in G. For g € G, let

Cy = {(a:l,xQ, oo, xy) €4{0,11"

i=1

Remark. The codes based on the Vi-set G\ {0} are the Constantin-Rao
codes.
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Decoding algorithm.

Comment: The received vector is y.
Comment: e; is the 7’th unit vector for i > 0, e; = 0.

c:=g— >y yihi;

if (Ji; < iy < --- <, such that h;, + hy, +---+ h;, =c¢)
then decode into y + 377_, e;;
else decoding has failed.

Proof of decoding algorithm.

Let x be sent. Suppose errors occur in positions 71, j2, . .. , js where 0 < s < ¢,
1<j1<joa<---<Js <n. Then

Yy = T; for j¢{j1,j2,--- st}a
yj:()andxj:l fOI' jE{jl;jZ;"':js}'

Hence ¢ = hj, + hj, +---+ h;,, and we decode into y + >3/, e;, = x.

Remarks. (i) The actual design of the if-part of the decoding algorithm will
in each case depend on the structure of the set H. Below we give a couple
of constructions of Vi-sets, these have the stronger property that the sums
hi, + hi, + -+ h;, where 1 < i3 < iy < --- <4, < n (i.e. repetitions are
allowed), 0 < r < t, are distinct.

(ii) If H is a Vi-set, then so is any subset H' of H. Starting with H’', we may
construct a class of codes C, of length n' := #H'. The properties of these
codes will depend on H' as well as g. In particular, max,eq C;, will depend,
not only on n' and H, but also on H'. Almost nothing is known on how to
choose H' so as to maximize maxgeq Cy.

Bound on the size of C,
Since {C, | g € G} is a partition of {0,1}", we get

2'n,
> —.
maxCy 2 o5
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6.3 Two V;-sets

First construction

Let G := Zg_1. Let 8 be a primitive element in Fje. Let
H:{heG‘ﬁh“—ﬁng}.
Then n:=#H =q— 1.
We use the notation
oy = B9 — B forall g € G.
We define the function L : F, — F, by
BL(CYH‘I — B + a.

Decoding algorithm.

Comment: ¢ is the sum whose addends we shall determine.

determine (yo,71,. .. , V- 1) € F} by Bt — Bt = 34,87

{61,(52,... 6,5} :—{ )’YJ(SJ —0}
zz-:zL((S)forzzl 2,.
{hil,hiQ,... }:{ |1<Z<t Zl#O}

Proof of the decoding algorithm.

Let 7 := {j17j27"'7js} Wherelgjl§j2§"'§js§n70§8§t7 and
C .= ZjEIh] Let
(20, 215 -+ 5 2) = (Njyy hjyy o oo 2 By, 0,0, ,0).

Then ¢ _, (2}, + 1) = c+t. Hence
t t—1
pett = H Bt = T1(B+ ) =B+ > o)
k=1 1=0
Therefore, v; = oy () for j =0,1,... ,t — 1, where a = (@1, ..., ).

Hence 01,02,...,0; are the same as a,;,a,,... ,a, is some order and so
_ ! !/ !/ —
{2’1,22,. .. ,Zt} = {21,22,. .. ,Zt} and {h’iuhiz) N 7hir} = {h’jnh’jz: N 7h’js}‘
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Second construction

Let m := (¢"*' —1)/(¢—1) and G := Z,,. Let ( be a primitive root in Fje+1.
Let

H = {h ‘ 0 < h<mand Elagbo), agl) c Fq such that ﬁh _ CV;ZO) + agl)ﬂ}

Then n := #H =q.
We define the function A by

Al oty = h.

Decoding algorithm.

Comment: ¢ is the sum whose addends we shall determine.

determine (yo,71,...,%) € F} by f° = 25 7,07;

(61,65, ,6,} = {5 t(—1)iy00 = 0};
hi, == A(0y) for k =1,2,...,r.

Proof of the decoding algorithm.

Let Z := {j1,72,.-. ,Js} where 1 < j; < jo < -+ < js<m, 0<s <t and
¢:=Y ez hj. Since f" ¢ Fy when 0 < h < m, a,(:) # 0. Hence

p=TI0% = I1(of) +afl)

jezT jez
1 0, (1
= 11 a%j) 1I <[3 + a}J/a}J)
jer  jer
= H a/;:]) ZO's_l(Oé)ﬁl,
JET T 1=0

where « := (ag;)/ agj)) jez. Hence

_ O'S—l(a) HjEI a;:]) for0 <[ < S,
v 0 for s <1 <t.
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Therefore,

t s
S et = [ of) (L oa(@:).
1=0 =0

jeT

and so the roots of 3f_,(—1)'y2! =0 are {a,&g)/a,&lj)

RS I}. Hence

(A [ k=1,2,...,r}={h; | j € T}.

6.4 Second construction

Code construction

Let oy, g, . . ., y, be distinct non-zero elements of Fj, and o := (g, g, . .. , @y,).
For x = (z1,%s,...,2,) € {0,1}", let xa = (z101, 2202, ... ,Tyay,). For
gi,92,.-.., Gt € an let

Corgsr g i= {X e {0,1}" ‘ o(xa) =g for 1 <1< t}.

Decoding algorithm.
Comment: The received vector is y.

Comment: e; is the j’th unit vector.

hy = o(ya) for l =0,1,... ,t;
Ay =1;
for [ :=1totdo Al =g — Zé’:l h/jAlfj;

ooy b= {22 0] S =0
decode intoy + 7%, €, .

Proof of decoding algorithm.

Let x € Cy, 4,,..g. be sent. Suppose errors occurs in positions ji, jo, ... , Js
where 0 < s <tand 1 <j; <jo <---<js <m Let J:={j1, 52, ,7s}
and Z:={1,2,... ,n} \ J. Then xay = a,

g = o(xa) = oy(xazr|xay) for 1 <1<t
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and
hy = o(ya) = 0,(xaz|0) = o)(xaz) for 1 <1 < t.

By Lemma 6.1(iii), g, = ¥)_o hjoi_j(az). Hence A; = oy(ay) for 0 <1 < t.
Therefore {a;,, aj,,...,a; } are the non-zero roots of Yi_(—1)'4; ;2 =0
and we decode into y + 377, e;, = X.

Bound on the size of the code.

Since {C’gl,gz,"_ gt

91,92, ... ,0; € Fq} is a partition of {0,1}", we have

n
max #C > —.
q

6.5 Third construction

Code construction

Let 3 be a primitive element of F,. Let a;, as, ... , a, be distinct non-zero ele-
ments of Z, 1, and let o := % —1fori=1,2,... ,n, a:= (g, s, ... ,a),
a:= (aj,as,...,a,). For gi,g9,...,9: 1 € F,and m € Z, 1, let

Co1.920 g0 1,m = {X € {0,1}" | oy(xa) =g for 1 <1 <t—1, o1(xa) = m}.

Decoding algorithm.

Comment: The received vector is y.
Comment: e; is the j’th unit vector.

hy = o(ya) for l =0,1,... ,t —1;

M := oy(ya);

Ay =1;

forl:=1tot—1do A, :=g, — 22:1 hjA;_j;
for!:=0tot—1do B, := é’:o (i:{)Aj;

B, = gm—M;

{ai,a5,,... ,0;} = {z #0 ‘ S (1B 57t = 0};
decode into y + 37 _; €;, .
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Proof of decoding algorithm.

Let x € Cy, gs,... ,»_1,m D€ sent. Suppose errors occurs in positions ji, jo, . . . , Js
where 0 < s <tand 1 <j; < jo < - <js <m. Let J :={j1,52,---,7Js}
and Z:={1,2,... ,n} \ J. Then xay = a,

g = o(xa) = oy(xaz|xay) for 1 <1<t -1,

and
hy = o(ya) = oy(xaz|0) for 1 <1 <t—1.

By Lemma 6.1(iii), g; = 35—, hjor_j(az). Hence A; = oy(arz[0) for 0 <1 <
t — 1, where 0 € {0} *. By Lemma 6.1(iv)

t t_ .
B = Z(t_§>0j(aj|0)zal(aj+1|1)
=0

= o (B, B, 8%, 80,8 ..., )
for 0 <[l <t — 1. Further
Bt - Bajl+aj2+m+ajs = Ot (ﬁah:/@ah: ce 7ﬁaj57/807/807 v 7&0) .

Hence {i1,42,... ,4.} = {J1,J2,.-. ,Js} and we decode into y +>°;_, e;, = x.

Bound on the size of the code.

Since {C’gl,gQ,_,_,gt_l,m ‘ 91,92, ---,9t—1 € F,and m € qu} is a partition of
{0,1}", we have

n

max C > —_— .
#O 2 (g —1)gt1

6.6 Lower bounds on «(n,t)

Theorem 6.1 (i) If n is a power of a prime, then
2n
nt+nt71+___+]_'

a(n,t) >

(ii) If n + 1 is a power of a prime, then
2n

a(n,t) > CEEE
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(iii) If q is the least prime power > n + 2, then, fort > 2,

2n

a(n, t) Z W

Proof: (i) and (ii) follows from the code construction in 6.2, using the second
and first Vi-set of 6.3 respectively, and (iii) follows from the code construction
in 6.5.

Corollary 6.1 For fized t,

aln,t) > > (1 4 0(1)>

n

when n — 00.

Proof: from the theory of primes it is well known that there exists a 0 < 1
such that for all large n there exists a prime p such that n < p < n + n’.
Hence, if ¢ is the least prime power > n, then ¢ < n +n°, and we get

a(n,t) > (0 £ )i _2"(n T %(1 + 0(1)).

6.7 Notes

The basic idea of the code constructions in this chapter is due to Varshamov
and Zograbjan [92] and Varshamov |[88],|89], generalizing the 1-code con-
struction of Varshamov and Tenengolts [91].

6.2. The general construction is due to Delsarte and Piret [17]. They also
gave a general formula for the weight distribution of these codes.

6.3. The two V;-sets are due to Bose and Chowla [9]. They were first applied
to code construction by Graham and Sloane [45|. For ¢t = 2, the first
Vi-set was given by Singer |75| and applied to code construction by
Varshamov [88].

6.4. If t < p, then {(g,g2, ey gh) ‘ g€ Fq*} is a V; set in F} and the codes

constructed from this V;-set coincide with our construction in this case.
This may be proved using Newton’s equations connecting power sums
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and elementary symmetric functions. For ¢ = p, this construction is
due to Varshamov and Zograbjan [92] (for ¢ = 2) and Varshamov [88]
(for general t). Mazur [62] proved that if ¢ = p and n = p — 1, then

-1 2072 (p—1) (ptetv”/z - 1)
<
p' Vept (p eVP/2 _ 1)

for any choice of gq,9s,...,9. For general ¢, Dynkin and Togonidze
[21] gave a special case of the construction. For ¢ < p the general
construction is due to Delsarte and Piret [17]. Graham and Sloane [45]
used a closely related construction to construct constant weight codes.

#091,92,... »gt -

6.5. If £ < p. then {(5 —1p 1, B0~ 1a) [ae Zq_l} is a V-

set in F}™! X 74—y and the codes constructed from this Vi-set coincides
with our construction. For ¢ = p, the construction is due to Varshamov
and Zograbjan [92] (for ¢ = 2) and Varshamov [88] (for general t).
Decoding was discussed by Nalbandjan [65],|66].
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Chapter 7

Other multiple error correcting
codes

7.1 Modified Kim-Freiman codes

Code construction
Suppose n = (t + 1)m and let H be a code of length m having Hamming
distance at least 2¢ + 1 between distinct code words, and 0 € H.

C = {(X|X@h1||X@ht> XE{O,l}m,’w(X> even, hl,hl,...,hleH}

u{(x|x| %) ‘ x € {0,1}™, w(x) odd}.

Proof that C is a t-code

Let u = (x|x®hy| - |x®h) and v’ = (X'|x'®h}|- - |x'®h}), where u # u'.
Case I, h; # h for some i. Then

2A(u,u’) > d(u,u’) > d(x,x') + d(x @ h;,x' @ h)
= d(x'®h;,x®h;) +d(x® h;,x' ® h)
> d(x' @ h;,x' @ h}) =d(h;,h}) > 2t+ 1.

Hence A(u,u’) >t + 1.
Case II, h; = h! for all ¢, h; # 0 for some i. Then x # x’, and w(x) and

63
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w(x") are both even. Hence, putting hy = 0, we get

2A(u, ) > d(w, ) = 3 d(x @ by, X & ) = (¢ + 1) dx, x) > 20t + 1)

=0
Case III, h; = h] = 0 for all <. Then x # x’ and so
A(w,u) = (t+1)A(x,x') >t + 1.

Size of the code.

Choosing H as large as possible, we get

40 = 9m1 (A(m, 2%+ 1) + 1).

Remark. Kim and Freiman proposed a larger code than the one we have
given. E.g. for t = 2 and n = 3m, m > 5, they gave

O {(X|X@ hy|x @ hy) ‘ x € {0,1}™, hy, hy € H}

However, this is not a 2-code. To show this, let h; # hs, and suppose they
differ in position 7, say. Then

A<(0|h1|h2), (e;]e; ® hyle; @ h2)> _ 9.

7.2 Delsarte-Piret 2-codes

Delsarte and Piret gave constructions for 2-codes for 8 < n < 14 and n = 16,
and these are the largest known codes for theses parameters.

n = 16.
Let C' be the cyclic [17, 8] code generated by 2® + 25 + 2° + 27 + 21 + 21! +

22 4+ 2. Let
T = {$8+$10+$11+$14, $+x8+$10+x13’ x2+x4+x11+x13,
x2+x5+x7+1‘14, x+x4+x7+x9, x5+x11+x12+x15,
1+$6+x12—|—a:13, x2+x3+x9+x15, 1+x3+x4+x10,
x5+x6+$9+x10}.
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Let
C = {X € {0,1}'°

(x|0) € C'UT or (x]1) € C' UT}.

Then C'is a 2-code and #C' = 266.

n = 14.

Let C' be the Nordstrom-Robinson code of length 16. Let S, (abc) denote
the set of codewords in C" of weightw, having a, b and ¢ as their last three
coordinates. Similarly, S, (bc) := S, (0bc) U S, (1bc). Let

C" :={0,1}USs(00)USe(10)USe(11)USs(01)USs(10)US19(00)US15(01)US1o(11).

Let
C .= {X € {0, 1}

(x|be) € C" for some b, ¢ € {0, 1}}

Then C'is a 2-code and #C' = 186.

n=13.

Using the same notations as for n = 14, let

C" = {0,1} U Ss(000) U Se(010) U Se(011) U Ss(111) U Sg(001) U Ss(010)
US10(000) U S19(001) U S10(011).

Let

¢ = {xe {01}

(x|abe) € C" for some a, b, ¢ € {0, 1}}

Then C'is a 2-code and #C' = 98.

n=12.

There exists a position such that zero appears in this position for 50 of the
code words of C*. Deleting this coordinate in these codewords we get a
2-code of length 12 having 50 codewords.
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n = 11.
Let
C' = {0, (11000100000), (00110001000), (00001010001)}
U {all cyclic shifts of (11101001000)},
and let

C:.=C"ucC.

Then C is a 2-code having 30 codewords.

n =238,9,10.

The columns of the following matrices are 2-codes of lengths 8,9, and 10 and
sizes 7, 12, and 18 respectively.

0100101 010100011011 000011100101111001
0100111 010010101011 000101110010110101
0101011 010001110011 001010111000101011
0001011 001100101101 010001011001011101
0001101 001010110101 010100101100010111
0011101 001001011101 010010010110011011
0010111 000110010111 001001001110011011
0010011 000101100111 011000100011001111
000011001111 001100010101100111
000110001011110011

7.3 Notes

7.1. The code of Kim and Freiman [51] were the first codes constructed for
correction of multiple asymmetric errors, and are included here for this
reason.

7.2. The constructions appear in Delsarte and Piret [17],[18]. For a dis-
cussion of the [17,8] code and the Nordstrom-Robinson code, see e.g.
MacWilliams and Sloane [61].
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Dynkin and Togonidze [21] discussed the use of a certain cyclic code for
correcting multiple asymmetric errors.

Codes to correct t or less adjacent errors have been constructed by Var-
shamov et al. [90], Oganesyan and Yagdzhyan [67], Klimiashvili [54], and
Tenengolts [80].



68 CHAPTER 7. OTHER MULTIPLE ERROR CORRECTING CODES



Chapter 8

Error burst correction

8.1 Preliminaries

Definition 8.1 If x € {0,1}" is transmitted and errors occur in positions
Q1,09 ... 0, where iy < iy < ---i,, then we say that an (error) burst of
length ¢, — 4, + 1 has occurred.

Remark. Any error pattern is a burst as defined above. The codes we con-
struct are able to correct a burst of length less than or equal to some pre-
defined bound, i.e. the length of the burst, not the number of errors is the
focus of attention.

8.2 Generalized Oganesyan-Yagdzhyan codes

Code construction.

In this construction

b is a positive integer (maximal burst length),

c:=2b—1,

m is a positive integer such that ged(m,c) =1
and such that all prime factors of m exceed b,

n = cm.
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For ay € Z,, and a; € Zy for 1 < j < ¢, let

> iz; =ap  (mod m),

=1

> @jike=a; (mod2)forl<j< c}.

610,0,0,1,...,0,C = {X € {07 l}n

These codes are able to correct a burst of length b or less. We give a
slightly less formal description of the decoding algorithm than usual.

Decoding algorithm.

Comment: y is the received vector.
Comment: e; is the 7’th unit vector.

determine a, by, bs, ... ,b. by
a= (Z?:l Zyz> —ap (mod m), 0 <a<m;

by = <ZT_01 yj+kc> —a; (mod 2), b; <€ {0,1}, for j =1,2,... ,¢;

§ 1= 22521 by
if s =0 then decode into y
else
begin
determine j; by b5, =l and b; =0for j; —b+1<j<j —1;
Comment: let b; := b if j <1
determine k by kcs = a — Zg-z;-ll’fl gb; (mod m), 0 <k < m;
Comment: let b; :=b; .if j > ¢
. j14+b-1
decode into y + Z;le bj€jike
end.

Remark. If no 7; or no k exist, then decoding has failed.

Proof of decoding algorithm.

Let x be sent. If no error occurs, then b; =0 for j =1,2,... ,¢, s =0, and
we decode into y = x. Suppose errors occur in positions iy, is, ... ,%,, where
i < i < ---1, <4y +0b. Let ¢ = ¢, + Ac where 0 < ¢; < ¢. Then b; =1 for
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j=u (modc), 1 <1 <7, and b; = 0 otherwise. Hence s = r and j; = ;.
Further,

r r 11+b—1
a=> =Y (u+Ai)= > jbj+Aer (mod m).
=1 I=1 j=i1

Hence k = A (we have ged(er,m) = 1 since ged(c,m) = 1 and if p is a prime
factor of m, then p > b > r) and we decode into y + >3], €,,4xc-

Bound on the size of the codes.

If N, , is the size of the Varshamov-Tenengolts code Cy of length n, then

Nna
0
max #Cao,al,...,ac > ’

a1,02,..,0c - 2C

since {C’ao,ah_",ac a; € {0,1} fori =1,2,... ,c} is a partition of Cy,. In

particular
Nn,O _ 1 (n+1)/d—1
oo 8%, o000 2 90" = o0 %1 2 ¢(d).
d odd

8.3 Davydov-Dzodzuashivili-Tenengolts codes

Code construction
In this construction
k and b are positive integers,
K= [k/b],
m := [log, k|.
For x € {0,1}", let
x() .= (xkfib+1:$k7z'b+2a .- >$k7z'b+b)

fori=1,2,...,k (where ; = 0 for j <0) and

x© .= éx(i).
i=1
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Let s(x) be defined by
s(x) =Y iwx®) (mod 2™), 0 < s(x) < 2™
i=1

Let .
s(x) = ;2
=0

be the binary expansion of s(x), and define u(x) by
u(x) := (Sm, 50,51, -+ 5 Sm)-
The code is
C = {(x|x<0>|u(x)) ‘ x € {0, 1}k}.

This code is able to correct a burst of length b or less.

Decoding algorithm.

Comment: (y|yo|v) is the received vector,
Comment: y € {0,1}*, yo € {0,1}°, v € {0,1}™ "2

if v; = vy49 or YO = yq, then decode into (y|y@|u(y))

else

begin
determine o by 0 = (Z?jz Ui2i2> —s(y) (mod 2m+1) —2m < g < 2™
if 0 < 0 then decode into (y|y® |u(y))

else

begin
z:=y, ®y";
r=w(z);
i im Lo/

p =0 —ir;
determine z; and z, such that z = (z1|z5), w(z;) = p,
and such that z, is as short as possible;
determine y € {0,1}* by ¥ := y() @ (z,]0),
g(i+1) .— y(i—i—l) D (0|Z1)
) =y for j & {i,i +1};

< g
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decode into (y|y©@|u(y))
end;
end.

Proof of the decoding algorithm.

Let (x|x(®|u(x)) be sent. If no error occurs, then y(®) = yy and we decode
into (x|x®|u(x)). Suppose a burst of length b or less has occurred. Then
either x or u(x) are received without errors.

Case I, all the errors are in the x|x(0) part; say the right-most error occurs in
x5, Then x*) — y(&) = (£|0) where we assume that the rightmost element
in f is a 1, let the length of f be . Then y+t) = x(Z+1) — (0|g), for some
g of length b — A\, and y) = xU) for j ¢ {L, L + 1}. Therefore, since u(x) is
received error free, we get

o = 5(x) — (s(x)~ Lu() ~ (L+ Du(g) ) = Lu((£lg)) +u(g) (mod 2"7)
However, 0 < Lw(f) + (L + 1)w(g) < k < 2™, and so

o= Lw((flg)) + w(g)-

Further z = (£|0) + (0|g). Therefore, r = w((f|g)), i = L, and p = w(g).
Hence z; = g and 2z, = f, and so § = x and we decode in (x|x(®|u(x)).
Case II, there are one or more errors in the u(x) part. Then x is received
without errors. Suppose v; =0 and u; = 1 for j = ji,J2,...,Jr and v; = u;
otherwise. If vy # uy OT Vyy12 # Upyo, then v; = vy, 0 = 0 (since uy = Uppi2),
and we decode into (x|x|u(x)). Otherwise

m+1

o= (v;—u;)2"% (mod 2™)
i=2
and so, since
m+1 )
_(2m — 1) S Z (’UZ' — ui)21_2 < 0,
i=2

we have —2™ < o < 0, and we decode into (x|x(@]u(x)).

Size of the codes.

The length of the code is n =k + b+ [log, k| + 2 and #C = 2*.
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8.4 Notes

8.2. The construction given is essentially due to Oganesyan and Yagdzhyan
|67]. However, they only considered the case where m is a prime.

8.3. The construction is due to Davydov, Dzodzuashivili, and Tenengolts
[16].



Chapter 9

Codes for non-binary alphabets

9.1 Preliminaries

Many of constructions given in the previous chapters carry over to the non-
binary case. We shall give the necessary definitions and state the main results
without proofs. The (input and output) alphabet is A = {0,1,... ,a — 1} of
size a.

Definition 9.1 An a-ary channel is asymmetric if it has the property that if
symbol b is sent, then only symbols from the set {0,1,... b} can be received.

Definition 9.2 Forx,y € A", let

(1) w(x) =2, o,
(”) N(X7 Y> = Z?:l maX{y’i — Ly, 0}7
(1ii) A(x,y) :=max{N(x,y),N(y,x)}.

If x is sent and y is received, we say that w(x — y) errors have occurred.
A code correcting t errors is called a t-code.

Theorem 9.1 C' C A" is a t-code if and only if A(x,y) >t for allx,y € C,
X#Yy.
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9.2 1-codes

The Stanley-Yoder construction carries over to arbitrary alphabet size: if G
is a group with the properties given in 4.1 and g € G, then

Cy = {XEA”

995 gt = g}-

The weight distribution of the corresponding generalization of Constantin-
Rao codes is given by the following theorem.

Theorem 9.2 Let G be an Abelian group of order N, and let g € G. Let

t(g,w) == #{X cCy

w(x) :w}

and
N-1
Tg(y) = Z t(g,w)yw
w=0
Then
c-ged(a,d
(1 _ yad/gcd(a,d)> ged(a.d)
1 1—y
Tg(y)zﬁl_ a > c Se(d).
Y ca=n (1 _ yd>
9.3 t-codes

The Varshamov constructions carry over to arbitrary alphabet size. The
definition of a Vi-set has to be modified to require that the sums h;, + h;, +
coo 4 hy, where 1 <4 <49 <o <4, <, 0 < 7 < ¢, and where each
subscript appears at most a — 1 times, are distinct. We note that the two
Vi-sets given in 6.3 satisfy this condition. If H is a modified V;-set in G and
g € G, then

Cy = {XEA”

Z xih; = g},
i=1

and
n

a
réleaé(#cg > G




9.4. NOTES 7

The constructions in 6.4 and 6.5 have the following generalizations (using
the notations of 6.4 and 6.5):

C

g gt = {x e A" |o(xa) =g for 1 <1< t},

and

Corogon girm = {x c A" |oy(xa) =g for 1 <I<t-—1, oy(xa) = m}

9.4 Notes

All the results stated in this chapter are generalizations of results previously
given in the binary case. The results may be proved by a modification of the
proofs of the binary results.

9.1. The definition of A and Theorem 9.1 are due to Delsarte and Piret
[17],[19].

9.2. Theorem 9.2 is due to Helleseth and Klgve [48].
9.3. Varshamov [88] considered codes over arbitrary alphabet size. Gener-

alizations were given by Delsarte and Piret |17].

Kipshidze et al. 52| gave a code for the asymmetric channel with seven
symbols.

Robinson |71] discussed codes for a ternary asymmetric channel with
some additional restrictions. This coding problem was further discussed
by Klgve [59).

Codes for an asymmetric channel of a different kind was given by
Arakelov and Tenengolts [2]
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