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Abstract

We consider additive codes over GF(4) that are self-dual with respect to the
Hermitian trace inner product. It has been shown that these codes can be repre-
sented as graphs, and that two codes are equivalent iff the corresponding graphs
are equivalent with respect to local complementation and graph isomorphism. We
use these facts to classify all codes of length up to 12, where previously only all
codes of length up to 9 were known.

1 Introduction

An additive code, C, over GF(4) of length n is an additive subgroup of GF(4)n. C con-
tains 2k codewords for some 0 ≤ k ≤ 2n, and can be defined by a k×n generator matrix,
with entries from GF(4), whose rows span C additively. C is called an (n, 2k) code. We
denote GF(4) = {0, 1, ω, ω2}, where ω2 = ω+1. Conjugation of x ∈ GF(4) is defined by
x = x2. The trace map, Tr : GF(4) 7→ GF(2), is defined by Tr(x) = x + x. The Hermi-
tian trace inner product of two vectors over GF(4) of length n, u = (u1, u2, . . . , un) and
v = (v1, v2, . . . , vn), is given by u ∗ v =

∑n
i=1 Tr(uivi). We define the dual of the code

C with respect to this trace inner product, C⊥ = {u ∈ GF(4)n | u∗c = 0 for all c ∈ C}.
C is self-orthogonal if C ⊆ C⊥. It has been shown that self-orthogonal additive codes
over GF(4) can be used to represent quantum error-correcting codes [1]. If C = C⊥,
then C is self-dual and must be an (n, 2n) code.

The Hamming weight of u ∈ C is the number of nonzero components of u. The
minimum distance of the code C is the minimal weight of any codeword in C. A code
with minimum distance d is called an (n, 2k, d) code. The weight distribution of the code
C is the sequence (A0, A1, . . . , An), where Ai is the number of codewords of weight i.
We distinguish between two types of codes. A code is of type II if all codewords have
even weight, otherwise it is of type I. A type II code must have even length. Bounds on
the minimum distance of self-dual codes were given by Rains and Sloane [2]. A code
that meets the appropriate bound is called extremal.
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Two self-dual additive codes over GF(4), C and C′, are equivalent iff the codewords
of C can be mapped onto the codewords of C′ by a map that must consist of a per-
mutation of coordinates (columns of the generator matrix), followed by multiplication
of coordinates by nonzero elements from GF(4), followed by possible conjugation of
coordinates. For a code of length n, there is a total of 6nn! such maps. Those maps
that map C to C make up the automorphism group of C, denoted Aut(C). The number
of distinct codes equivalent to C is then given by 6nn!

|Aut(C)| . By summing the sizes of all
equivalence classes, we find the total number of distinct codes of length n, denoted Tn.
It was shown by Höhn [3] that Tn is also given by the mass formula,

Tn =
n∏

i=1

(2i + 1) =
∑
C

6nn!
|Aut(C)|

, (1)

where the sum is over all equivalence classes.
All self-dual additive codes over GF(4) of length n have previously been classified,

up to equivalence, by Calderbank et al. [1] for n ≤ 5, by Höhn [3] for n ≤ 7, by
Hein et al. [4] for n ≤ 7, and by Glynn et al. [5] for n ≤ 9. Höhn [3] also classified all
type II codes of length 8. Gaborit et al. [6] classified all extremal codes of length 8, 9,
11, and 12. Bachoc and Gaborit [7] classified all extremal type II codes of length 10.

2 Graph Representation

A graph is a pair G = (V,E) where V is a set of vertices, and E ⊆ V × V is a set
of edges. A graph with n vertices can be represented by an n × n adjacency matrix
Γ, where γij = 1 if {i, j} ∈ E, and γij = 0 otherwise. We will only consider simple
undirected graphs whose adjacency matrices are symmetric with all diagonal elements
being 0. The neighbourhood of v ∈ V , denoted Nv ⊂ V , is the set of vertices connected
to v by an edge. The induced subgraph of G on W ⊆ V contains vertices W and
all edges from E whose endpoints are both in W . The complement of G is found by
replacing E with V × V − E, i.e., the edges in E are changed to non-edges, and the
non-edges to edges. Two graphs G = (V,E) and G′ = (V,E′) are isomorphic iff there
exists a permutation π of V such that {u, v} ∈ E ⇐⇒ {π(u), π(v)} ∈ E′. A path is a
sequence of vertices, (v1, v2, . . . , vi), such that {v1, v2}, {v2, v3}, . . . , {vi−1, vi} ∈ E. A
graph is connected if there is a path from any vertex to any other vertex in the graph.

Definition 1. A graph code is an additive code over GF(4) that has a generator matrix
of the form C = Γ + ωI, where I is the identity matrix and Γ is the adjacency matrix
of a simple undirected graph.

A graph code is always self-dual, since its generator matrix has full rank over GF(2)
and CT C only contains entries from GF(2) whose traces must be zero. This construc-
tion for self-dual additive codes over GF(4) has also been used by Tonchev [8].

Theorem 2. Every self-dual additive code over GF(4) is equivalent to a graph code.
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Theorem 2 was first proved by Bouchet [9] in the context of isotropic systems, and
later by Schlingemann [10] in terms of quantum stabilizer states. It can be shown that
isotropic systems, quantum stabilizer states, and self-dual additive codes over GF(4)
are equivalent objects. Proofs of Theorem 2 have also been given by Grassl et al. [11],
by Glynn et al. [5, 12], and by Van den Nest et al. [13].

Definition 3. Given a graph G = (V,E) and a vertex v ∈ V , let Nv ⊂ V be the
neighbourhood of v. Local complementation (LC) on v transforms G into Gv. To
obtain Gv, we replace the induced subgraph of G on Nv by its complement.

Theorem 4. Two self-dual additive codes over GF(4), C and C′, with graph represen-
tations G and G′, are equivalent iff there is a finite sequence of not necessarily distinct
vertices (v1, v2, . . . , vi), such that (((Gv1)v2)···)vi is isomorphic to G′.

Bouchet [9] first proved Theorem 4 in terms of isotropic systems. The same result
was discovered by Van den Nest et al. [13] in terms of quantum stabilizer states, and
by Glynn et al. [5, 12] using finite geometry.

3 Classification

Definition 5. The LC orbit of a graph G is the set of all non-isomorphic graphs that
can be obtained by performing any sequence of LC operations on G.

The LC orbit of a graph can easily be generated by a recursive algorithm. We have
used the program nauty (http://cs.anu.edu.au/~bdm/nauty/) to check for graph
isomorphism.

Let Gn be the set of all non-isomorphic simple undirected connected graphs on n
vertices. Connected graphs correspond to indecomposable codes. A code is decompos-
able if it can be written as the direct sum of two smaller codes. For example, let C be an
(n, 2n, d) code and C′ an (n′, 2n′

, d′) code. The direct sum, C ⊕ C′ = {u||v | u ∈ C, v ∈
C′}, where || means concatenation, is an (n+n′, 2n+n′

,min{d, d′}) code. It follows that
all decomposable codes of length n can be classified easily once all indecomposable
codes of length less than n are known.

The set of all distinct LC orbits of connected graphs on n vertices is a partitioning
of Gn into in disjoint sets. in is also the number of indecomposable self-dual additive
codes over GF(4) of length n, up to equivalence. Let Ln be a set containing one
representative from each LC orbit of connected graphs on n vertices. We have devised
several algorithms [14] for classifying codes by finding such sets of representatives. The
simplest approach is to start with the set Gn and partition it into LC orbits. A more
efficient technique was described by Glynn et al. [5]. Let the 2n − 1 extensions of a
graph on n vertices be formed by adding a new vertex and joining it to all possible
combinations of at least one of the old vertices. The set En, containing in−1(2n−1− 1)
graphs, is formed by making all possible extensions of all graphs in Ln−1.

Theorem 6. Ln ⊂ En, i.e., the set En will contain at least one representative from
each LC orbit of connected graphs on n vertices.
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Table 1: Number of Indecomposable (in) and Possibly Decomposable (tn) Self-Dual
Additive Codes over GF(4) of Length n

n 1 2 3 4 5 6 7 8 9 10 11 12
in 1 1 1 2 4 11 26 101 440 3,132 40,457 1,274,068
tn 1 2 3 6 11 26 59 182 675 3,990 45,144 1,323,363

Table 2: Number of Indecomposable Self-Dual Additive Codes over GF(4) of Length n
and Minimum Distance d

d\n 2 3 4 5 6 7 8 9 10 11 12
2 1 1 2 3 9 22 85 363 2,436 26,750 611,036
3 1 1 4 11 69 576 11,200 467,513
4 1 5 8 120 2,506 195,455
5 1 63
6 1

Total 1 1 2 4 11 26 101 440 3,132 40,457 1,274,068

The set En will be much smaller than Gn, so it will be more efficient to search for
a set of LC orbit representatives within En. It is also desirable to partition the set
En such that graphs in two different partitions are guaranteed to be inequivalent. We
can then consider each partition independently, which reduces the amount of memory
required and allow for parallel processing. To do this, we must have some property
that is invariant over the LC orbit and that can be calculated quickly.

The special form of the generator matrix of a graph code makes it easier to find
the number of codewords of weight i < n. If C is generated by C = Γ + ωI, then
any codeword formed by adding i rows of C must have weight at least i. This means
that we can find the partial weight distribution of C, (A0, A1, . . . , Aj), for some j < n,
by only considering codewords formed by adding j or fewer rows of C. We calculate
the partial weight distribution, for a suitable choice of j, of all codes corresponding to
graphs in En. We then partition En such that graphs corresponding to codes with the
same partial weight distribution are in the same partition.

Using the described techniques, and a parallel cluster computer, we were able to
classify all self-dual additive codes over GF(4) of length up to 12. The results have
been verified by calculating the sizes of the automorphism groups of all codes, and then
checking that the mass formula defined by Eq. (1) gives the correct values. Table 1
gives the values of in, the number of distinct LC orbits of connected graphs on n
vertices, which is also the number of inequivalent indecomposable codes of length n.
The total number of inequivalent codes, tn, is easily derived from the numbers in.
The values of in and tn can also be found as sequences A090899 and A094927 in
The On-Line Encyclopedia of Integer Sequences [15]. Table 2 lists the numbers of
indecomposable codes by minimum distance, and Table 3 lists the numbers of type II
codes by minimum distance. A database containing one representative from each LC
orbit, with information about orbit size, weight distribution, etc., is available at http:
//www.ii.uib.no/~larsed/vncorbits/.
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Table 3: Number of Indecomposable (Possibly Decomposable) Type II Self-Dual Ad-
ditive Codes over GF(4) of Length n and Minimum Distance d

d\n 2 4 6 8 10 12
2 1 (1) 1 (2) 3 (5) 11 (18) 84 (109) 2,133 (2,285)
4 1 (1) 3 (3) 19 (19) 792 (793)
6 1 (1)

Total 1 (1) 1 (2) 4 (6) 14 (21) 103 (128) 2,926 (3,079)

4 Conclusions

By using graph representation and equivalence via local complementation, we have
classified all additive codes over GF(4) of length up to 12 that are self-dual with respect
to the Hermitian trace inner product. Using this method to classify all codes of length
13 is not feasible with the available computational resources.

An interesting problem, posed by Höhn [3], is to find the smallest code with trivial
automorphism group, i.e., automorphism group of size 1. We find that there is no such
code of length up to 8, but there is a single code of length 9 with trivial automorphism
group. The smallest type II code with trivial automorphism group has length 12.

The graph representation of a self-dual additive code over GF(4) can also give
information about the properties of the code. Tonchev [8] showed that strongly regular
graphs give rise to interesting codes. In particular, codes represented by the strongly
regular Paley graphs are well-known quadratic residue codes. We have shown that
many extremal and optimal codes can be represented by nested regular graphs [14,16].
Glynn [5] showed that the minimum distance of a code is equal to one plus the minimum
vertex degree over all graphs in the corresponding LC orbit. We have shown that the
LC orbit corresponding to a code with high minimum distance only contains graphs
with small independent sets [14,16].
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[3] G. Höhn, Self-dual codes over the Kleinian four group, Math. Ann. 327 (2) (2003)
227–255, arXiv:math.CO/0005266.

5



[4] M. Hein, J. Eisert, and H. J. Briegel, Multi-party entanglement in graph states,
Phys. Rev. A 69 (6) (2004) 062311, arXiv:quant-ph/0307130.

[5] D. G. Glynn, T. A. Gulliver, J. G. Maks, and M. K. Gupta, The geometry of
additive quantum codes, submitted to Springer-Verlag, 2004.

[6] P. Gaborit, W. C. Huffman, J.-L. Kim, and V. Pless, On additive GF(4) codes, in:
Codes and Association Schemes, vol. 56 of DIMACS Ser. Discrete Math. Theoret.
Comput. Sci., American Mathematical Society, Providence, RI, 2001, pp. 135–149.

[7] C. Bachoc and P. Gaborit, On extremal additive F4 codes of length 10 to 18,
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