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Abstract.

In this paper we test two recently published Matlab codes, adaptsim and adaptlob,
using both a Lyness–Kaganove test and a battery type of test. Furthermore we modify
these two codes using sequences of null rules in the error estimator with the intention
to increase the reliability for both codes. In addition two new Matlab codes apply-
ing a locally and a globally adaptive strategy respectively are developed. These two
new codes turn out to have very good properties both with respect to reliability and
efficiency. Both algorithms are using sequences of null rules in their local error estima-
tors. These error estimators allow us both to test if we are in the region of asymptotic
behavior and thus increase reliability and to take advantage of the degree of precision
of the basic quadrature rule. The new codes compare favorably to the two recently
published adaptive codes both when we use a Lyness–Kaganove testing technique and
by using a battery test.
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1 Introduction.

Automatic algorithms are now used widely for the numerical calculation of
integrals. Since the first such algorithm was given by McKeeman [19] in 1962,
many new and sophisticated algorithms, both adaptive and non-adaptive, have
been developed, among these [4, 6, 13, 20, 22].
Recently Gander and Gautschi [10, 11] published a paper describing two new

adaptive quadrature codes, adaptsim and adaptlob. These two codes are writ-
ten in Matlab and they are both compared to the two Matlab codes quad and
quad8 and in addition to several routines in a number of well known software
libraries. Gander and Gautschi use a battery test of 23 test functions and con-
clude that the two new codes are much better than Matlab’s currently available
quad and quad8 and that the two new codes in addition are better than the rest
of the available quadrature software in 2/3 of the tested cases.
In automatic quadrature algorithms the estimate of the true error in the ap-

proximation of the integral governs the decision on whether to return the cur-
rent approximation and terminate or to continue. Both the efficiency and the
reliability therefore depend heavily on the error estimating procedure. In many
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adaptive algorithms the local error estimate is simply taken as the absolute value
of the difference between two quadrature approximations, that is the absolute
value of one null rule. Testing has shown, Berntsen [1] and Berntsen et al. [3],
that routines applying such a simple local error estimate may be very unreliable.
Unfortunately the two new codes by Gander and Gautschi are based on such
a simple error estimate and are therefore potentially more unreliable than the
tests run by Gander and Gautschi indicate.
More sophisticated local error estimating algorithms have been suggested by

several authors de Boor [6], Piessens et al. [20], Berntsen and Espelid [2] and
Espelid [7]. One of the most successful adaptive quadrature algorithms so far, see
[1] and Espelid and Sørevik [9], is QAG in QUADPACK, [20]. This algorithm,
using a Gauss–Kronrod rule as a basic rule, has a heuristic local error estimating
algorithm developed especially for this type of rule. Data from experiments,
showing the performance of the usual error estimating procedure, has been used
to construct this local error estimating algorithm.
Ten years ago Berntsen and Espelid, [2], presented a new error estimator to be

used in adaptive quadrature algorithms. This error estimator was designed using
a sequence of null rules and can be applied in connection with many different
basic quadrature rules. In [2] it was demonstrated that this error estimator
functions well in adaptive algorithms using either Gauss–Legendre rules, Gauss–
Kronrod rules, Clenshaw–Curtis rules or Lobatto rules as their basic quadrature
rule. The main conclusion in the paper was that both Gauss–Legendre rules and
Lobatto rules are good basic rules and will function well both with respect to
reliability and efficiency in future codes using this new error estimator.
While the error estimator developed in [2] was based on a sequence of symmet-
ric null rules of different polynomial degrees, Espelid in [7] suggested to use both
symmetric and anti-symmetric null rules in a slightly modified error estimator.
This modification makes it possible to construct error estimators in the original
spirit but using fewer evaluation points in the basic integration rule.
We will, in this paper, test adaptsim and adaptlob using both a Lyness–

Kaganove testing technique and a battery test. Furthermore, we will modify
both adaptsim and adaptlob with an error estimator tailored to the two dif-
ferent rules the two codes use and demonstrate that it is possible to improve
reliability and at the same time improve efficiency when the accuracy request is
high.
Finally we will, inspired by the good results achieved by modifying adaptsim,

develop two new codes, coteda and coteglob, both based on the five and nine
points Newton–Cotes rules. We use these two rules in a doubly adaptive manner,
which turns out to be superior to adaptsim/adaptlob both compared through
the Lyness–Kaganove testing and the battery testing.
I have to admit that I am quite surprised by the good performance of the two

new codes and I would never have tried to develop codes based on Newton–Cotes
rules if it had not been for the paper by Gander and Gautschi.
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2 A sequence of null rules.

We define the integral to be computed by

I[f ] =
∫ b

a

f(x) dx.(2.1)

We will in the following develop sequences of null rules designed to be used in
connection with symmetric quadrature rules. We refer the reader interested in a
more general presentation of these ideas to [2]. Given 2n+ 1 distinct points xi,
i = −n, . . . , n in the interval [a, b] and a quadrature rule based on these points

Q[f ] =
n∑

i=−n

wif(xi).(2.2)

xi and wi, i = −n,−n+ 1, . . . , n, are the rule’s nodes and weights respectively.
We assume xi < xi+1 for i = −n,−n+1, . . . , n− 1. By a simple translation this
rule may be used on any of the local intervals produced by an adaptive algorithm.
As mentioned we assume the rule to be symmetric, say x0 = (a + b)/2 is the
midpoint and then x−i − x0 = −(xi − x0) for i = 1, 2, . . . , n. Furthermore,
w−i = wi for i = 1, 2, . . . , n.
A quadrature rule Q[f ] has degree d if it integrates exactly all polynomials of

degree ≤ d and fails to integrate exactly f(x) = xd+1. An interpolatory quadra-
ture rule based on 2n + 1 distinct nodes has degree at least 2n. A quadrature
rule based on 2n+1 distinct nodes of degree d ≥ 2n is unique and therefore has
to be interpolatory. A quadrature rule based on 2n+1 nodes has degree at most
4n+ 1 (Gauss–Legendre).
The term null rule was first used in 1965 by Lyness, [16]. The following

definition of a null rule is useful in this context.

Definition 2.1. A rule

N [f ] =
n∑

i=−n

uif(xi)(2.3)

is a null rule iff it has at least one nonzero weight and in addition
n∑

i=−n

ui = 0.

A null rule is furthermore said to have degree d if it integrates to zero all poly-
nomials of degree ≤ d and fails to do so with f(x) = xd+1. Assume that the
rule’s nodes are symmetric in the integration interval then a null rule is said to
be symmetric if in addition u−i = ui for i = 1, 2, . . . , n. Similarly a null rule is
said to be anti-symmetric if both u0 = 0 and u−i = −ui for i = 1, 2, . . . , n.

Remark 2.1. Changing the direction of integration in (2.1) will leave I[f ]
unaffected. Using symmetric rules and null rules imply that both Q[f ] and
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N [f ] are unaffected too. An anti-symmetric null rule will give the same value
but the opposite sign due to this change of integration direction. This implies
that an error estimator which is based on the absolute values of symmetric and
anti-symmetric null rules will be unaffected of this change too.

Suppose that the 2n + 1 nodes are fixed and that the unique interpolatory
rule Q of degree d is chosen as the quadrature rule in the adaptive algorithm. A
sequence of null rules N1, N2, . . . are now easily constructed based on these 2n+1
nodes. Let f [z0, z1, . . . , zm] be a divided difference for the function f based on
the set of distinct points {z0, z1, . . . , zm} which is a subset of the 2n+1 nodes. It
is well known that a divided difference is simply a linear combination of function
values and that f [z0, z1, . . . , zm] gives the value zero for all polynomials up to
degree m− 1 and the value one for f(x) = xm. Therefore the divided difference
f [z0, z1, . . . , zm] is a null rule of degree m− 1.
This implies that f [x−m, x−m+1, . . . , x0, x1, . . . , xm] is a null rule of degree

2m− 1, for m = 1, 2, . . . , n. Furthermore it is easy to prove that these null rules
are all symmetric. Similarly f [x−m, x−m+1, . . . , x−1, x1, . . . , xm] is a null rule of
degree 2m− 2, for m = 1, 2, . . . , n. These null rules are all anti-symmetric.
Now following [2], we define an inner product between two null rules, Nu and

Nv, based on the same set of 2n+ 1 points as follows

(Nu, Nv) =
n∑

i=−n

uivi,(2.4)

and a null rule’s 2-norm as ||Nu||22 = (Nu, Nu). We obviously have, with this
inner product, that a symmetric null rule and an anti-symmetric null rule are
orthogonal null rules.
It is straightforward to construct a sequence of null rules, N1, N2, . . . , N2n

of decreasing degrees 2n − 1, 2n − 2, . . . , 1, 0 that are all orthogonal. We only
apply a Gram-Schmidt orthogonalization process separately on each of the two
sequences starting with the null rules of highest degrees. Obviously, every odd
numbered null rule will retain its symmetry after this orthogonalization process
and this will similarly be true for every even numbered anti-symmetric null rule.
Furthermore we may assume that all these null rules have been normalized

through the same 2-norm, a natural choice is ||Nj ||22 = ||Q||22 =
∑n

i=−n w
2
i .

Through this choice one can show ([2]) that when the null rules are applied to
a smooth function f over an interval of length h then Nj [f ] = O(h2n+2−j) for
j = 1, 2, . . . , 2n.

3 A local error estimating algorithm.

In this section we will develop a local error estimating algorithm which is a
modification of the algorithm presented in [2]. Given a symmetric set of 2n+ 1
distinct points and suppose furthermore that a sequence of 2n orthonormal null
rules has been constructed as described in the previous section. For a given
sub-interval of length h and function f we may compute the 2n inner products

Ej = |Nj [f ]|, j = 1, 2, . . . , 2n.
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Asymptotically we get

Ej = O(h2n+2−j)), j = 1, 2, . . . , 2n.(3.1)

Defining the local error as

E0 = |Q[f ]− I[f ]|

gives the following asymptotic expression

E0 = O(hd+2),(3.2)

where d ≥ 2n is the rules degree of precision.
This implies that when h is sufficiently small and f is sufficiently smooth, then

we can expect that
E0 � E1 � E2 � · · · � E2n.(3.3)

Furthermore we define the reduction factors

rj = Ej/Ej+1, j = 1, 2, . . . ,K,

for a value of K < 2n and
r = max

j=1,2,...,K
rj .

Observe that r = O(h) asymptotically, and we would therefore expect r < 1
when h becomes sufficiently small. In view of (3.3) we see that a necessary
test on whether h is small enough and f sufficiently smooth, is to check that
r < rcritical for a heuristic value of rcritical < 1. If this test is passed, we may
apply an optimistic error estimate based on (3.1) and (3.2)

Ê = c rαE2.(3.4)

Choosing E2 in this error estimate instead of E1 is an attempt to reduce
possible phase factor effects (see [2]) on the error estimate. Since the order is
satisfied then it is less likely that both E2 and E1 are influenced by phase factor
effects at the same time. Observing that r0 = E0/E2 is of order O(hd+2−2n) we
may choose a value of α in the range 1 ≤ α ≤ (d + 2 − 2n) depending on the
degree of optimism we want to put into this algorithm.
In order to test whether we have reached the noise level or not we have also

introduced a noise test, as in [20], following our local error estimating algorithm.
Initially we define, for the whole interval [a, b], the value isabs =

∑n
i=−n |wif(xi)|

and then the problem’s noise level is defined through noise = 50 ε isabs, where
ε is the machine epsilon. The local error estimating algorithm, defining a similar
local noise level, then appears as follows:
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The local error estimating algorithm A

Compute: Ej = |Nj [f ]|, j = 1, 2, . . . ,K + 1;
rj = Ej/Ej+1, j = 1, 2, . . . ,K;
r = maxj=1,2,...,K rj ;

Non-asymptotic: if r > 1 then Ê = C maxj=1,2,...,K+1 Ej

Weak asymptotic: elseif rcritical ≤ r then Ê = C r E2

Strong asymptotic: else Ê = C r1−α
critical r

α E2

endif
The noise test : if E1 < noise and E2 < noise then Ê = 0

Remark 3.1. a) we may get r > 1, even though we are in the asymptotic
region, simply because the precision of the actual computer may influence the
computations. If the correct values of E1 and E2 are very small, then they both
may consist mainly of noise from the computations. Example: if f is constant
in a subinterval then all null rules will give the value zero and the noise test will
correctly put Ê = 0.
b) The choice of constants are aiming at creating as smooth an error estimator
as possible.
We have used The local error estimating algorithm A to modify the two codes

developed by Gander and Gautschi in [10, 11]. Gander and Gautschi’s two codes
and the two modifications can be shortly described as follows:

• adaptsim: This code is developed by Gander and Gautschi. The code is
based on a five point closed Newton–Cotes rule which can be viewed as an
extrapolation of Simpson’s rule. Furthermore the code applies bisection
in a locally adaptive strategy making use of Matlab’s recursive function
option. All function evaluations, except for five extra function evaluations
computed initially, contribute to the final estimate.

• modsim: This code is developed in this paper. It is based on the same
quadrature rule as adaptsim but uses the local error estimating algorithm
A tailored to this five point rule and intended to improve the code’s re-
liability compared to adaptsim. Furthermore it uses the same adaptive
strategy as adaptsim, but applies a nine point closed Newton–Cotes rule
to get an initial estimate of the integral to be used in the error estimation
of the relative error. Furthermore in the first step a division into four
subintervals is used implying that all computed function values contribute
to the final estimate.

• adaptlob: This code is developed by Gander and Gautschi. The code
is based on a seven points Lobatto–Kronrod rule constructed by Gander
and Gautschi in [10, 11]. The code uses a locally adaptive strategy with a
division in six subintervals in each step. Thus all computed function values
contribute to the final estimate (here too an exception occurs initially: six
extra initial function evaluations.)
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• modlob: This is a modification of the previous code with respect to two
issues: First it uses the local error estimating algorithm A tailored to the
seven points Lobatto–Kronrod rule in order to improve the codes reliability,
and second the division in six subintervals is replaced by bisection in order
to improve the codes adaptability. The last change implies that the code
no longer makes use of all function evaluations in the final estimate.

In both modsim and modlob we use C = 32, rcritical = 1/2 and K = 3. We
have d = 5 in modsim and d = 9 in modlob and we have chosen α one unit less
than the maximum values in both cases due to the fact that we have locally
adaptive algorithms. Furthermore in modsim and modlob we redefine the user
specified tolerance to be on the noise level whenever the code finds the specified
tolerance too small. Thus, using these two codes it is normally not possible to
approximate an integral to machine precision contrary to what is possible in the
two codes adaptsim and adaptlob.

4 Lyness–Kaganove testing of the four codes.

The test families used in our experiments are given in Table 4.1, and they are
picked from [1, 18] and [21].

Table 4.1: Test families used in Lyness–Kaganove testing.

Test families Attributes

1.
∫ 1

0 (|x− λ|)α1 dx Singularity

2.
∫ 1

0
f2(x) dx Discontinuous

where f2(x, y) =
{

0 if x ≤ λ
exp(α2x) otherwise

3.
∫ 1

0 exp(−α3|x− λ|) dx C0 function

4.
∫ 2

1 10α4/((x− λ)2 + 102α4) dx One Peak

5.
∫ 2

1

∑4
i=1 10

α5/((x− λi)2 + 102α5) dx Four Peaks

6.
∫ 1

0 2B(x− λ) cos(B(x − λ)2) dx Non-linear Oscillatory
where B = 10α6/max(λ2, (1− λ)2)

In our experiments we have chosen the difficulty parameters αi, i = 1, ..., 6,
to be (numbered from family 1 to 6): α = (−0.5, 0.5, 2.0,−4.0,−2.0, 2.0). The
random parameters, λ(or λi, i = 1, ..., 4, for test family 5), are picked randomly
from the region of integration using the Matlab function random(’unif’,...).
We have tested the codes for error tolerances tol = 10−1, 10−2, ..., 10−12. (For
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the Test family 1 we stop at 10−5.) For these values of tol and for each test
family we have asked all routines to compute the integrals for 1000 samples
of random parameters, and in all cases the four routines adaptsim, modsim,
adaptlob and modlob report that the returned values satisfies the error request.
For the complete test results we refer the reader to the Appendix in Espelid [8]
where we list six tables containing all results from these tests. In Figures 5.1
and 5.2 we plot the work and failures for all four codes and all six test families.
In order to summarize the Lyness–Kaganove testing we will characterize a

code unreliable when applied to a specific family if we have more than 10 %
failures for any of the error tolerances tested.
adaptsim appears to be unreliable in this sense for all six test families. In 51

out of 65 error tolerances counted over all six families this code has failures for
more than 10 % of the cases and in many cases the number is greater than 30
%. In addition, for many of the families the average number of wrong digits is
more than one for this code.
adaptlob appears to be much more reliable than adaptsim, but still only

for Test family 2 (Discontinuous) this code appears to be reliable in the sense
defined above. adaptlob has failures in more than 10% of the samples in 18 of
the 65 error tolerances tested. For the test families 4, 5 and 6 failures above
10 % appear for low accuracies only, which is quite normal for a code with this
simple type of error estimator. As commented by Gander and Gautschi both
these codes are very unreliable on singular functions (Test family 1).
Both modifications appear to give reliable routines for all test families and are

therefore an improvement compared to their counterparts with respect to relia-
bility, as expected. Furthermore these two modifications appear to be generally
more efficient than their counterparts especially for higher accuracies, say asking
for more than five digits. This is due to the optimism we have put into The local
error algorithm A when we detect strong asymptotic behavior.
In such a comparison a code with a failure percent of more than 10% should not

be considered more efficient no matter how few function evaluations it has used.
In particular it is surprising how well modsim is doing when it comes to efficiency
compared to adaptlob for five of the six tested families. This observation is the
reason that I found it interesting to develop a doubly adaptive code based on
two Newton–Cotes rules.

5 Two doubly adaptive algorithms.

In this section we are going to develop two algorithms with different adaptive
strategies. All four codes we have looked at so far make use of the recursive
option in Matlab implying that all four codes are locally adaptive: the subin-
tervals are processed from left to right until the integral over each subinterval
satisfies the relative error requirement. This means that locally adaptive algo-
rithms need an a priori approximation of the whole integral to be used in the
local error estimator. This is due to the fact that as the computation proceeds
in a locally adaptive algorithm this a priori estimate can not be updated until
all subintervals are processed and the computation is finished.
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Figure 5.1: Test families 1, 2 and 3.
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Figure 5.2: Test family 4, 5 and 6.
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This is in contrast to a globally adaptive strategy where one in each step of
the computation chooses as the next interval to be processed the interval with
the greatest error estimate. This interval is then subdivided and both parts
(using bisection) are processed and stored in a data structure before the next
interval is picked. Thus one may update the current global approximation all
the time, which implies that this approximation is as good as it possibly can be.
Furthermore, in a global strategy one may set an upper bound on the number
of function values to be used and then leave it to the algorithm to find the best
approximation.
A disadvantage with the global strategy is the need to keep all intervals ex-

plicitly in a data structure in order to find the interval with the largest error
estimate. It is quite common to use a heap to organize the intervals, however
in this Matlab code we have decided to use a simple table in order to make use
of Matlab’s max function when searching for the next interval to be processed.
The local strategy, making use of the recursive option, is considerably simpler
and saves time using only a stack to store intervals that have to wait before they
can be processed further.
These two adaptive strategies are in contrast to a so-called non-adaptive strat-

egy where the original interval is never subdivided: given a sequence of quadra-
ture rules Q1, Q2, . . . , QL for some integer L > 1. These rules are based on an
increasing number of nodes and are possibly of increasing polynomial degree.
The non-adaptive algorithm applies the rules one at the time starting with the
cheapest rule, estimates the current error and then decide whether to stop or to
continue with the next rule in the sequence.
One may combine an adaptive and a non-adaptive strategy as follows: (1)

Pick an interval to be processed in an adaptive strategy and, (2) start a non-
adaptive handling of this interval and, (3) do not bisect the interval until all L
quadrature rules have been applied to this interval. The idea of such a doubly
adaptive strategy was first presented by Cools and Haegemans in [5]. They also
allowed the algorithm to decide how many of the available L rules to use before
subdivision should take place.
We will develop two different doubly adaptive algorithms in the following. The

two codes’ properties can be described as follows:

• coteda: this is a new code making use of both the five point closed
Newton–Cotes rule and the nine point closed Newton–Cotes rule in a lo-
cally doubly adaptive fashion based on bisection. The code is allowed to
stop either because the five point estimate is considered good enough or
because the nine point estimate is considered good enough. The nine point
estimate requires four new points in addition to the five point estimate,
but these are the same points needed in two applications of the five point
rule after bisecting the interval.

• coteglob: This code is basically similar to coteda except that it applies
a globally doubly adaptive strategy instead of the recursive strategy. This
implies a need for explicit handling of data structures in order to retrieve
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information about intervals that we want to process further at a later stage.
The code is here mainly included in order to illustrate a major difference
between local and global strategies.

The following two Newton–Cotes rules, here presented for the interval [−1, 1],
are thus used by both codes

QA[f ] = {7[f(−1) + f(1)] + 32[f(−1/2) + f(1/2)] + 12f(0)}/45,

and the nine point rule

QB[f ] = {989[f(−1)+ f(1)] + 5888[f(−3/4)+ f(3/4)]− 928[f(−1/2)
+f(1/2)] + 10496[f(−1/4)+ f(1/4)]− 4540f(0)}/14175.

These two rules have degree of precision five and nine respectively. The
nine point rule has some negative weights, however ||QB||2 ≈ 1.25 compared
to ||QA||2 ≈ 1.0634 so there is little difference in the rules’ 2-norms.
Furthermore, observe that having applied QB on an interval and deciding that

it is necessary to bisect this interval then it is possible to apply QA to each half
without any extra function evaluations. On the other hand, having applied QA

to an interval and deciding that we have to process this interval further, then
after computing four new function values we may apply QB on this interval and
maybe stop or decide that further subdivision is necessary.
Using two rules is the simplest possible doubly adaptive strategy and we ob-

serve that in our case this is achieved with little extra cost compared to not
introducing QB in the algorithm: we need a local error estimator to be designed
for the nine point rule. Having nine nodes makes it possible to construct eight
orthonormal null rules and then combine these rules in pairs, as in [2], to reduce
phase factor effects:

The local error estimating algorithm B

Compute: ej = Nj[f ], j = 1, 2, . . . , 2K + 2;

Ej =
√
e22j−1 + e

2
2j , j = 1, 2, . . . ,K + 1;

rj = Ej/Ej+1, j = 1, 2, . . . ,K;
r = maxj=1,2,...,K rj ;

Non-asymptotic: if r > 1 then Ê = C maxj=1,2,...,K+1 Ej

Weak asymptotic: elseif rcritical ≤ r then Ê = C r E1

Strong asymptotic: else Ê = C r1−α
critical r

α E1

endif
The noise test: if E1 < noise and E2 < noise then Ê = 0

Note that r = O(h2) if f is smooth and the interval is small enough. Both codes
use this error estimator with K = 3, rcritical = 1/4. The constants C and α are
set differently in coteda and coteglob. α is set one unit larger in the global
code than in the local code. The basic algorithm for this doubly adaptive global
code has the following structure:
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(a) Test family 1: Singularity. (b) Test family 2: Discontinuous.
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(c) Test family 3: C0 function. (d) Test family 4: One peak.
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(e) Test family 5: Four peaks. (f) Test family 6: Non-linear oscillatory.

Figure 5.3: Test families 1,2,. . . ,6: work.
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A Globally Doubly Adaptive Quadrature Algorithm

Initialize: Initialize the interval collection and put M = 1;
Use QB to produce Q̂1, Ê1; Put Q̂ = Q̂1; Ê = Ê1;

Control: while Ê > tol ∗ |Q̂| do
begin
Pick an interval from the collection; say interval Hk;

Process this interval: if rule QB has been applied then
Apply rule QA twice: Compute Q̂(1)

k , Ê(1)
k , Q̂(2)

k , Ê(2)
k ; Put m = 2;

else
Apply rule QB once: Compute Q̂(1)

k and Ê(1)
k ; Put m = 1;

end
Update: Q̂ = Q̂+

∑m
i=1 Q̂

(i)
k − Q̂k;

Ê = Ê +
∑m

i=1 Ê
(i)
k − Êk;

Let these m intervals replace interval Hk in
the collection and put M =M +m− 1;
end

As remarked earlier four new function values must be computed prior to apply-
ing rule QB (nine in the initialization step), while no new function evaluations
is needed when rule QA is applied. Furthermore we have suppressed the test on
too small intervals, designed in the spirit of Gander and Gautschi, the counting
of function evaluations and a continuously updating of the noise level (through
updating isabs) which all are included in the globally adaptive code.
We have tested these two new codes on the six families given in Table 4.1.

When it comes to reliability the two new codes hold the same high quality on
these tests as do modsim and modlob so we do not include plots on the failures
for the two new codes. The interested reader is referred to the Appendix in [8]
where this information is available. In Figure 5.3 we plot the work for the six
different families.
coteda is the most efficient code on the test families 1 and 6, while coteglob

is the most efficient code on the four other test families, however there are small
differences between coteglob and coteda for test families 2, 3 and 5. Finally,
coteglob gives a very reliable impression with very few failures. In addition this
code gives a number of warnings about too small intervals when the accuracy
request is high.
Family 4 demonstrates the advantage of the globally adaptive approach nicely.

An initial estimate of such a peak function tends to underestimate the correct
value, maybe with several orders of magnitude. The effect of this in a local code
will be that the effective absolute error tolerance becomes much smaller than
intended implying increased computational cost to meet such a requirement.
A global code avoids this problem by updating the estimate regularly as the
computation proceeds. This observation implies that comparisons of different
local codes are difficult since they are all very sensitive to getting the magnitude
of the initial estimate correct. A severe underestimate may therefore improve



DOUBLY ADAPTIVE QUADRATURE ROUTINES 333

reliability and ruin the efficiency no matter how good the error estimator and
quadrature rule are, conversely an overestimate has the opposite effect.
Finally one should add that codes based on rules with few nodes, all codes in

this paper uses less than ten nodes, may have trouble in handling some problems
with a stronger difficulty than considered in this paper. To illustrate this one
may e. g. try to increase the difficulty parameter for Test family 6 from two to
three and discover that none of the codes in this paper are able to handle such
a difficult oscillation problem well, especially for low accuracy requests. Tests
done in [2] demonstrate that quadrature software based on basic rules using 21
nodes is able to handle this particular difficulty level for Test family 6 quite
well. Thus, quadrature software packages should offer codes where choosing the
number of nodes in the basic quadrature rule is a user option. Few nodes implies
a very adaptive code, however for oscillating problems adaptivity is normally less
important.

6 Results from the battery test

We have also tested all six codes1 discussed in this paper on the 23 test prob-
lems used by Gander and Gautschi in their battery test. Gander and Gautschi
[10, 11] have picked a total of 23 different test problems from two different
sources: the 21 first comes from Kahaner [15] and the last two are picked from
[12], see Table 6.1.
We have tested all six codes discussed in this paper on twelve different error

tolerances tol =10−1, 10−2, . . . , 10−12 and the results can be found in the Ap-
pendix in [8]. In order to summarize the results of this battery test we have
constructed the Table 6.2. Here we give, for each of the 23 problems, the follow-
ing information:

• A blank position: for all twelve accuracies we have success.

• An integer gives the number of cases out of the twelve tested accuracies
where we have a failure. In parenthesis we also give the number of cases
where the error is more than one digit.

• A star means that this code uses the fewest number of function evaluations
in at least six successful cases out of the twelve tested accuracies. The
minimum number is picked among those of the six codes with a satisfied
accuracy request. A star may appear in combination with a blank or an
integer.

Observe that coteda and coteglob are the most efficient codes (indicated by
the star) in 14 out the 23 problems tested. Furthermore there is little observed
difference between these two codes for many of the tested problems. Only Prob-
lem 9 seems to have no winning code, however if we remove adaptsim from this

1The six Matlab codes are all available on the Web: adaptsim and adaptlob on W. Gan-
der’s homepage http://www.inf.ethz.ch/personal/gander/ while modsim, modlob, coteda and
coteglob can be found via T. O. Espelid’s homepage: http://www.ii.uib.no/˜terje/.
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Table 6.1: Test problems in this battery test.

Test problems

1.
∫ 1

0
exp(x) dx.

2.
∫ 1

0
f(x) dx, where f = 1 if x > 0.3 else f = 0.

3.
∫ 1

0

√
x dx.

4.
∫ 1

−1(
23
25 cosh(x)− cos(x)) dx.

5.
∫ 1

−1 1/(x
4 + x2 + 0.9) dx.

6.
∫ 1

0

√
x3 dx.

7.
∫ 1

0 1/
√
x dx.

8.
∫ 1

0
1/(1 + x4) dx.

9.
∫ 1

0
2/(2 + sin(10πx)) dx.

10.
∫ 1

0 1/(1 + x) dx.
11.

∫ 1

0 1/(1 + exp(x)) dx.
12.

∫ 1

0
x/(exp(x) − 1) dx.

13.
∫ 1

0.1 sin(100πx)/(πx) dx.
14.

∫ 10

0

√
5 exp(−50πx2) dx.

15.
∫ 10

0
25 exp(−25x) dx.

16.
∫ 10

0
50/(π(2500x2 + 1)) dx.

17.
∫ 1

0 50(sin(50πx)/(50πx))2 dx.
18.

∫ π

0 cos(cos(x) + 3 sin(x) + 2 cos(2x) + 3 cos(3x)) dx.
19.

∫ 1

0 f(x) dx, if x > 10−15 then f = log(x) else f = 0.
20.

∫ 1

−1
1/(1.005 + x2) dx.

21.
∫ 1

0

∑3
i=1 1/ cosh(20

i(x − 2i/10)) dx.
22.

∫ 1

0
4π2x sin(20πx) cos(2πx) dx.

23.
∫ 1

0 1/(1 + (230x− 30)2) dx.

competition due to lack of reliability then coteda becomes the best code in this
case too.
adaptsim appears clearly as the most unreliable code of these six codes based

on these 12 × 23 = 276 tests. adaptsim does not meet the requested error
tolerance in 117 of these cases. Furthermore in 40 of these 117 cases the error is
greater than one digit. This confirms the impression from the Lyness–Kaganove
testing that this code is very unreliable.
adaptlob appears on the other hand to be very reliable based on this battery

test with 11 failures in these 276 cases. 6 of these 11 failures are severe with
more than one digit wrong. However, 4 out of these 6 severe failures appear on
Problem 21. Thus the battery test and the Lyness–Kaganove test give a different
impression of this code when it comes to reliability.
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Table 6.2: Summarizing the results for the battery test.

Problem adaptsim modsim adaptlob modlob coteda coteglob
1 * *
2 12 * *
3 11 *
4 3(2) * *
5 *
6 *
7 12 3 *
8 *
9 4
10 * *
11 * *
12 * *
13 5(2) 1(1) *
14 8(3) *
15 11(4) *
16 10(5) *
17 10(9) 1 2(1) 3(2)/* 1
18 *
19 11 *
20 *
21 8(4) 3(2) 5(4) 9(8) 4(3) 5(4)/*
22 12(11) *
23 *
Sum 117(40) 4(2) 11(6) 9(8) 7(5) 6(4)

The other four codes have all less than ten failures on this battery test. These
failures appear on the problems 17 and 21. Problem 21 is a very difficult three
peak problem where the width of the strongest peak is the major difficulty. We
observe between three and nine failures for the four codes on this problem, most
of them of the severe kind.
On the other hand, Problem 21, which all codes have trouble handling, be-

comes much easier for all codes if the problem is split in two intervals with
division point 0.6 (the center of the strongest peak).

7 Conclusions

adaptsim turns out to be a very unreliable code both in the Lyness–Kaganove
test and in the battery test. adaptlob on the other hands gives a very reliable
impression in the battery test, while the Lyness–Kaganove test gives a different
picture.
I will characterize both modifications as successful in the following sense: they

both appear to be very reliable codes. Naturally we get an increased cost for
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low accuracies, but when we have a high accuracy request both modifications
demonstrate generally better economy than their counterparts adaptsim and
adaptlob. However, compared to coteda and coteglob the two modifications
are not able to compete with respect to efficiency neither for low nor for high
accuracy requests.
Both coteda and coteglob demonstrate very good efficiency and reliability

both in the Lyness–Kaganove test and in the battery test. Furthermore both
codes have a very good error tolerance responsiveness: that is being sensitive
to changes in the error tolerance. Finally both codes demonstrate that they are
generally far better than both adaptsim and adaptlob when asking for high
accuracy.
Five of the tested codes are based on Matlab’s recursive function option and

thus locally adaptive. coteglob is the only code in this test which is globally
adaptive and needs an explicit data structure in order to handle the global
strategy. If we do not include adaptsim and coteglob in the comparison (lack
of reliability/explicit data structure) then coteda becomes the best code for all
23 problems in the battery test and at the same time the best code for all six
test families in the Lyness–Kaganove test. Being aware of the fact that both
adaptsim and adaptlob now, in slightly modified versions, have replaced quad
and quad8 in Matlab’s quadrature software I would consider coteda a strong
competitor to both these two new Matlab codes and to codes in other software
libraries.
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