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Abstract

This master thesis (hovedfag) looks at the aperiodic autocorrelation of binary
sequences. We give an overview of search techniques and classes of sequences
with low aperiodic autocorrelation sidelobes, and present two new classes. One
of them is the extended Legendre semi-construction that appears to have a MF
> 6.3 for large lengths. We also look at the multidimensional aperiodic auto-
correlation, and present a construction for a new class of sequences with a very
low multidimensional aperiodic autocorrelation.

Keywords: aperiodic autocorrelation, Golay-Rudin-Shapiro sequences, Legen-
dre sequences, Merit Factor, multidimensional autocorrelation, sum-of-squares.
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Chapter 1

Introduction

Binary sequences with low aperiodic autocorrelation play an important role in
many communication engineering problems such as spread-spectrum transmis-
sion techniques. But finding these binary sequences has generally been recog-
nised as a difficult problem, significantly more difficult than finding binary se-
quences with low periodic autocorrelation. The problem resembles the old prob-
lem of finding the needle in a haystack, since the number of sequences with high
aperiodic autocorrelation outnumbers those of low aperiodic autocorrelation. In
the last 50 years or so, researchers have developed techniques to find binary se-
quences with low aperiodic autocorrelation. The first part of this thesis looks at
some of these techniques, and tries to develop new techniques. In particular, we
develop a new semi-constuction for long binary sequences with aperiodic Merit
Factor > 6.3, which for the long lengths constructed is a higher Merit Factor
than for any other long binary sequence known in the literature.

A new field that has not been looked into before is that of multidimensional
aperiodic autocorrelation. In fact, the periodic sum of squares measure, which
is derived from multidimensional periodic autocorrelation, has been used as a
measure of cryptographic strength for binary cryptosystems. However, the ape-
riodic sum of squares and its related multidimensional aperiodic autocorrelation
have, to our knowledge, never been studied before. The second part of this the-
sis takes a closer look at the multidimensional aperiodic autocorrelation using
algebraic normal form. We look at the multidimensional properties of Golay-
Rudin-Shapiro sequences and present a construction for a new class of sequences
with a low multidimensional aperiodic autocorrelation.

1.1 Definitions

An autocorrelation function (ACF) is a function that measures the self-similarity
of a binary sequence. There are three common types of autocorrelation func-
tions, periodic, negaperiodic and aperiodic, although the periodic case is the
most studied. The periodic autocorrelation function (PACF) will measure the
correlation of the sequence with a cyclic shift of itself. Let s be a binary sequence
of length N, such that s = {s¢, s1,...,SN—1}, $; € Z2, and s; = 0,0 >4 > N.



Then the periodic autocorrelation function is defined as
N—1
PACFi(s) : ¢y = »_(—1)% %%, 0<k<N (1.1)
i=0
The parameter IV represents the period of the cyclic shift, & is the shift index at
which the sequence is compared to itself, and the sequence indices, i, are taken
mod N. Another measure of the autocorrelation is the negaperiodic autocorre-
lation (NACF). NACF will measure the correlation of the negacyclic shift of a
sequence against itself. The function is defined as
N—1 '
NACFj(s) inp = 3 (~1)% s+ U 0<k< N (1.2)
i=0
N now represents half the period of the sequence. Once again the indices ¢ are
taken mod N. A third way to measure the autocorrelation is a combination of
periodic and negaperiodic called the aperiodic autocorrelation function (AACF).
When we combine the periodic and the negaperiodic shifts of the sequence we
lose the circularity of the shifted sequence. Instead of shifting the sequence
cyclically, we compare the window of indices where both the shifted sequence
and sequence itself exist. The AACF is then defined as

N—k-1
AACFi(s)rap = ) (1% 7%+, 1<k<N (1.3)
i=0
We can also represent PACF, NACF and AACEF as polynomial multiplication. A
binary sequence s = (8o, 81, 82, ..., SN—1) can be associated with the polynomial
s(x) = 80 + 817 + 5922 + ... + sy_12¥ 1. We can then define

PACF(s(x)) = s(x)s(z™') (mod z — 1) (1.4)
NACF(s(x)) = s(z)s(z™") (mod zV +1) (1.5)
AACF(s(x)) = s(z)s(z™1) (1.6)

This representation includes all shifts — N < k < N, where the autocorrelation
for the kth shift is the coefficient for z*.
Example:

Let N = 5and s = 01011 the PACF is {5,—3,1,1-3}, NACF} is {5,-1,1,-1,1}
and the AACF}, is {5,—1,1,0,—1} as seen below :

| k | Cyclic shift | PACFy, | Negacyclic shift | NACFy, | Acyclic shift | AACFy |

0 01011 ) 01011 5 01011 )
1 10101 -3 00101 -1 0101 -2
2 11010 1 00010 1 010 1
3 01101 1 10001 -1 01 0
4 10110 -3 01000 1 0 -1




O

A common metric used to measure binary sequences with low autocorrelation is
the Golay Merit Factor (MF) proposed by Golay [5]. The periodic Merit Factor
of a binary sequence s, of length N is given by
N2
231 G
and the aperiodic Merit Factor of a binary sequence s of length IV is given by

N2

MPF,(s) = (1.8)

Unless otherwise noted, we will only look at the aperiodic autocorrelation ay,
and the corresponding aperiodic Merit Factor. The higher the Merit Factor
the lower the aperiodic values a; , 1 < k < N. Note that the trivial case
where a9 = N is not used in the calculations of the Merit Factor. The opti-
mal Merit Factor for a binary sequence s of odd length N is obtained when
the AACF values are of the form a; = {N,0,+£1,...,£1,0,£1}, and for N even

ar = {N,+1,0,+,...,£1,0,£1}. This translates to a very loose upper bzound
N

N_1 for

on the aperiodic Merit Factor of a binary length N sequence of N or
N even or odd respectively.

We can also speak of the asymptotic aperiodic Merit Factor for a class of se-
quences. Let C be a class of sequences, and let Sy € C be a sequence of length
N. The asymptotic Merit Factor for the class C is then

limN_wo MFa(SN) = fc (19)

Another metric measure for binary sequences with low autocorrelation is the
sum-of-squares, o,, given by
N—1
oals) = 3 lail? (1.10)
k=1
We see that o, is the major part of the Merit Factor function (1.8), and the
Merit Factor function can be written with the use of o,

N2

MF(s) = 5

(1.11)

There is also a relation between the Merit Factor and the spectral properties of
the signal corresponding to the sequence [13]

L ™ (5()P - N)? d, (112)

00 =
*dr

where S(e™) is the Fourier Transform of the sequence s, and i is the root of
—1. In other words, o, determines the mean-square derivation from the flat



spectrum. (1.12) is significant because it shows how a complicated continuous
integral can be computed in terms of a relatively simple discrete summation.

Example:
If N =5 and s = 01011 the a-values are {5,—2,1,0,—1} (see Example above).
The sum of squares is then

0= (=2 +(1)?+ (0 + (-1)* =4+1+1 =6.

The Merit Factor for this sequence is then

MF(01011) = % =2.08

O

In most of this thesis we will refer to the aperiodic sum-of-squares, o,, simply
by the symbol o.

1.2 Previous Work

Merit Factor

In 1977 Golay [5] introduced a criterion of goodness for low aperiodic auto-
correlation binary sequences as an alternative to the minimal peak sidelobes,
called the aperiodic Merit Factor (see equation 1.8). The Merit Factor is a way
to measure the overall out-of-phase aperiodic autocorrelation for a binary se-
quence. Golay defined the Merit Factor such that the MF of a random binary
sequence should be around 1 with a high probability, and this was also proven
later by Hgholdt [12]. Golay also established a conjecture for an upper bound
for the Merit Factor
MF <1232 V N #13

that will be valid for all binary sequences except the Barker sequence of length
N = 13 which has the highest known Merit Factor: 14.08. A binary sequence
such that the aperiodic autocorrelation ar € {—1,0,1},V k # 0, is called a
Barker sequence and has a maximal Merit Factor. It is conjectured that Barker
sequences exist only when N is prime and N < 13, and Storer and Turyn [25]
proved this Barker conjecture for all odd N.

Apart from a few exceptions, exhaustive search has been the only way to find se-
quences with high Merit Factor. Since the complexity of an exhaustive search is
0(2") the sequence length is limited by the current computation power. Turyn
(see Golay [6]) did an exhaustive search up to length N = 32, and Lindner (see
Luke [16]) up to length N = 40. In 1996 Mertens [18] did an exhaustive search
for binary sequences for lengths up to 48. He used a new search algorithm that
lowers the exponential configuration space from O(2) to O(1.85"). In order
to do this he used the symmetry of the aperiodic autocorrelation function and a
branch and bound technique together with parallelization. With this algorithm
he managed to do an exhaustive search for all lengths up to N = 48 using 313
hours of CPU time on a computer with 4 CPUs. He also estimated that the
optimal MF for a large length sequence will be > 9.0. In 2002 Mertens [19] has



extended his search up to length N = 58. The largest size (N = 58) took about
two weeks on 156 CPUs (mostly PIII, 800 MHz). The result of his search can
be found in Table 2.2 (page 13).

Skewsymmetric sequences

A skewsymmetric sequence of length N = 2n + 1 is found by interlacing a
symmetric sequence AcA of length n + 1 and an antisymmetric sequence BB’
of length n, where the overbar indicates sequence reversal and the prime indi-
cates that each sequence element is complemented. (see Section 2.8). Based
on the observation that all odd Barker sequences are skewsymmetric, Golay [5]
suggests a sieve to limit the search for binary sequences with high Merit Fac-
tor to skewsymmetric sequences. A search for all skewsymmetric sequences up
to length N = 59 shows that skewsymmetric sequences have a high Merit Factor.

In 1990 Golay [8] extends his previous work on skewsymmetric binary sequences.
Here he does a limited search for skewsymmetric sequences of length up to
N = 117. Golay searches for symmetric and antisymmetric sequences with
Merit Factor > 1.0, and the result of this search found MF > 8 for many se-
quences, and even some with MF > 9.

Another search for binary sequences with high MF where skewsymmetric se-
quences are used is described in [20]. In [20] the authors use an evolutionary
search (somewhat similar to the directed search of this report in Section 2.4)
on skewsymmetric sequences. They manage to find some good sequences of
length up to 201 with MF > 7. The evolutionary searches take p skewsymmet-
ric starting sequences, and for generation/iteration find A new skewsymmetric
sequences by flipping n > 1 bits in the parents. The new sequence will be ac-
cepted if some of the highest aj values have decreased, otherwise another n > 1
bits are flipped. The authors also show that the Merit Factor of a random
skewsymmetric sequence is higher than that of a random sequence, which indi-
cates that skewsymmetric sequences have high MF, but only % of the optimal
Merit Factors found are associated with skewsymmetric sequences.

Classes of Sequences

It has been shown that some of the known classes of sequences also have a high
asymptotic Merit Factor. One class of sequences that can be constructed from
the Hadamard difference set is the maximal length shift register sequences (m-
sequences). In [13] Jensen, Jensen and Hgholdt show that the asymptotic Merit
Factor of any m-sequence of length N = 2" — 1 is three.

Another class of sequences with a high Merit Factor is the modified Jacobi se-
quence. A modified Jacobi sequence is a binary sequence S = (sq, $1,-..,SN_1)
of length N = pq, where p < ¢ are distinct odd primes. A special case of the
modified Jacobi sequences is when ¢ = p+ 2, which produces a Twin-Prime se-
quence. In [13] Jensen, Jensen and Hgholdt show that a Twin-Prime sequence
shifted by i has an asymptotic Merit Factor of six. They have also shown that
for any sufficiently large N = pq it is possible to construct a Jacobi or modified
Jacobi sequence of length N with asymptotic Merit Factor six, if p and g satisfy



the condition
(p+ 9)®log'N

N =0, for N =

A third class of sequences that can also be constructed from the Hadamard
difference set is the Legendre sequence. In 1983 Golay [7] proved that a Leg-
endre sequence offset by a fraction f of its length NV has an asymptotic Merit
Factor F that could be found by

1 2

F=Coafire, i<y (113)

which gives an asymptotic MF of 6 when |f| = %. An offset sequence is one in
which a fraction of f bits of the sequence is chopped off the end of the Legendre
sequence and appended at the other, in other words a cyclic shift of fIV places.
Golay proved this using probability theory and an ”external” assumption. This
assumption was that, for the asymptotic case, one can consider the correlation
values ay, to be independent random variables, which according to [13] they are
not for a fixed N. In [11] Hgholdt and Jensen give a proof that (1.13) is true,
without the assumption Golay used. They also conjecture that the best possible
asymptotic value of the Merit Factor is six for a given construction, and that
the shifted Legendre sequences therefore are optimal.

Kirilusha and Narayanaswamy [14] used Legendre sequences in an attempt to
find new constructions of binary sequences with high Merit Factor based on
known constructions. They hoped to find a class of sequences with an asymp-
totic Merit Factor above 6.0, but they did not find such a class. What they
did find was that adding +1 to the front of a shifted Legendre sequence did not
change the asymptotic Merit Factor of 6.0. Extending this they showed that
adding u < O(N 2) bits in front of a shifted Legendre sequence would not change
the asymptotic Merit Factor if the u new bits were taken from the end of the
shifted Legendre sequence itself. They also showed that by adding the last bits
of any sequence to the front of the same sequence, the aperiodic autocorrelation
of the new sequence is actually related to the periodic autocorrelation of the
original sequence.

Another class of sequences that turns out to have high Merit Factor is an infinite
family of sequences with low negaperiodic autocorrelation [21]. Two of these
constuctions of even length binary sequences also have a high asymptotic Merit
Factor of six. This class of sequences has length N = 2p (see section 2.6).

A class of sequences that also has a high asymptotic Merit Factor was inde-
pendently discovered by Golay [3] and Rudin-Shapiro [24]. The class of Golay
Complementary Sequences (GCS) is known to exist for lengths N = 22105267,
a,,v > 0 [26]. Golay Complementary Pairs are binary sequences a and b that
satisfy the condition
ar(a) +ar(d) =0, k#0

where ay, is the aperiodic autocorrelation defined in (1.3). Generation of GCP
of length 2N can be done from a GCP of length N using a recursion

(a,b) = (alb, alb")



where means concatenation and b means the complement of sequence b.
This is in fact the well-known Golay-Rudin-Shapiro recursion that gives the
name for this class of sequences : Golay-Rudin-Shapiro sequences (GRS). In [1]
Davis and Jedwab showed that GRS sequences can also be represented using
Algebraic Normal Form (ANF) (see Section 3.3)

7|7

n—2 n—1
S(X) = (Z .’L'ﬁ(j)ll,',r(j+1)) + (Z bj.’Ej) + d, bj,d € Z2 (114)
Jj=0 Jj=0

where 7 is any permutation of Z,, ,_1,%n_1,..., o are boolean variables and
s is a length IV = 2" binary sequence such that

S; = S(mn_l = in_l,lL'n_Q = in_g, ey g = io)

where ,_1,%p—2, ---, 5 is the binary representation of the integer i. This repre-
sentation defines a class of binary GRS sequences of length N = 2", C of size
27+l . 2 Tn [9] Jensen, Jensen and Hgholdt show that the asymptotic Merit
Factor of a GRS sequence of length N = 2" is three for a subset of the sequences
in C. This subset of sequences contains 27t! of the sequences in C and can be
constructed using (1.14) without the permutation w. The authors also give a
proof that the aperiodic autocorrelation for this subset of binary GRS sequences
of length N = 2" follows the recursion

Op = 20'7;,—1 + San—Z

where o, is the same as the sum-of-squares o, defined in (1.10).

Multidimensional autocorrelation

In addition to the 1-dimensional autocorrelation, one can also define a multi-
dimensional two-point autocorrelation function for binary sequences of length
N = 2". The multidimensional periodic sum-of-sqares, defined the same way as
the 1-dimensional using the multidimensional periodic autocorrelation function,
has been used in cryptography [17]. This multidimensional periodic autocorre-
lation is used to assess cryptographic strength of a boolean function.

10



Chapter 2

Sequences with good
aperiodic Merit Factor

Finding binary sequences with good aperiodic Merit Factor (MF) is usually not
an easy thing to do. There are two main ways of finding them. The first is to
do an exhaustive search for sequences with good Merit Factor, and the second
is to construct the sequences such that the MF is known to be high.

2.1 Random Distribution of the Merit Factor

When Golay defined the Merit Factor in [5] he constructed the measurement
such that for large N the expected Merit Factor of a random sequence is 1.
This was also proven by Hgholdt in [12]. This means that if you take a random
sequence of sufficient length, the Merit Factor for this sequence will be around 1
with a high probability. Based on this we would expect the random distribution
of the Merit Factor to be centred around 1.

Fig. 2.1 show the distribution of 2!® random sequences of length N = {64, 256,
257,1024}. From the diagrams it looks like the distribution is more concen-
trated around 1 when the sequence length increases. This would suggest that it
will be much harder to find sequences with high Merit Factor of larger length,
not only because there are more sequences, but also because the number of
good sequences does not appear to increase with the sequence length. But the
distribution seems to be independent when it comes to the number of prime
factors in the sequence length. There is almost no difference in the distribution
for length N = 256, an even number with factors (2-2- 2-2-2-2-2-2), and
length N = 257, an odd number with only one factor (257).

2.2 Exhaustive search for the best MF

We know that a random binary sequence is expected to have a Merit Factor
of 1. The question is now how to find sequences with high MF, or even the
sequences with the highest MF. But finding the best sequences from the 2V
different sequences of length N is a not an easy task. Because each autocor-

11
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Figure 2.1: Random distribution of the Merit Factor

relation function aj contributes quadratically to the sum-of-squares o,, (see
equation 1.11) the existence of a single large aj can reduce the Merit Factor of
a sequence drastically. The a; values are not independent and therefore each
change in the sequence leading to an improvement of one a; value will change
the other ay values as well. This means that the only way to find the sequence
with the optimal MF appears to be by using an exhaustive search through all
the different sequences. The complexity of this type of search is non-polynomial
in N, specifically O(N?2 - 2V), where for each of the 2%V sequences the MF com-
putation requires O(N?).

This exponential complexity will prevent an exhaustive search for large N due
to the computational resources needed for the search. Mertens has in [18] done
a search up to N = 48 using a parallel algorithm with 4 computers, and by
2002 he has managed to get as high as N = 58 [19]. The exhaustive search for
the best MF of length N = 58 took two weeks on 156 CPUs (mostly PIII, 800
MHz). The optimal sequences of length 27 < N < 58 from this search can be
found in Table 2.2. Sequences are written in run-length notation where each
figure indicates the number of consecutive elements with the same sign.

12



Example:

Let 311 be the run-length notation for a sequence s. The binary form of s would
then be s = 00010 if we start with the first elements in the alphabet, which is

0 for the binary case.

| Length, N | MF | o, | Sequence
27 9.85 | 37 | 34313131211211
28 7.84 | 50 | 34313131211212
29 6.78 | 62 | 212112131313431
30 7.63 | 59 | 551212111113231
31 717 | 67 | 7332212211112111
32 8.00 | 64 | 71112111133221221
33 851 | 64 | 742112111111122221
34 8.89 | 65 | 842112111111122221
35 839 | 73 | 7122122111121111332
36 7.90 | 82 |3632311131212111211
37 7.96 | 86 | 844211211111122221
38 8.30 | 87 | 8442112111111122221
39 7.68 | 99 | 82121121234321111111
40 7.41 | 108 | 44412112131121313131
41 7.78 | 108 | 343111111222281211211
42 8.73 | 101 | 313131341343112112112
43 8.48 | 109 | 1132432111117212112213
44 7.93 | 122 | 525313113111222111211121
45 8.58 | 118 | 82121121231234321111111
46 8.08 | 131 | 823431231211212211111111
47 8.18 | 135 | 923431231211212211111111
48 8.23 | 140 | 3111111832143212221121121
49 8.83 | 136 | 215131311224112241141141
50 8.17 | 1563 | 215131311224112241141142
51 8.50 | 153 | 23432111141313116212112121
52 8.14 | 166 | 51161212121111131223123332
53 8.26 | 170 | 4511311133251312221112111121
54 8.33 | 175 | 356225141212112222111111121
59 8.85 | 171 | 9212123212114321233211111111
56 8.17 | 192 | 7612231123241111132112122111
57 8.64 | 188 | 33232631111127121111221221211
58 8.54 | 197 | 1111131232138142121132432112

Table 2.1: Mertens [18][19] search for optimal MF for 27 < N < 58

2.2.1 Modifications to speed up the search

There are a few ways to speed up the search a little, but there is no way to
do anything about the non-polynomial complexity of this type of search. The

13
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first modification that can be done is to limit the search to the first half of the
sequences, since the MF of two sequences related by negation will always be the
same. For example the MF of 11001 will be the same as the MF of 00110. The
proof for this comes from (1.3) : the aperiodic autocorrelation function only
compares bits of the sequence pairwise, so if you compare the negation of the
two bits, the result is the same :

N—k—1 N—k-1
AACF(s) tap = (-1)%tssr = N~ (<)% 45, 1<k<N
=0 i=

where prime indicates that the element is complemented. For an exhaustive
search with a lexicographic ordering it is straightforward to show that the last
half of the sequences of length N will be a negation of the first half, based on
the fact that the high order bit sy_; will be 0 for the first half and 1 for the
last half. Therefore in a search for sequences of length N it will be enough to
search through the first 2V ! sequences and still be able to find the highest MF.

The second modification that can be done to speed up the program is to stop
the calculation of the MF if we can see that the new MF cannot meet a MF
threshold. Let F be a threshold for the MF of sequences of length N, and let &
be the sum-of-squares that satisfies
N2

Tg=—, F>0

7T 7
Then let s; be the ith sequence of length N in the search. After calculation
of ag(s;) for k < m the best possible aperiodic autocorrelation values for s;
will be (ag, a1, ---s@m_1, -, £1,0, ..., £1,0,£1) (see Section 1.1). Let o, be the
sum-of-squares for the first m aperiodic autocorrelations of s;

m
om(si) = Z |ak|2
k=1

Therefore if 0, (s;) > & — [25™] we know that

MF(S,) <F

and therefore we can drop the calculation of a for £ > m. The question now is
how to choose F. Looking at Table 2.2 one could argue that F = 7.0 is a good
choice, but this could result in an inconclusive result as it is quite possible that
a sequence with MF > F does not exist. A better choice for F is to choose the
best MF found so far in the search. This way we will not calculate the MF for
all the possible codewords, but it is nevertheless an exhaustive search over all
possible sequences and we will find the highest MF.

The result of a speed comparison with the two modifications implemented can
be seen in Table 2.2. As expected the first modification only takes half the time
to compute since we are only searching through half the sequences. It looks like
the second modification uses only i of what the original search did at first, but
when the sequence length is N = 30 it is about %. This would suggest that the
second modification improves as the lengths gets longer. When we combine the

14



two modifications the time used will be < §. Unfortunately § of O(2V - N?)
is stil non-polynomial complexity, but at least we will be able to extend our
exhaustive search to V + 3 compared to the original problem.

| Length, N | Normal | with 1.mod. | with 2.mod. | with both mod. |

15 0 0 1 0
16 0 0 0 0
17 0 0 0 1
18 0 1 0 0
19 1 1 1 0
20 3 2 1 0
21 8 3 2 1
22 16 8 3 2
23 35 18 8 4
24 76 38 14 7
25 165 82 28 14
26 354 177 65 33
27 762 382 116 60
28 1639 842 297 143
29 3524 1764 643 323
30 7547 3780 1216 612

Table 2.2: Speed comparisons for search space reduction (mod.1) and thresh-
olding (mod.2)

2.3 m-sequence ordering

One problem with an exhaustive search is that it has to calculate the Merit
Factor for each of the 2"V sequences of length N. The next step was therefore
to find a way to use the ap values of one sequence in the calculation for the
next, in order to speed up the search. The normal approach is to go through
the sequences in a lexicographic word order, where we start on the sequence
representing 0 (00...00), up to the sequence representing N — 1 (11...11). With
this word ordering there was only a few reoccuring bits in the calculation of the
ay, for two adjacent sequences.

An alternative to lexicographic word ordering is to use an maximal length shift
register sequence (m-sequence) ordering of the sequences. An m-sequence of
length M = 2V — 1 will be an ordering of all different overlapping sequences
of length N, except the all zero sequence. The Merit Factor of the m-sequence
itself has also been shown to be good [13]. An m-sequence of length M = 2 —1
will have an asymptotic Merit Factor of three.

Maximal length shift register sequences can be generated with the use of prim-
itive polynomials. Let p(x) be a primitive polynomial of degree N. Then let

hi(z) = ' mod p(z), 0<i<2VN -1 (2.1)
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andlet hj o, b1, ..., b, n—1 be the coefficents of h;(z) such that h;(x) = Zf;l hisxt.
We can then define a sequence of length M = 2N —1, by m = (ho 4, hit, .. hon_14),
for an arbitary 0 <t < N — 1.

Example:

Let p(z) = z* + = + 1 be a primitive polynomial of degree 4. For t = 0 m is a
length M = 15 m-sequence defined by h; o for 0 < ¢ < 14

m = (ho’o, hl,O; ey h14,0) = 100011110101100

We can then use m to run through all the sequences of length 4 (except 0000).
The first sequence will be bit 0 to 3 of m, the second will be bit 1 to 4, and so
on. The order of the 15 sequences will be

1000, 0001,0011,0111,1111,1110,1101, 1010, 0101, 1011, 0110, 1100, 1001, 0010, 0100.

Note that the last 3 sequences are the results of a wraparound of the m-sequence
since the m-sequence is cyclic.

O

2.3.1 Update rule

Now that we have a new ordering of our search we need to find a way to find the
aperiodic autocorrelation ay (s;) based on ag(s;_1) for the same shift k. A closer
look at an m-sequence of length M = 2V — 1 will show that each subsequence
of length N is a result of a cyclic or negacyclic shift of the subsequence before.

Example:

Let m = 100011110101100 be an m-sequence of length M = 2* —1 = 15 and let
so = 1000 and s2 = 0011 be two subsequences of length N = 4. A cyclic shift
of so would result in the sequence s; = 0001 and a negacyclic shift of s2 result
in the sequence s3 = 0111.

O

This connection between adjacent sequences is something that can be used to
speed up our calculation of each ar for 1 < k < N. A closer look at the ay
values for two adjacent sequences shows that most of the bit comparisons are
the same. Take a look at an example :

Example:

Let s; = abede be a binary sequence generated in our m-sequence ordering
as described above. Let s;11 = bcdea’ be the next sequence generated. This
sequence can be viewed as a cyclic or negacyclic shift of s; depending on whether
a' = aor a = a Let us calculate the a; value for s; and a} for s;y1, a1 =
ab+ be + cd + de and a] = be+ cd + de + ea’. Since a; — a} = (ab — ea’) we
can express aj with a1, as aj = a; +a'e — ab. We can easily see that something
similar will hold for the rest of the a;-values.
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O

As we can see in the example, we do not need to completely recalculate ag(s;11)
since if we know the values of ag(s;), we only need to update these to calculate
ax(s;+1. The algorithm for this update rule can be found in Algorithm 1.

INPUT : S; = sequence
N = sequence length
a[ ] an array of ay, for s;_1

last = old last bit
OUTPUT : a[] an updated array of ay, for s;
mf = merit factor of s

1 fork=1tok=N-2do
if (s[N-1] == last) remove = 1
else remove = -1
if (s[0], s[k]) add =1
else add = -1
alk] = a[k] + add - remove
o =0+ alk]?

2 if (s[0] == s[N-1]) a[N-1] =1

else g[N-1] = -1
3 o=0+a[N -1
4 mf = %

Algorithm 1: MF computation using the update rule

2.3.2 Modification to the m-sequence ordering

As with the lexicographic ordering, there are some modifications that could be
done with the m-sequence ordering to speed up the search. Let us first look at
the modifications done to the lexicographic ordering (see Section 2.2.1) and see
if these can be applied here.

The first of the two modifications for lexicographical word ordering was to drop
the last half of the sequences because they are just the negations of the first
half. This is not possible for the m-sequence ordering because the last half is
not the negation of the first. To show this it is enough to find an example where
the last half is not a negation of the first :

Example:

Let p(z) = z° + 22 + 1 be a primitive polynomial that generates the m-sequence
M = 0000100101100111110001101110101 of length 31. Then M generates all
the binary sequences of length N = 5, so = 00000. As one can see s, = 01001
and sg = 10110. These two opposite sequences are found in the first half of the
m-sequence ordering. Also in the last half s;5 = 10001 and so4 = 01110 are two
opposite sequences.
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O

This shows that it is not possible to drop the last half of the sequences in an
m-sequence ordering, and it therefore prevents us from using this type modifi-
cation to the m-sequence ordered search.

The second modification for lexicographic ordering is to stop the calculation
of the Merit Factor at a certain threshold Merit Factor. This type of thresh-
old is not possible in the m-sequence ordering because the calculation of the
ar(si+1) is based on the ag(s;) for the sequence before. Therefore all the ay
must be calculated for each of the sequences in the search thus giving a com-
plexity of O(N) for Alg. 1.

There is however a method to speed up the m-sequence ordering search. In-
stead of trying to speed up the calculation of the MF, one could try to generate
the m-sequence faster. The time complexity to find each of the 2"V — 1 different
subsequences in an m-sequence was O(N) in the first approach. But if we use
a primitive trinomial instead of the primitive polynomial, one could lower this
complexity to a constant O(1) per sequence. The only problem with this mod-
ification is that for some lengths N trinomials do not exist. Time comparison
between the two different generations of m-sequences of length M = 2V — 1, for
15 < N < 29 where a trinomial could be found, can be seen in Table 2.3

A closer look at the complexity for the m-sequence ordered exhaustive search
shows that there is not very much to accomplish by reducing the m-sequence
generation from O(N) to O(1). For each of the 2V — 1 sequences generated the
MF computation of Alg. 1 still has O(N) complexity both for the polynomial -
and trinomial generation of the m-sequence. This would also explain the small
reduction in time shown in Table 2.3. Also note that the computation time
for the primitive polynomial case will depend on which polynomial we choose.
The complexity of the whole search is O(2" - N), where the exponential term
dominates as it does for all exhaustive searches of this type.

| Length, N | Polynomial | Trinomial | Time reduction |

15 0 0 0%
17 0 0 0%
18 0 0 0%
20 1 1 0%
21 3 2 33%
22 8 6 25%
23 15 12 20%
25 66 55 17%
28 587 482 18%
29 1208 993 18%
30 2509 2047 18%

Table 2.3: Speed comparisons for the use of trinomials in m-sequence generation

18



2.3.3 Searching with different word ordering

One reason to use a word ordering other than the lexicographic order was to
see if it was easier to predict the local MF maxima. If we look at Table 2.4 we
can see the statistical difference between the successive MF values with the two
different word orderings. As we can see, the worst-case-jump and the average
jump are a little lower for the m-sequence ordering, but not enough to find a
clear pattern. There exist however other word ordering schemes that might yield
better results than the m-sequence ordering. One such ordering uses de Bruijn
sequences to generate all the different sequences. A binary de Bruijn sequence
is a sequence of length D = 2V that contains all possible subsequences of length
N. The advantage of a de Bruijn sequence is that, as with the m-sequence
ordering, one can use the update rule to compute successive subsequence MFs.
For each length D the number of different binary de Bruijn sequences is shown
to be [2]

M(2,D)=22"""-D (2.2)

One could then test all the different de Brujin sequence orderings, in hope of
finding that one of them gives a clearer and more predictable sequence of MF
values. If we found such a sequence ordering, we would be able to predict the
local MF maxima, and therefore find the highest MFs without an exhaustive
search. This approach involves a deeper theoretical understanding of de Bruijn
sequences and we propose this idea as a future research project.

Lex. ordering jumps | M-seq. ordering jumps

Length, N | Merit Factor | Worst-Case | Average | Worst-Case | Average
10 3.85 3.26 0.83 2.74 0.53
11 12.10 10.96 0.82 9.68 0.53
12 7.20 6.32 0.77 5.31 0.47
13 14.08 12.80 0.72 11.27 0.45
14 5.16 4.24 0.66 3.50 0.40
15 7.50 6.61 0.61 5.45 0.37
16 5.33 4.51 0.57 3.05 0.33
17 4.52 3.66 0.53 2.80 0.31
18 6.48 5.56 0.50 4.26 0.29
19 6.22 5.13 0.47 3.75 0.27
20 7.69 6.72 0.45 4.99 0.26
21 8.48 7.15 0.43 4.92 0.24
22 6.21 5.16 0.41 3.86 0.23
23 5.63 4.59 0.39 3.28 0.22
24 8.00 6.76 0.38 5.33 0.21
25 8.68 7.44 0.36 6.08 0.20
26 7.51 6.42 0.35 4.41 0.19

Table 2.4: MF search with lexicographic and m-sequence ordering, length 10 -
26
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2.4 Directed Search

The speed increase achieved by changing the word order does not help us very
much in searching for binary sequences of greater length because we are still
examining every one of 2 sequences. For binary sequences of length N > 60,
an exhaustive search for the sequence with the highest Merit Factor is not fea-
sible with today’s technology '. Instead we have to look at other limited ways
to search for sequences with high MF. One alternative is to utilize the update
rule used in the m-sequence ordered search (see Section 2.3.1), and try to make
a more direct search for larger length N without searching through all the 2V
sequences. The hope here is to find a method to only search for sequences with
high MF, and drop the majority of sequences with low MF. The criterion for
using the update rule is to have an ordering that produces a sequence s; that is
either a result of a cyclic or negacyclic shift of the sequence before s;_j.

Let 7 be a binary tree where each node is a sequence s; and each node has
two children, one that is a result of a cyclic shift of s;, and another that is the
result of a negacylic shift of s;. Then assign the MF of the child to each edge
between a parent and a child. A traversal of the tree 7 from the root r where we
always choose the edge with the lowest weight (=MF) is then a directed search
that can use the update rule.

Example:

Let 7 be a binary tree with 6 levels and each node is a binary sequence of length
N = 5. Each node has a left child that is a cyclic shift of the node, and a right
child that is a negacyclic shift of the node. Then let r= 00000 be the root of 7.
Fig. 2.2 then shows the best path from r to the bottom of 7 where the subtrees
of the child with lowest MF are omitted.

O

We can now use this method to define a decision rule to use in a directed search:

Decision Rule:

Let s;_1 be a binary sequence of length N. Then let s} be a cyclic shift of s;_;
and s? be a negacyclic shift of s;_;. We can then define

s otherwise (2:3)

o = { sé if MF(s}) > MF(s?)
K3

This ordering will most likely not generate all the different sequences of length
N, and if it does generate all different sequences, the complexity will be the
same as for the exhaustive search. But there is a possibility that the search
will enter a circle and test the MF of the same sequences again and again. The
reason for this is that the decision rule (2.3) does not take into consideration
whether or not the new sequence s; has appeared earlier in the search.

INote that a naive search of a 258 space is not feasible with today’s technology, but Mertens
[19] exponentially shrinks the search space by exploiting symmetry and branch and bound
techniques to achieve an exhaustive search up to 258.
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2.08

10000

Figure 2.2: Tree traversal for a tree 7 with binary nodes of length N =5

Example:

Let s; = 10101 be the ith sequence in a directed search. Then assume that
Sit1 = s71, = 01010. Then the next sequence s;1» must be s; since MF(s}) >
MF(s}) based on the decision rule. We now have an endless circle.

O

Because of the possiblity of an endless circle and the intention to use the di-
rected search for larger sequence length we will have to limit the number of
sequences in the search. Based on the power of the computer the limit will be
< 220 sequences. This limit is chosen based on tests that show that the MF
of the best sequence found does not change much if we increase the number of
sequences by a power of 2. But if we are to use this search for larger lengths
N > 1000 this limit must also be raised.

In this type of directed search the result depends greatly on the starting se-
quence (or the root r in the tree traversal method). As for the other searches
described above we are looking for the sequence with the highest Merit Factor.
If we start with a sequence that already has a high Merit Factor the result of
the search will be at least as high as the MF of the starting sequence, unless
we keep the first sequence outside the search. Therefore to make this type of
limited search useful we seek to find a Merit Factor that is higher than that of
the starting sequence.

2.4.1 Zero starting sequence

The first binary starting sequence to use in our directed search was the zero
sequence (00...00). The result of this search can be seen in Table 2.5. We can
see that the MF of the starting sequence is low, because it consists of only zeros.
But within the 220 sequences that are tested, one will find at least one sequence
with MF > 4.8 for all lengths N < 60. For example for length N = 46 this
search finds a sequence with MF = 7.20 which is relatively close to the optimal

21



MF of 8.08 for this length (see Table 2.2). For larger values of N, the directed
search does not find sequences with high MF after testing 220 sequences. It
appears that the the MF goes towards 1 as IV becomes large.

Zero start sequence || Random start sequence
Length, N | # seq. || Start MF | Best MF || Start MF | Best MF
31 220 0.05 7.17 1.01 7.17
32 220 0.05 5.57 1.17 5.12
33 220 0.05 4.86 1.00 6.48
34 220 0.05 5.12 0.97 5.50
35 220 0.04 5.24 0.88 6.59
36 220 0.04 6.35 0.93 5.89
37 220 0.04 5.80 0.98 5.80
38 220 0.04 5.35 1.02 5.35
39 220 0.04 5.04 0.93 5.47
40 220 0.04 5.41 0.89 5.26
41 220 0.04 5.68 1.07 6.37
42 220 0.04 5.62 1.13 5.62
43 220 0.04 5.11 1.06 5.34
44 220 0.04 4.89 0.98 4.99
45 220 0.03 5.11 0.95 6.25
46 220 0.03 7.20 0.98 7.20
47 220 0.03 5.91 1.01 5.91
48 220 0.03 5.24 1.02 5.76
49 220 0.03 5.56 0.97 4.92
50 220 0.03 5.56 0.93 6.22
51 220 0.03 5.22 1.01 5.22
52 220 0.03 5.41 1.02 5.41
53 220 0.03 5.90 1.06 5.20
54 220 0.03 4.94 1.05 5.38
59 220 0.03 5.20 1.11 5.34
56 220 0.03 5.68 1.08 5.09
57 220 0.03 5.42 1.19 5.14
58 220 0.03 5.31 1.10 4.93
59 220 0.03 4.88 1.21 5.71
60 220 0.03 4.86 1.11 5.08
61 220 0.03 4.82 1.13 5.26
101 220 0.02 3.83 0.89 3.85
151 220 0.01 3.50 1.11 3.55
199 220 0.01 3.25 1.39 3.14
499 220 0.00 2.69 1.07 2.62
751 220 0.00 2.68 0.98 2.52
1499 220 0.00 2.38 0.97 2.34

Table 2.5: Directed Merit Factor search with zero and random start sequence
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2.4.2 Random start sequence

Another choice for a starting sequence for the directed search is a binary se-
quence sg where the N bits of sg are randomly chosen to be 0 or 1. As we have
shown in Section 2.1, this starting sequence will have a MF around 1, and thus
be better than the zero starting sequence. The result of the directed search can
be seen in Table 2.5. If we compare the result with the zero starting sequence,
there does not appear to be a great difference between them.

Even though a random starting sequence has a higher MF than the start se-
quence of all zeros, it does not appear that this difference can be seen in the
resulting best sequence. At some lengths the zero starting sequence results in
a higher MF than the random starting sequence. This would suggest that the
result of a directed search is not solely a result of the MF of the starting se-
quence. There might be other properties of a sequence that make it useful as a
starting sequence in a directed search.

2.5 Shifted Legendre sequence

As an alternative to searching for binary sequences with good aperiodic Merit
Factor, there are classes of constructed sequences with high asymptotic Merit
Factor. One such class is the shifted Legendre sequence. The class of shifted
Legendre sequences will have an asymptotic MF of six [7] [11]. As mentioned in
Section 1.2 the class of shifted Legendre sequences is one of a few classes that
have the highest known asymptotic Merit Factor.

The construction of a Legendre sequence of length N = p, p prime, can be
achieved by finding a subset S of Z, which specifies the positions of the 1s in
the characteristic sequence I(t) of S :

0-{4 es o

when 0 <t < p—1. The subset S is generated using a primitive generator a of

GF(p),

S= {a% modp | i=0,.., (p%l) - 1} (2.5)

Hgholdt and Jensen proved in [11] that the Merit Factor of an offset f of I(¢) is
F, and can be found by

1

2 1
F=G 411+, <3 (26)

An offset sequence is one in which a fraction f bits of the sequence is chopped
off the end of the Legendre sequence and appended at the other, in other words
a cyclic shift of fN places. If we let f = I then I(¢) will have an asymptotic
Merit Factor of six.

Example:

Let p = 19 and @ = 2. Then S = {1,4,16,7,9,17,11,6,5}, and the sequence
of length N' = 19 is I(¢) = 0100111101010000110. Then shift I(£) by  and let
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I’ =1111010100001100100 be the new sequence. The Merit Factor for I’ is then

MF(l') = 6.22

2.5.1 Legendre sequence in directed search

A third alternative for a starting sequence for the directed search is to use a
shifted Legendre sequence of length N = p, p prime. The result of the directed
search with a shifted Legendre sequence as the starting sequence can be found
in Table 2.6. The results show only a small increase in the Merit Factor from
the starting sequence to the best sequence found. If we take a look at the best
shift of a Legendre sequence in Table 2.6 we can see that when N > 59 the
search does not find any higher MF than that of an optimal shift of a Legendre
sequence. Also for N < 59 the best MF for this search is equal or below that of
the search starting with a zero or random sequence (see Table 2.5).

Therefore it looks like the result achieved with a directed search using a shifted
Legendre sequence as the start sequence would only find a MF that will be
equal or below what can be found if we tested all shifts of a constructed Legen-
dre sequence. But as will be shown later the Legendre sequence does have some
properties that makes it useful in some other type of directed search.

2.6 Even length sequences with good MF

Another construction with an asymptotic Merit Factor of six is a class of se-
quences of length N = 2p, where p is prime [21]. Let s(¢) be a binary sequence
of length N and s'(¢) be a binary sequence of length 2N, where s'(t) = s(t), for
0<t< N,and s'(t) =s(t) +1 (mod 2), for N <t < 2N. We can then use a
subset C of Zan to define the characteristic sequence s'(¢) :

oo [ 1 iftecC
5@—{Oin¢07

where C'= (0,D9) U(1,D) U (2,D1)U(3,D1)UF. F ={p,2+p} and D; is
defined by

D; = {af, o T oS L aP T3t 0<i<?2

where a is a primitive generator over GF(p). The set (k, D;), 0 < k < 4, defines
k=t mod 4, r =t mod p for r € D;. t can then be recovered from (k, D;) by
means of the Chinese Remainder Theorem mod 4p.

The sequence s(t) from this construction will have an asympmtotic Merit Fac-
tor of six and ideal negaperiodic autocorrelation properties, while the whole
sequence s'(t) will have very good periodic autocorrelation properties, apart
from one coefficient.
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Directed Search Legendre sequences
Length, N | Start MF | Best MF | # of seq. | Best shift | Best MF
31 4.04 6.41 220 21 6.41
37 4.23 5.80 220 9 4.23
41 3.69 5.84 220 11 4.78
43 5.34 5.34 220 9 5.89
47 4.95 5.78 220 10 5.34
53 3.76 5.62 220 18 4.31
59 6.19 6.19 220 15 6.19
61 5.57 5.85 220 17 5.85
67 5.77 5.77 220 15 6.29
71 4.64 6.07 220 55 6.07
73 4.76 5.01 220 19 5.01
79 5.43 5.58 220 56 5.75
83 5.81 5.93 220 23 5.93
89 4.67 5.76 220 26 5.76
97 5.25 5.25 220 24 5.25
101 4.99 5.39 220 26 5.39
151 5.84 5.84 220 37 5.92
199 5.63 5.84 220 54 5.84
499 5.82 5.85 220 382 5.98
751 5.91 5.93 220 192 5.93
1499 5.98 5.98 220 1131 6.00

Table 2.6: Directed MF search with a shifted Legendre start sequence of prime
length

2.6.1 Directed search with even length sequences

These sequences can also be used as starting sequences for the directed search
(see Section 2.4). The result of the directed search that uses these even length
sequences as the starting sequence can be found in Table 2.7. We can see that
the directed search yields a small improvement over the starting sequence, but
it appears that the increase in the MF decreases as N grows.

2.7 Extended Directed Search

Each sequence in the directed search is either a cyclic or a negacylic shift of
the sequence before. (see Section 2.4). Therefore it is possible to construct a
sequence S that contains all the sequences in the search as subsequences. The
sequence S contains all the subsequences in the search the in same way that a
de Bruijn sequence of length D = 2V contains all the subsequences of length
N. The length of S will depend on the limit we set for the directed search. Let
[ be the limit for the number of sequences in a directed search. The length of
S will then bet =N +1.
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| Length, N | Start MF | Best MF [ # of seq. |

34 3.59 5.12 220
38 4.78 6.07 220
46 5.43 7.20 220
58 4.00 4.93 220
62 5.29 6.10 220
74 5.38 5.38 220
82 4.51 5.45 220
86 5.14 5.14 220
94 6.18 6.96 220
106 5.03 5.42 220
118 6.22 6.22 220
122 4.83 4.83 220
134 5.37 5.37 220
142 6.48 6.99 220
146 5.22 5.41 220
158 5.79 6.02 220
166 5.92 5.92 220
178 5.54 5.62 220
194 5.09 5.10 220
202 5.34 5.45 220
302 5.91 6.02 220
398 5.99 6.06 220
502 6.12 6.12 220
758 5.89 5.89 220
1502 5.98 5.99 220

Table 2.7: Directed MF search with an even length class of start sequences,
N = 2p, p prime

Example :

Let I = 6 and let s = 01100 be a binary sequence of length N = 5 and s;,
1 <i <6, are generated by a directed search for | sequences such that

s1 = 11001, s5 = 10011, 53 = 00111, 84 = 01110, s5 = 11101, s = 11010

We can then construct a sequence & = 01100111010 of length ¢t = N +1 =11
that contains all the sequences s;, 0 < i < 6, as subsequences.

|

Let 7 be a sequence of length ¢ = N + [ generated from a directed search for
sequences of length N as described above. We can now also use T to test the
MF of all subsequences of length N' = N 4+ d, d > 0. The search where we
look both for good sequences of length N and sequences of length N' is called
an extended directed search, since we now also look at the MF for an extended
sequence of length N’ > N.
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Example :

Let N =5 and let £ = (011001110101001110110. In the normal directed search
we tested the MF of the sequence s; € {01100, 11001,10011,...}. For an ex-
tended directed search we can use the same sequence t and also test the MF for
sequences s; of length N’ = 6, s; € {011001, 110011, 100111, ...}.

O

2.7.1 The complexity of the extended directed search

Alg. 2 shows an algorithm that uses the update rule in an extended directed
search for both sequences of length N and sequences of length N' = N+d, d > 0.
The function MF() in Alg. 2 is a normal O(N?) complexity calculation of the
MF that stores the aperiodic autocorrelation values for use in updateMF().
updateMF () is the algorithm shown in Alg. 1 that finds the MF of a sequence
s; with a complexity of O(N) when we know the ay, values for sequence s;_; .

The complexity of a directed search through ! sequences of length N is O(I- N +
N?2). If we let ] be a constant or a linear function of N we can write the complex-
ity as O(IN2). After we have incorporated a search for a second sequence length
N' = N +d in the directed search the complexity will be O(l- (N +d) + (N +d)?)
(see Alg. 2). We can also let d be a constant or a function of N, which makes
the complexity O(N?), the same as for the directed search for a single length
sequence. In practice the difference between a directed search and an extended
directed search will only be a constant.

2.7.2 The starting sequence for an extended directed search

We now have an algorithm for an extended directed search for two sequence
lengths. The next question is whether the search will find any sequences with
high Merit Factor. In the sections above one can see that the directed search
for sequences of length N was unable to find any new sequences with high Merit
Factor. Therefore we can concentrate on the search results for sequences of
length N' = N +d, d > 0. Since the key to the directed search is the starting
sequence r, the first step was to do an extended directed search with some of
the different starting sequences used in the directed search.

For most of the different starting sequences the extended directed search found
some sequences with a higher MF than the previous directed search. But the
most interesting results came from the unexpected difference in the highest MF
when we used an unshifted Legendre sequence rather than a shifted one. It
looks like the MF for each extended sequence of length N' = N+d,0<d < N,
is higher when we use an unshifted Legendre sequence instead of a shifted Leg-
endre sequence as starting sequence. When we use a random sequence as the
starting sequence the extended sequence will have about the same MF as for
the basic directed search when d = 0 (see Table 2.5), for all small values of d,
but as d increases the MF decreases. Fig. 2.3 shows the result of an extended
directed search with N =499, 0 < d < 151, and I = 2!°. The left graph shows
the highest MF for the extended sequence for both the Legendre starting se-
quences, and the right graph shows how much higher the MF of a search with
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INPUT : N = sequence length

seq = any binary array of length N+1

N = the length of the second sequence

seq’ = empty binary array of length N'+1

1 = the number of sequence of length N to search for
OUTPUT : MF = the MF for the best sequence of length N

MF’ = the MF for the best sequence of length N’

1 fori=1toNdo

2 seq’[i] = seq]i]

2 end =end’ =N

3 MF = MF(seq, end, N)

4 fori=1toi=1do

6 end = end + 1 (mod N + 2)

7 tempMF = getNextMF(seq, end, N)

8 if (tempMF > MF) MF = tempMF

9 fi+N > N)
10 end’ = end’ + 1 (mod N’ + 2)
11 seq’[end’] = seq[end]
12 if (N +1i==N’) tempMF’ = MF(seq’,end’,N’)
13 else tempMF’ = updateMF(seq’,end’,N”)
14 if (tempMF’ > MF’) MF’ = tempMF’
15 else
16 end’ = end’ + 1 (mod N’ + 1)
17 seq’[end’] = seq[end]
18 end if-else

19 end for-do

start function getNextMF (seq, end, N)

seq[end] =1’
mfl = updateMF (seq,end,N)
seqend] =0’
mf2 = updateMF(seq,end,N)
if (mfl > mf2)

seq[end] =1’

return mfl

00 IO UL ix LW N

else

©

seq[end] = "0’
10 return mf2

end function

Algorithm 2: Extended Directed Search
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the unshifted Legendre starting sequence is. Also note that for d = 0 the result
of this extended directed search is the same as for a normal directed search. The
result of this extended directed search would suggest that the unshifted Legen-
dre sequence is better suited for this type of search, and therefore deserves a
closer look.

Extended Directed Search Difference in MF between Legendre and shifted Legendre sequence
T T T T

— Legendre sequence
Shifted Legendre sequence

500 550 600 650 500 550 600 650

Extended sequence length, N + d Extended sequence length, N +d

Figure 2.3: Extended Directed Search using a shifted Legendre and standard
Legendre sequence

2.7.3 The Legendre Extended Directed Search

Let by, be the binary sequence of length &k, kK > N, with the highest MF from
an extended directed search through [ sequences, and let b; x» be the extended
sequence of length N = N + d,p; such that

N
MF(bl,Nﬂ) >1\/[F(bl’]\[l)7 NI=N+d, OSdS E

and let [ be a large constant or a linear function of N. From Fig. 2.3 it appears
that the MF started to decrease when d > 40. We therefore choose to concen-
trate the search on 0 < d < .

An extended directed search for good sequences of length N" = N + d,p; where
N = p, p prime, 101 < N <2477 and 0 < dopt < % was undertaken with an
unshifted Legendre sequence of length N as the start sequence. The size of the
search was [ = 210, Fig. 2.4 shows the best MF for the optimal extension of
N and Fig. 2.5 (left) shows d,p. Fig. 2.5 (right) shows the minimum num-
ber of sequences l,,;;, < [ that we can have without reducing the best MF found.

The data of Fig. 2.5 for both dyp¢ and I, seems to fit a linear function.
Using a MatLab polyfit function to find a function for the optimal extension
d(N) that could fit the data from the search gave us

d(N) = 0.059N + 0.77 (2.7)

The same method was used to find a function I(N) that made sure that I(N) >
lmin

I(N) = 0.31N +20 (2.8)
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Best MF for the optimal extension of N
T T T T T

6.4 =

6.3

6.2 =

6.1 =

6.0 -

59 =

Merit Factor

5.8 *

5.7 =

56 =

551 -

54 L L L L L L L L L
101 250 500 750 1000 1250 1500 1750 2000 2250 2477
Start sequence length N = p, p prime

Figure 2.4: Extended Directed Search using an unshifted Legendre start se-
quence

Optimal extension of N

Minimum search space

160
140
1201

100

©° gol
60
40

201

101 250 500 750 1000 1250 1500 1750 2000 2250 2477

. . . . . . . . .
101 250 500 750 1000 1250 1500 1750 2000 2250 2477
Start sequence length N = p, p prime Start sequene length N = p, p prime

Figure 2.5: Optimal extension and minimum search space

Both the linear functions (2.7) and (2.8) are shown in Fig. 2.5.

The difference in the Merit Factor between the extended sequence of length
N" = N +dop and N = N + d(N) can be seen in Fig. 2.6. As expected the
extension using an approximation function d(N) is not as good as the optimal
extension d,pt, but as IV gets large the difference AMF < 0.02.

Extended Legendre semi-construction

Now that we have an approximation to the length of the extension d based on
the length of the starting sequenece N we can start another extended directed
search. This time we will set the number of sequences to search for to I =
0.31N +20, and the extended sequence length to N' = N+d, d = 0.059N +0.77.
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Difference between dop[ and d(N)
T T T T

0.20- *

0.18— 4

0.16 - =

0.14 *

0.12 4
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MMWWWWMWWMMWMMW

101 250 500 750 1000 1250 1500 1750 2000 2250 2477
Start sequence length N =p, p prime

Figure 2.6: The difference between the extendsion d,p,; and the approximation
d(N)

The search will now be done for all prime N, 101 < N < 19997. The MF from
this search can be seen in Fig. 2.7. Based on this result of the extended directed
search a conjecture is proposed :

Conjecture 1 Let S be a binary sequence of length p+1, p prime, [ = 0.31p+20,
and let the first p bits of S be the Legendre sequence of length p. The last | bits
of S can then be found by

9

s . 1 ifMF(Sk,Sk_,_l,...,Sp_f_k,Q,].)>MF(Sk,Sk_,_l,...,Sp_f_k,Q,O)
pth-1 0 otherwise

for 1 < k <1. It is then conjectured that there will exist a subsequence of length
N =p+d, d=10.009p+0.77], inside the sequence S with Merit Factor > 6.30
for any large p.

Complexity

As was shown above (see section 2.7.1) the complexity to find an extended
sequence with high MF using a starting sequence of length N as described in
Conjecture 1 will be O(N?2) if both d and [ are a contant or a linear function
of N. This is a relatively low complexity compared to other searches, and any
sequence construction will at least have a complexity of O(N). For example
the complexity to find the best shift of a modified Jacobi sequence will also be
O(N?). This complexity of O(N?) means that if it takes ¢ time to do a search
with a start sequence of length IV, it would take 4t for a search with a length
2N start sequence. Table 2.8 agrees with this, which would suggest that the
practical complexity is also O(N?).
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Best Merit Factor for the extended sequence

6.4 1

6:3 A

6.1 1

6.0 1

5.9H 1

5.8 1

Merit Factor

55 1

541 1

53F 1

| |
7 8 9 10 11 12 13 14
Extended sequence length N +d (Iogz)

Figure 2.7: Extended directed search with d = 0.059N +0.77 and [ = 0.31N 420,
101 < N < 19997

Table 2.8: Computation time for an extended directed search

| Length, N | Time (sec) |

1997 0
4001 1
8009 5
16001 18
32003 81
64007 332

Other work with extended Legendre sequences

A. Kirilusha and G. Narayanaswamy [14] have done tests on extending shifted
Legendre sequences by appending the last u bits of a Legendre sequence s to the
front of s. They have shown that if u < O(Nz) the asymptotic Merit Factor
of u + s is six. A comparison between their construction with an optimal wu,p;
and the semi-construction described in Conjecture 1 have shown that uepe <
d(N) = 0.059N + 0.77, and that the MF of u + s is lower than the MF of an
extended directed search.
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Examples

A few examples of long-length binary sequences with MF> 6.3, constructed
using the Extended Legendre Semi-Construction can be downloaded from [15].

2.8 Skewsymmetric Merit Factor Search

If constructed correctly, skewsymmetric binary sequences are a type of sequence
that will have high Merit Factor. Golay used this type of construction when he
did his limited search for N < 120, where he found sequences with Merit Factor
above 9 [8].

2.8.1 Construction of skewsymmetric sequences

Any skewsymmetric sequence s can then be considered as the interleaving of a
symmetric sequence of the form

AcA
and an antisymmetric sequence

BB’
where the overbar indicates sequence reversal and the prime indicates comple-
menting of the sequences.

The construction of a skewsymmetric sequence of length N, N odd, consists of

interleaving a symmetric sequence of length % and an antisymmetric sequence
of length &L,

Example:

Let s = abcba be a symmetric sequence of length 5, and let s’ = deed be an
antisymmetric sequence of length 4. Interleaving s and s’ gives a new skewsym-
metric sequence t = adbecebda of length 9.

O

The reason skewsymmetric sequences have good Merit Factor lies in how they
are constructed. All skewsymmetric sequences of length N = 2n — 1 satisfy

Sppr=(-1lspy I=1,..,n—1 (2.9)
Theorem 1 Let s = (sg, 81, .-, S2,,) be a binary sequence of length N = 2n + 1.
Then ar, =0 for all odd k.

Proof

Let the elements of s be of the form s; = {—1,+1}. We can then write the ay,

in the form
n

ap = Z (Sj * Sk+j) + (Szn_j * 32n_k_]-)
j=0,j even
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Since all skewsymmetric sequences obey (2.9) we have that s; = s2,—;. This

gives us
n

ap= Y 8% (Skas + S20-k)
j=0,j even

For odd k, sk+j + S2n—k—j = 0 from (2.9), and a = 0.

Q.ED.
from which it follows that all a; with k odd vanish. To show this we can take
a look at an example.

Example:

Let t = adbecebda be a skewsymmetric sequence of length 9. The aperiodic
autocorrelation can then be found by

ar a d b e ¢ e b d a
1 a d b e c e b d
2 a d b e ¢c € b
3 a d b e c e
4 a d b e c
5 a d b e
6 a d b
7 a d
8 a

As can be seen in the table above, all a; vanish when % is odd.
a

Even though skewsymmetric constructions have found sequences with high Merit
Factor [8] for odd length, we have no guarantee that the best sequences are
skewsymmetric. Exhaustive search has shown that only % of the best odd length
sequences are skewsymmetric [18].

2.8.2 Skewsymmetric Legendre construction

To construct a skewsymmetric sequence with high Merit Factor, one usually
needs a symmetric and an antisymmetric sequence with Merit Factor above 1.
In [8] all the best skewsymmetric sequences are constructed from symmetric
and antisymmetric sequences with MF above 1.2, and most of them above 1.4.
Insted of doing a search for the symmetric and antisymmetric like Golay did, I
was looking for a way to construct the symmetric and antisymmetric sequences.
When p = 4k + 3, p prime, the Legendre sequence of length p is an antisymmet-
ric sequence if the first bit is dropped. It turned out that the Merit Factor for
this sequence of length n = p — 1 is about 1.5. Also if p = 4k + 1 the Legendre
sequence is a symmetric sequence if shifted by £. This symmetric sequence also
has a high merit factor.

Let p; and ps be a twin prime pair where p, = p; + 2. Then we construct
an antisymmetric sequence of length n; = p; — 1 and a symmetric sequence of
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length ny = py. To construct a skewsymmetric sequence we need a symmetric
sequence of length ny = ny + 1, and our symmetric sequence is ny = ny + 3. If
we drop the first and last bit of the symmetric sequence we have two sequences,
hopefully with high Merit Factor. We can then construct the skewsymmet-
ric sequence. The result of this construction can be found in Table 2.9. This
skewsymmetric Legendre construction seems to have an asymptotic Merit Fac-
tor of about 3.0. This is lower than for the class of Legendre sequences (see
Section 2.5), but this construction can be used for other lengths than the Leg-
endre construction. We also get a small improvement for some of the lengths
by shifting them around cyclically.

| Length | MF symmetric | MF antisymmetric | MF skewsymmetric | Shift |

61 1.3093 1.7928 3.5371 0
85 1.0993 1.4975 2.5476 0
117 1.0926 1.5617 2.6715 90
141 1.3217 1.8135 3.3157 0
205 1.4279 1.5598 3.4986 0
277 1.1757 1.5074 2.7628 3
357 1.4047 1.5173 2.9598 0
381 1.3989 1.6333 2.9100 0
397 1.4599 1.5539 2.9398 0
453 1.5390 1.5100 3.0586 0
477 1.4039 1.6119 3.1491 0
541 1.4467 1.5432 2.9969 0
565 1.3877 1.5004 3.0874 2
621 1.4454 1.6060 3.0772 0
693 1.4299 1.5035 3.0728 0
837 1.4613 1.5108 2.9033 0
925 1.5015 1.5046 3.0213 0

1045 1.4169 1.5010 3.0506 0
1141 1.4635 1.5008 3.0939 0
1197 1.4540 1.5474 3.1037 0
1237 1.4108 1.5006 2.7400 21
1317 1.4620 1.5064 3.1606 0
1621 1.4534 1.5011 3.1611 0
1653 1.4967 1.5010 3.0991 0
1717 1.4703 1.5009 2.8681 0
1765 1.4752 1.4995 2.9166 1760

Table 2.9: Legendre construction of skewsymmetric sequence

2.8.3 Alternative skewsymmetric Legendre construction

Let p; and p2 be a pair of twin primes. If p; is of the form 4k + 1 and p; < po,
we can construct a symmetric sequence by cyclically shifting the Legendre se-
quence of length p;, by &-. Then we construct an antisymmetric sequence of
length p; — 1 by removing the first bit of the Legendre sequence of length ps,

where p; = 4k + 3. We then interleave these two sequences to construct an
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almost skewsymmetric sequence (the symmetric and antisymmetric sequences
have swapped length compared to Golay’s construction). The Merit Factor of
this construction is marked with (1) in Table 2.10.

If py is of the form 4k + 1 and p; > p2, we have a sequence of length p; — 1 by
removing the first bit of the Legendre sequence of length p;. We then construct
an almost antisymmetric sequence of odd length by shifting cyclically the Leg-
endre sequence of length py by £2. We can then interleave the two sequences
and generate a skewsymmetric sequence The merit factor of this construction
is marked with (2) in Table 2.10.

As we can see the result is much better when p; is on the form 4k + 1 and
p1 < po. For this construction it appears that we have an asymptotic Merit
Factor of 3. This means that this construction works best for half the prime
twins, since the other half appears to have an asymptotic Merit Factor of 1.3.

| Length, N | MF symmetric | MF antiSymmetric | MF skewsymmetric | Shift |

59 0.96389 1.79283 2.87686 (1) 0

83 1.49025 1.49745 2.96684 (1) 0

119 1.48760 1.84180 1.22014 (2) 0

143 1.48966 1.62090 1.10667 (2) 0

203 1.33172 1.55982 3.31635 (1) 0

275 1.30849 1.50736 2.85917 (1) 0

359 1.49584 1.62069 1.31956 (2) 132
383 1.49610 1.54280 1.35065 (2) 298
395 1.41867 1.55386 2.96164 (1) 0

455 1.49672 1.56747 1.23957 (2) 93
479 1.49688 1.52640 1.23868 (2) 6

539 1.42163 1.54325 2.91658 (1) 0

563 1.48624 1.50040 3.19158 (1) 0

623 1.49760 1.51986 1.20556 (2) 494
695 1.49785 1.53704 1.36304 (2) 218
839 1.49822 1.56246 1.35756 (2) 766
923 1.50459 1.50797 1.25965 (2) 296
1043 1.47030 1.50104 3.06635 (1) 0
1139 1.51579 1.50076 3.13652 (1) 0
1199 1.49875 1.51180 1.32114 (2) 225
1235 1.45724 1.50055 2.77911 (1) 0
1319 1.49886 1.53890 1.33944 (2) 369
1619 1.48916 1.50109 3.16816 (1) 0
1655 1.49909 1.51418 1.28424 (2) 180
1715 1.50544 1.50092 2.88840 (1) 0
1763 1.51098 1.49946 2.94539 (1) 0

Table 2.10: Alternative Legendre construction of skewsymmetric sequence
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2.9 Golay-Rudin-Shapiro Sequences

The class of Golay-Rudin-Shapiro (GRS) sequences was independently discov-
ered by Golay [3] and Rudin-Shapiro [24]. The sequences in this class come in
complementary pairs (CS pair) [22], which satisfy the useful property that their
aperiodic autocorrelation coefficients sum to zero. Let a = (ag, ay, -..,an_1) and
b = (bo, b1, ---,bx_1) be binary sequences of length N and let their aperiodic au-
tocorrelation be ag(a) and ag(b). The pair (a,b) is a complementary pair if

ar(a) +ar(d) =0 0<k<N (2.10)
The construction of the CS pairs can be done with a simple recursion
a; = a;—1]|bi—1
(2.11)

— !
bi = Q;-1 |bz'—1

where means concatenation of sequences and b’ is the negation of the se-
quence b. The start of this recursion can be any complementary pair of sequences
ag and bg.

“|77

Example:

Let ap = 1 and by = 0 be two binary sequences of length Ny = 1. The recursion
(2.11) then gives us

N0=1|N1=2| N2=4 | N3=8
az = 1011 | a3 = 10111000
ba =1000 | b3 = 10110111

O

Because of the property that their aperiodic autocorrelation coefficients sum
to zero, each of the sequences in the pair has also a high Merit Factor. It
has been proved in [9] that the class of Golay-Rudin-Shapiro sequences have
an asymptotic Merit Factor of three. It is also proven that the sum-of-squares
indicator for this class satisfies

On =20p_1+ 80n_2 (2.12)

In a later section we will show that this asymptotic MF and the sum-of-squares
recursion only holds for a subclass of the whole GRS class (see Section 3.4.1).

2.9.1 GRS sequences in directed search

I have also tested the Golay-Rudin-Shapiro sequence as a starting sequence for
the directed search. Since the length of GRS sequences is limited to N = 27,
we have a limited number of sequence lengths to use in the search. Table 2.11
shows the result of a directed search with a Golay-Rudin-Shapiro sequence as
the start sequence for length N = 2" for 3 < n < 10. As we can see the
increase in Merit Factor decreases as n grows, as it does for the Legendre and
even length starting sequence.
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| Length, N | start MF | best MF | # of seq. |

8 2.67 4.00 220
16 3.20 4.57 220
32 2.91 5.57 220
64 3.05 4.53 220
128 2.98 3.81 220
256 3.01 3.05 220
512 2.99 3.00 220
1024 3.00 3.00 220

Table 2.11: Directed Search with GRS start sequence

2.10 Overview

Here is an overview of the different searches and constructions presented in this
chapter. Exhaustive search will find the optimal Merit Factor for a given length,
but as the length gets larger the only way to find sequence with high MF is to use
one of the known constructions. The best known asymptotic Merit Factor for a
class of sequences is six, but with the new extended Legendre semi-construction
it is possible to find sequences with MF > 6.3 for large length.

Exhaustive search

Two types of exhaustive search for sequences with good Merit Factor are pre-
sented. First using the lexigographic word ordering, and then with an m-
sequence ordering using an update rule for faster computation of the aperiodic
autocorrelation values. Without any modification the m-sequence ordering was
about twice as fast as the lexicographic ordering (see Table 2.2 and 2.3). But af-
ter the modifications the lexicographic word ordering was almost three times as
fast. Therefore it appears that the update rule could not beat the effectiveness
of using a threshold and symmetries in the computation of the Merit Factor.
Though we presented ways to speed up an exhaustive search, we had to limit
the length to N < 32.

Even though Mertens [19] has done an exhaustive search up to N = 58 the
computer resources needed for this type of search prevents us from finding any
high Merit Factors for sequences of large length. This should indicate that ex-
haustive search is not the way to find sequences with high MF for sequences of
large length.

Limited search

The method called directed search uses different starting sequences and the
update rule from the m-sequence ordered exhaustive search. This search does
not seem to give any new result. As the sequence length N grows large, it looks
like the directed search with zero and random starting sequence will asymptote
to 1, while the shifted Legendre and the even length cyclotomic construction
asymptote to six.
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Extended directed search

The directed search did have one more utilization. By extending the directed
search we were able to find high Merit Factor for non-prime lengths N', using
an unshifted Legendre sequence as the starting sequence. From the tests it
looks like it is possible to find a Merit Factor > 6.3 for an extended sequence
of length N' = N +d, d = [0.059N + 0.77] for all large prime N. This semi-
construction can be done in O(N?) time, where N is the length of the Legendre
start sequence.

Construction

There already exist several known constructions of binary sequences with high
Merit Factor. The construction with the highest asymptotic Merit Factor are
the shifted Legendre sequence [7] [11], the even length construction [21], shifted
modified Jacobi sequence [13] and a special case of the modified Jacobi sequence
the shifted Twin-Prime sequence [13], all with an asymptotic MF of six. Other
constructions like the m-sequences [13] and Golay-Rudin-Shapiro sequences [9]
have an asymptotic Merit Factor of three. The only new construction presented
in this chapter is the skewsymmetric Legendre sequence. This construction
using two Legendre sequences also appears to have an asymptotic Merit Factor
of three.
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Chapter 3

The Multidimensional
Aperiodic Autocorrelation

In addition to the 1-dimensional autocorrelations defined in Section 1.1, one
can also define a multidimensional two-point autocorrelation function for binary
sequences of length N = 2™. The multidimensional periodic autocorrelation has
been used to assess cryptographic strength of a boolean function [17], but it
appears that the aperiodic case has not been much studied. In this chapter
we take a closer look at the multidimensional aperiodic autocorrelation and
show that the class of Golay-Rudin-Shapiro sequences has a low sum-of-squares
indicator. We also present a new class of sequences that has an even lower
sum-of-squares indicator.

3.1 Definitions

Let s € Z¥ be a binary sequence of length N, such that N = 2". We can
then define the multidimensional two-point Periodic Autocorrelation Function
(MPACF) of the sequence s = (8¢, 81, ..., SN—1) by,

N-1

cp =Y (—1)%teion (3.1)

=0

where @& means ’bitwise’ addition mod 2. In other words, for ¢ and k each of
bitlength n, @ is defined by the equation r = i @k, where r; =i;+k; (mod 2)

and,
r= 355
i= Y02
k= Yilg k2
are the radix-2 decompositions of r, i, and k, respectively, where r;,i;,k; €
{0,1} V ;.

We can say that ¢ is multidimensionally greater or equal to k iff i; > k;, V
7, and we write this as i >, k.
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Example :
Let 0 < i < 16, and k = 5 = 0101, then ¢ >,, k for ¢ € {0101,0111,1101,1111}.

O

We define the Multidimensional Aperiodic Autocorrelation Functition (MAACF)
for a sequence s by
ap = Y (~1)%tsier (3.2)
i>mk

The multidimensional aperiodic sum-of-squares indicator for a sequence s is
defined in the same way as the 1-Dimensional sum-of-squares indicator is defined

(1.10),
N-1

oa(s) = ) laxl? (3-3)
k=1
Example:

Let s = abcdefgh be a binary sequence of length N = 23 = 8. The multidime-
sional aperiodic autocorrelation of s can then be found by

k a b c d e f g h a

001 a c e g ab+cd+ef+gh
010 a b e [ ac+bd+eg+ fh
011 a e ad+eh

100 a b ¢ d ae+bf+cg+dh
101 a ¢ af+ch

110 a b ag+bh

111 a ah

As can be seen in the table above ay_; cannot be zero. The optimal sum-of-
squares indicator is therefore lower-bound by o,(s) = 1.

O

We can then define the multidimensional Aperiodic Merit Factor (MMF) the
same way as for the 1-Dimensional Merit Factor
N2 227171

MMF(s) = 0.0 2.05) (34)
We know the 1-Dimensional Merit Factor of a random binary sequence is 1.0,
but this is not true for this multidimensional Merit Factor. Looking at the
average MMF for 2!® random sequences of random length 8 to 8192, one can
see that the MMF increases as the length increases (see Fig. 3.1). This would
suggest that we need to normalize the MMF in order to compare it to the
1-Dimensional MF. One such normalization is to use the random distribution
of the multidimensional Merit Factor. We could find a function that fits the
random distribution computed in Fig. 3.1, and use this function to normalize
the MMF such that the MMF of a random sequence will be 1. As a result
of the lack of a good motivation for this normalization we will mostly use the

multidimensional sum-of-squares o,, as a measurement of goodness for sequences
of length N = 2™.
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Figure 3.1: Average MMF for a random binary sequence (sample size 2!%)

3.2 Exhaustive search for gopod MMF

As for the 1-dimensional MF the first approach to finding binary sequences with
good multidimensional Merit Factor would be an exhaustive search for sequences
with optimal MMF. In this search the word ordering was lexicographic, and the
calculations of the MAACF were done with a recursive algorithm (see Alg. 3).
Alg. 3 will return the value of a;, for a binary sequence seq of length N with
the input index A = indexB = index K = 0, and K is the binary representation
of k. The complexity of Alg. 3 will be the same as the number of nodes on
a complete binary tree, O(2") or O(NN), where N = 2" is the sequence length.
Since there are N — 1 ag-values the complexity to find the MMF of a sequence
of length N = 2" is O(N?).

The complexity of this search is the same as for the 1-Dimensional, O(2V - N2),
where N is the sequence length. This complexity limits naive searches to
N < 32, but it is possible to use the same modifications to speed up the search
as those described in Section 2.2.1. The results of this exhaustive search can be
found in Table 3.1. The Algebraic Normal Form of the sequences as given in
column 4 of Table 3.1 is described in Section 3.3. Also note that the MMFs for
lengths 4 and 16, are optimal. This means the aj values are zero for all values
of k, except k = 0and k = N — 1. For N = 32, I had to drop the general
recursive algorithm (Alg. 3) in favor of a specialized one in order to do the
search in reasonable time. This specialized one also only searches through half
the sequences to speed up the search (see section 2.2.1). As of today there is no
way to get a complete computer search for any N > 32.
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INPUT : (k = the k’th MAACF coefficient index)
N = sequence length
seq = Dbinary sequence array of length N
indexA = index for the start of block A
indexB = index for the start of block B
K = binary array representation of k
indexK = index for K

OUTPUT : alk]

the k’th MAACF

calcMultiAAC(indexA, indexB, indexK, N, seq[ ], K[ ])

1 if (indexK is the last bit in K)
2 if (K[indexK] == 1)
3 return COMP (seq[indexA+1],seq[indexB])
5 else
6 return COMP (seq[indexA],seq[indexB]) +
7 COMP (seq[indexA+1],seq[indexB-+1])
8 end if
9 if (K[indexK] == 1) return
10 calcMultiAAC(indexA+N/2, indexB, indexK+1, N/2, seq[], K[])
11 else return
12 calcMultiAAC(indexA, indexB, indexK+1, N/2, seq[], K[]) +
13 calcMultiAAC(indexA+N/2, indexB+N/2, indexK+1, N/2, seq[], K[])

end function calcMultiAAC

function COMP (bit A, bit B)

1 if (A == B) return 1
2 else return -1

end function COMP

Algorithm 3: Recursive algorithm for computation of ay

| Length, N | Merit Factor | o, | CANF (see Section 3.3) |

2 2.00 170,

4 8.00 1|01,

8 6.40 5 |02,12,

16 128.00 1 | 012,013,023,123

32 24.38 21 | 012,013,023, 123,23, 24, 34,

Table 3.1: Exhaustive search for binary sequences with best possible aperiodic
MMF

3.3 Algebraic Normal Form

Expressions for binary sequences can be cumbersome when the length N starts
to get larger. Algebraic Normal Form (ANF) is a way to express sequences
multidimensionally in the form of boolean functions, and is especially suited
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to a multidimensional analysis of the sequence. For binary sequences of length
N = 2", ANF can express the sequence as a boolean function, f(X) : Z — Zs,
where X = {z¢,21,...,2p—1} and z; = {0,1}. There is a transformation that
can transform the binary sequence string to ANF and an inverse transformation
that can transform back to the binary sequence again. Let us first look at all the
possible outputs that can occur from f(X). Since all the coefficients are modulo
2, we find that there are 2" = N different outputs that can be constructed out
of the n different variables z;. The mapping between f(X) and the length 2V
sequence, s, is given by

si=f(X =i) (3.5)

where 7 = ZkN:_Ol ir2%, ix € {0,1}, is the usual 2-adic decomposition of i, and
X =i means x = ig.
Example :

Let n =3 and f(X) = xox1+2122+xo. The binary sequence S = (Sy, S1, ..., S7)
representing f(X) is then given by

) 0] 1|2 3 4 5 6 7
term 1 Lo | L1 | XoX1 | T2 | ToX2 | T1X2 | ToT1X2
S 0110 1 0 0 1 0

O

Let s = (s0,51,-.-,8N—1) be a binary sequence of length N = 2" where s; =
f(X =4i),and let S = (Sp, 51, -, Sn—1) be a binary representation of the ANF
function f(X) such that

N—-1 n—1
FX) =Y (Si- [ =)
=0 k=0

where i = (ig,%1, ..., in—1) is the binary representation of the integer ;. We can
then look at the transformation given by an N x N-matrix A, such that

Axs=S mod 2 (3.6)

A7'%xS =5 mod?2 (3.7
If we know the binary sequence which represents the ANF of f(X), then the
binary sequence string s can be determined. Therefore the function f(X) gen-
erates the length N binary sequence s.

Example :

Let f(X) = zox1 + 2122 + 9. The binary sequence s can then be found by
setting X to all the binary sequences of length 3. This give us s = 01000111, as
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can be seen below
|X|a:2|$1|a:0|f(X)=a:0$1+$1$2+$0
00|00 0

N O U W N
-0 OO
OO = =O
—_O O O -
=== O O =

The binary sequence s can also be found by using the transformation matrix A

100 0 0 O0O0O0
1100 0 00O
10100 00O
11110000
Sx¥xA=[01010010]=% 1000100 0 =[01000111]=s
11001100
101 01010
|11 111 11 1]

3.3.1 Tensor Product

Premultiplying a length n vector by an N x N-matrix will have a time complex-
ity of O(N?). But for certain types of matrices there are faster ways to form
the matrix-vector product. Let us define the Left Tensor Product as

ea eb fa fb
a b e f\_| ec ed fc fd
( c d ) ® ( g h ) “ | ga gb ha hb (3.8)

gc gd hc hd

It can be shown that our transformation matrix A = ap ® a1 ® ... ® a,,_1, where
a; is a 2 x 2-matrix, and therefore there exists an algorithm of complexity
O(N xlogN), to compute the matrix-vector product. Instead of doing matrix
multiplication row by row, we can split our binary sequence into vectors of
length 2, and multiply each of these vectors by a;. The way we split up the
binary sequence is different for each of the n steps of the matrix multiplication.
For our transformation the 2 x 2-matrices will all be

w=(1 1) (39)

fFA=a®a ®...Q an_1, then A~! = aal ® afl R ...Q a;il. Looking at a;
we can see that (3.9) is self inverse

10 1 0 1 0

We can therefore use the same algorithm to transform a binary sequence to
ANF, and back again to the binary sequence.
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a 10 10 10 a
b 11 11— 11 b’
c 10 10 10 c
d 11 11 —11 d
e 10 10 —10 €
f 11 11 11 f’
g 10— 10 10 g
h 11 11 11 h’
Figure 3.2: Algebraic Normal Form transformation
Example :

Let our binary sequence be t = {a,b,c,d,e, f,g,h}, of length N = 23 and let
A =ayp®a;®as. S can then be found by using the algorithm of Fig. 3.2, where
{d',V,...,h'} is the output vector.

|

3.3.2 Condensed Algebraic Normal Form (CANF)

For notational convenience we sometimes omit the x’s from our ANF expansions.
This condensed notation contains only the indeces of each term of the function
f(X), separated by a’,’. To represent the constant term we can use an additional
>, at the end of the string.

Example :

Here are a few examples mapping ANF to CANF :

ToT1 + T1X9 —> 01, 12,

ToT1Ty — 012,

zo+x2+1—0,2,,

ToT1Zo + ToX1 + 122 + ToT2 + 20 + 21 + 22+ 1 — 012,01,12,02,0,1,2,,

|

I will often use this notation when describing boolean functions of n binary
variables.
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3.4 The MMF of Golay-Rudin-Shapiro sequences

Using ANF the complete set of binary Golay-Rudin-Shapiro (GRS) sequences
can be defined by the following construction [1]

n—2 n—1
S(X) = (Z .Z'ﬂ.(j).iljﬂ(j+1)) + (Z bj.'Ej) +d, bj,d € 7y (3.11)
7=0 7=0

where 7 is any permutation of Z,, £p—1,Zp—2, ..., Lo are boolean variables and
s is the length 2™ binary sequence such that

§; = S(Jl‘n,1 = Z'nfl,.fll'n,Q = Z'n,Q, ey g = Zo) (312)

where i,_1,%n_2,...,99 iS the binary representation of the integer i. Let the
complete set of binary GRS sequence of length N = 2™ be C,,. The size of C,
has been shown to be [1]

!
ICal = % LgnH (3.13)

It turns out that the Multidimensional Merit Factors for GRS sequences are very
high. Computationally the sum-of-squares indicator, o,, for GRS sequences of
length N = 2™ appears to be given by,

on(s) = > 2%( k ) (3.14)

i
i+k=n-1,
i<k

from which the MMF can be calculated using (3.4). Also the MMF appear to
be invariant over the whole set of GRS sequences given by (3.11), and for a fixed
length N. Therefore it will be sufficient to look at the special case where

n—2
s(z) = Z.’L'jmj+1 (3.15)
7=0

A list of the Multidimensional Merit Factors for binary GRS sequences of length
4 to 2048 can be found in Table 3.2. As can be seen from the table, the MMF
and the corresponding o,, values are much higher than the expected values for
a random sequence (see Fig. 3.1). From Table 3.2 it is apparent that the
sum-of-squares indicator o, follow a recursion:

Theorem 2 The sum-of-squares o, for any Golay-Rudin-Shapiro sequence of
the form

n—2 n—1
S(.Z') = (Z mﬂ(j)xﬂ(j-‘rl)) + (Z bj.’L'j) + d, b]‘,d € Zs
=0 =0

will follow the recursion o, = 40— + op—1.-
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[Length, N| MMF [1-D MF [ o, |CANF

1 8.0000 | 4.0000 | 1 |oL,
8 6.4000 | 2.6667 | 5 |01,12,
16 14.2222 | 3.2000 | 9 |01,12,23,
32 17.6552 | 2.9091 | 29 |01,12,23,34,
64 31.5077 | 3.0476 | 65 |01,12,23,34,45,
128 45.2597 | 2.9767 | 181 |01,12,23,34,45,56,
256 74.3039 | 3.0118 | 441 | 01,12,23,34,45, 56,67,
512 112.5082 | 2.9942 | 1165 | 01,12,23,34,45, 56,67, 78,
1024 | 178.9990 | 3.0029 | 2929 | 01,12, 23, 34,45, 56,67, 78, 89,
2048 | 276.3410 | 2.9985 | 7589 | 01,12,23,34,45, 56,67, 78,89, 9A,

Table 3.2: Multidimensional Merit Factor for the GRS Construction

Proof of Theorem 2

The multidimensional aperiodic autocorrelation function ay (3.2) can also be
defined using a function ag(x) such that

ap(z) = () g;—0 + $(x)z,—1, Vi where k; =1 (3.16)

where k has a binary expansion as (ko, k1, ..., kn—1) where k; € Z;Vi, and ko
represents the least significant bit of k. When aj(z) has degree 1, then the
coefficients of ay(z) comprise an equal number of zeroes and ones and we say
that the polynomial is balanced. In this case ar = 0. When ar(z) has degree
0, then the coefficients of ax(x) are either all zero, or all one. In this case
ap = 2" wtk)  where wt(k) is the binary weight expansion of k. We can then
define a, based on ay(x) such that
0 if deg(ax(z)) =1
a = { onwt®) if deg(ag(x)) = 0 (3.17)
where wt(k) is the binary weight of the binary expansion of k. It follows from
the way ay(x) is defined that for the GRS sequences deg(ax(z)) < 2 for all
k, and it is straightforward to show that (3.17) is the same as the general
multidimensional aperiodic autocorrelation (3.2). It also follows that if (3.17)
is valid for any single s(z) of the form

n—2

8(.’L‘) = (Z mﬂ(j)$ﬂ(j+1)) ) (318)

=0

then it is also true for any other sequence of the form in (3.11). Adding a linear
term or a constant would not change the degree of ar(x) and therefore not ay,
either. Therefore it will be sufficient to prove that the recursion holds for GRS
sequences of the form (3.18). It will be easy to see that the degree of (3.16)
is the same for all permutations 7 of (3.18), so we only give a proof for one
permutation, (i) = i.

All Golay-Rudin-Shapiro sequences can be represented as line graphs, where
the nodes are the indices in the variable z = (xo,1,...,n—1), linear terms z;

48



are represented as unconnected nodes i, and the constant can be represented by
a ’1” by the side of the figure.

0;0;0:01CN

Figure 3.3: A line graph of a general Golay-Rudin-Shapiro sequence

Example:

The line graph for a GRS sequence of length N = 2* = 16 defined by the
function f(X) = zez1 + T122 + T2w3 + 21 + 1 can be seen in Fig. 3.3.

O

Before I start on the proof let us take a look at an example.

Example :

Let s(x) = xor1 + 7122 be a GRS sequence of length N = 2% = 8. The table
below shows the different ay(x) values and the corresponding ay values.

k| koki1ks | ag(x) deg(ag(z)) ag
1 100 | a1(z) =21 1 0
2 010 | az(z) = o + 2 1 0
3] 110 |as(@) =20 +1 1 0
4| 001 | as(z) =21 1 0
5| 101 |as(z) =1 +31 =0 0 2372 =2
6| 011 |ag(x)=m0+1 1 0
71 111 |ar(z)=1+1= 0 2373 =1

We can also look at this example in terms of line graphs. Fig 3.4 shows how
to find the graph of ag(z). If we color the nodes ¢ where k; = 1 black, we can
based on (3.16) use the following rules to find the graph for ay(x) :

i) if there is a connection between two black nodes, add 1
ii) if a white node j is connected to a black node, add z; (3.19)
iii) if there is a connection between two white nodes, do nothing

These rules also work on binary strings where a black node equals 1 and a white
node equals 0.

|

Now let us prove the general case by induction. Let

2m =21 2n—1 1
Op—2 = Z |an72,k|2 and Opn—1 = Z |an71,k|2
k=1 k=1

be known values. We then split up all the an i (z) functions into four different
sets based on the two highest bits k,_; and k,—2 of k = (ko, k1, -, kn—1) :
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Figure 3.4: A line graph for the MAACF for s(z) = zox1 + 2122

set k an,k(x) deg(an,k (IL')) Qn,k
I ...00 an_l’kn_2:0($) 1 0
IT| ...10 an—2,%(T) + Tp-1 1 0
I1T | ..001 an_z’kn_szo(l') +Tp_2 1 0
..101 An2.k_5=1(T) >0 2n-wtk) = 2q,, o,
IV | .11 An—1kn_n=1+ 1 >0 2n—wtk) = q, 44

Proof for set I

For the first set an k,_,=0,k,_,=0(x) will be the same as a_1,x,_,=0 because of
rule éi7 in (3.19). Also deg(an_1,k,_,—0) must be 1 when 1 < k < 2”2 because
k; = 1is true for at least one value of 1 < j < n—2, and therefore we have case
i at least once.

Proof for set II

For the values where k ends with k,_» = 1 and k,—1 = 0, we can split it in two.
The first n — 2 bits of k is the same as ap_2 (), and the last two bits gives an
addition of z,, 1. It is then straightforward to show that if we add x,_; to all
the 272 possible functions a, »  they will all have a degree of 1.

Proof for set III

When k,_2 = 0 and k,—; = 1 the degree of a,_x(z) depends on k,_3. If
kn—3 = 0 the degree will be 1, for the same reasons as in set II. But if k,,_3 = 1,
the two z,,—» terms cancel each other, and an () = an—2,k, _;=1(z). We know
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that for half the values of k = (ko, k1, ..., kn—3), deg(an—2,k.,_s=1(z)) is 0, and for
those values a, j = 2"~k If we let n’ = n—2 and w = wt(ko, k1, .., kn_3) =
wt(k) — 1, we can write this as

i
an,k = 2n—wt(k) =2n vt = 2an72,k

This is also true when k,_3 = 0 as shown above, so we do not have to fix k,_3.

Proof for set IV

The last case is when k,_; = kp_2 = 1. Here we can just use a,—1 ,_,=1 With
the addition of a constant because of rule i in (3.19). And for half the values of
k = (ko,k1,..., kn—2) we know that deg(an—1,k,_,=1) = 0 since a GRS sequence
of length N = 2"~ does not have perfect MAACF. Let then n’ = n — 1 and
w = wit(ko, k1, ..., kn—2) = wt(k) — 1. Then

!
Ak = 2n7wt(k) —on'-w _ An_1k

In summary we have the following relationship

2an_2,k if kn—l =1 and k‘n_g =0.
an k= Anp—1,k if kn—l =1 and k,‘n_g =1. (320)
0 otherwise

and this gives us the recursion

2" —1 2m—2_ 2n—1l
on= > lanil’= D Ran2il+ Y lan-1xl> =40n-2+0,1 (321)
k=1 k=1 k=1

Q.E.D.

It can be shown that 3.14 follows directly from 3.21, but we omit this proof.

3.4.1 A multidimensional look at the 1-dimensional MF

In section 2.9 we saw that the asymptotic 1-dimensional Merit Factor for a
subset of the Golay-Rudin-Shapiro sequences is three and that the recursion for
the 1-dimensional sum-of-squares is

Op = 20'7;,—1 + 80n—2

If we look at the multidimensional definition of GRS sequences (3.11) we can
see that the proof in [9] only holds for the case

n—2 n—1
s(x) = Z TjTjp1 + z cjz; +d (3.22)
7=0 7=0

However the complete set of GRS sequences is much bigger. The complete set
of GRS sequences is of size

n!
= .gntl
2
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while the subset proven in [9] has 2”1 sequences. As n — oo the complete set
will be much larger.

For the complete set there seems to be a wider range on the 1-dimensional
sum-of-squares values. Table 3.4.1 shows all the different sum-of-squares values
for each 2 < n < 8. The middle row of o,-values is the subclass following the
recursion of [9]. The general case appears to follow another similar recursion

On =20p_1+80p_ot2" (3.23)
where 7 € {—o0,n,2n,...}.
[n] On | # of classes |
2 2 1
3 12 1
4 24 40 56 3
5 112,144 176 208,240 5
6 416,480, 544,608 672  736,800,864,928 9
7 [ 1856, 1984, 2112, 2240, 2752 2880, 3008, 3136, 12
2368, 2496, 2624 3264, 3392, 3520
8 7206, 8064, 8320, 10880 11136, 11392, 11648, 26
8576, 8832, 9088, 11904, 12160, 12416, 12672,
9344, 9600, 9856, 12928, 13184, 13440,
10112, 10368, 10624 13696, 14208, 14464

Table 3.3: 1-dimensional o, for the Golay-Rudin-Shapiro sequences

3.5 A cubic Construction with good MMF

If one takes a look at the result of the exhaustive search in Table 3.1 we can see
that the best possible binary sequences for length 16 and 32 are cubic. Using
four cubic terms as a seed I was able to find a new construction with very high
Multidimensional Merit Factor. The new construction can be defined as

n—2 n—1

5(z) = e(X)+Tn2)Ta(n-1)F D Ta() Tai4n) + (O biwi)+d, bi,d € Z> (3.24)
j=2 i=0
where ¢(X) = Z7(0)Tr(1) Tr(2) TTr(0)Tn(1) T (3) T T (0)Tr(2) Trr(3) T T(1) T (2) T (3)
where 7 is any permutation of Z, and where z,_1,%Zn—1,...,Zo are boolean
variables and s is the length NV = 2™ binary sequence such that
Si = S(Jin,1 = Z'nflaxnf2 = in727 -~ Lo = Z0) (325)

where 4, _1,%,_2, ..., i is the binary representation of the integer 1.

As a result of the cubic seed, the construction only works for lengths from
N > 2* = 16. The construction turned out to have an even higher MMF than
the GRS sequences. A list of the MMF for sequences up to length N = 4096
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[N=2"] MMF | 5, | CANF

16 | 128.00] 2 |012,013,023,123,23,23,
32 | 24.38 | 21 | 012,013,023, 123,23, 34,24,
64 | 81.92 | 25 |012,013,023,123,23,34,45,25,
128 | 75.16 | 109 | 012,013,023,123,23, 34,45, 56, 26,
256 | 156.78 | 209 | 012,013,023, 123,23, 34, 45, 56, 67, 27,
512 | 203.21| 645 | 012,013,023, 123,23, 34, 45, 56, 67, 78, 28,
1024 | 354.01 | 1481 | 012,013,023, 123,23, 34, 45, 56, 67, 78, 89, 29,
2048 | 516.41 | 4061 | 012,013,023, 123,23,34, 45, 56,67, 78,89, 94, 24,
4096 | 840.12 | 9985 | 012,013,023,123,23,34, 45, 56,67, 78,89,9A, AB, 2B,

Table 3.4: MMF for a cubic Construction

can be found in Table 3.4.

Theorem 3 The number of sequences of length N = 2™ in the class of sequences
Cn that satisfy (3.24) will be

n!
|Cn| = Z . gntl

Proof of Theorem 3

Let there be n variables, zq, 21, .., Zn_1. There are then () ways of choosing

the four cubic variables out of n variables. For the GRS part that are connected
to the cubic seed, there are (;) = 6 ways of choosing two variables out of the
four variables that form the cubic. These two variables are then used for the
start and end links of the quadratic part. For the rest of the GRS part there are
another (n —4) variables that are used to form the quadratic section. There are
(n — 4)! ways of ordering these variables. There are then 2"*! possible linear
terms and constant offsets. We then have
el = () () a2
_n nfl)(rg?)(n%) . 4Z! (n —4)! - 2nHt
— nlon+l
4

Q.E.D.

Looking at the sum-of-squares o, for the aperiodic multidimensional autocor-
relation we can see that this new cubic construction follows the same recursion
as the Golay-Rudin-Shapiro sequences (see Section 3.4).

On =40, 2+ 0,1

But the relationship with the Golay-Rudin-Shapiro sequences is even closer, as
the following theorem will show.

Theorem 4 Let o] be the sum-of-squares for any Golay-Rudin-Shapiro se-
quence of length N = 2™. Then the sum-of-squares o, for any binary sequences
that satisfy (3.24) follow the recursion

/ '
Op =0, o+ ]-60'n_4.
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Before we show the proof of Theorem 4, the computation of n < 6 is done by
hand for the construction of (3.24). Table 3.5 lists the non-zero a;, values and
the o,-values for 4 < n < 6.

n=4 n=>5 n==6
k3k2k1k0 |ak| k4k3k2k‘1k‘0 |ak| k5k4k3k2k1k0 |ak|
1111 1 11111 1 111111 1
01111 2 101111 2
10011 4 011111 2
110011 4
0'4=1 0'5:21 0'6225

Table 3.5: Non-zero |ag| values for the cubic construction

Proof of Theorem 4
Let us rewrite s(z) (3.24) as
s(x) = ToT1T2 + ToT1T3 + TeT2T3 + T1T2T3 + Tow3 + GRS(') (3.26)

where z' = (z3,24, ..., Tn—1,T2) and GRS(2') = x324 + 2425 + ... + T,_122 1S @
general Golay-Rudin-Shapiro sequence (see equation 3.18) of length N = 2"~2,
Since the MMF of (3.24) is unchanged for any permutation, the proof of the case
w(k) =k, k € Z,, also holds for all other 7. Let the aperiodic multidimensional
autocorrelation ay , for the binary sequence s be represented as a function

k(%) = $(2)g;=0 + () z;=1, Vi wherek; =1 (3.27)

where k has a binary representation ko, k1, ..., kn—1, ki € Z>. Then let a;,_, ,(z')
be the multidimensional aperiodic autocorrelation for GRS(z') (see equation
3.16)

We can then split the calculation of a,j into 16 different sets depending on
the first 4 bits of k, and look at each set. Table 3.6 shows a,, () for these 16
different sets. For this cubic construction we have this relationship between the
degree of a, x(x) and the value of an i

on—wit(k) if deg(an,k(z)) =0
anr =14 0 if deg(an,r)(z) =1 (3.28)
0 if deg(an,k)(2) = 2

It is straightforward to compute the value of a,,  when the degree of a, ;(x) < 2.
Then let ¢;(z), 0 < i < 3 be one of the 4 possible quadratics from table 3.6,

Go(z) = z1x2 + T173 + 223
q1(x) = xom2 + ToT3 + T273
@(z) = xom1 + ToT3 + T123
g3(x) = xox1 + Tox2 + T182

and let I1(z) = E?:o (c;z;) and la(z) = 2?75_01,1,2,3 (c;z;). From the definition of
the aperiodic multidimensional autocorrelation we know that if a, () is bal-

anced then ay = 0. By a balanced boolean function we mean that the binary
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set k0k1k2k3 an,k(x) deg(a ,k(x))

n Qn,k
0 | 0000 | d)\ ysproo(@) 1 0
1 1000 T1To + T1X3 + Tox3 + a’n74’k2:k3:0 (z") 2 0
2 0100 | wom2 + ToZ3 + T173 + py_g gy —py—o (T’ 2 0
3 1100 | 22 + 23+ ap,_4 py—py—0(T) 0 day,_y 4,
4 0010 ToT1 + ToT3 + T1T3 + T3 + Ay o g gy—0(T') 2 0
5 1010 | 21+ a5 1 k=0 (T') 1 0
6 0110 | o +ap,_5 gy—1 gz=0(T") 1 0
7 1110 L+ay, o p,—1k=0(7') 1 0
8 0001 Tox1 + Toxs + T1T2 + T2 + a;_27k2:0’k3:1 (_(1;') 2 0
9 1001 |1+ a5 o 0 k=1 (7") 1 0
10 0101 | o +ap,_5 gy—0 ks=1(T") 1 0
11| 1101|144 5, gp(@) 1 0
12 0011 To+x1+1+ a’n_2’k2:k3:1(w’) 1 0
13 | 1011 |21+ dly_y gy g (@ 1 0
14 0111 | mo +ap_s gy—py—1(2') 1 0
15 | 1111 | 140, pmpy= (7)) 0 U

Table 3.6: a,, k(x) when we are fixing ko, k1, k2, ks

representation of a, r(z) has the same number of Os and 1s, or in other words
one half of the autocorrelations is equal and the other half is not.

When wt(kok1k2ks) = 1 we can write

an k() = qi(z) + 1 (x) + I2(7) (3.29)

Since it is straightforward to show that an () is balanced when deg(l2(z)) =1
(because g;(x) is balanced Vi, and the variables in l2(x) are disjoint from the
variables in ¢;(z)), we let l2(z) = 0 and compute all possible functions of the
form (3.29). This can be done easily on a computer since we only have 4 variables
x; for the function. It turns out that an k() is always balanced except when
ank(z) = go(z) + z2 and a, k(z) = ¢1(z) + z2. Looking at Table 3.6 (set 1 and
2) we see that this is only possible when a;,_, ;,_;._o(2) = 22 but, for n > 6,
Q4 gy=ks=0(T) can never be z, if we follow the rules from (3.19) for GRS
sequences. This gives us a strong relationship between the degree of a, ()
and the value of an,

deg(ank(z)) >0 apr =0
We now need to take a look at the two sets in Table 3.6 where the degree is 0.

A closer look at set 3

It looks like the deg(an,k(z)) > 0, but since we know a;,_, ;. _,._o(2) is of degree
Lit is possible that a;,_, j, . () = z2+z3, thus making the deg(an,k(z)) = 0.
This is only possible if k4 = k,—1 = 1, which gives us this relationship

Qn,ko=k1=1,k2=k3=0 (.73) = a:z74,k4:kn_1:1 ("E)
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Then let n' = n — 4, w = wt(ka, ks, ..., kn—1) = wt(k) —2 and a;,_, , = o' —w,
Then

An,ko=k1=1,ka=k3=0 = gn—wi(k) — 92 Qn'—w =4 x GITL,4,]C (330)

A closer look at set 15

The other set where deg(an,k(z)) = 0 is when we fix kg = k1 = ko = k3 = 1.
This is true whenever deg(a,_2 k(z)) = 0. Let n' = n—2, w = wt(ks, ks, ..., kn_1 =
wt(k) —2 and a;,_, ; = 27 =% We then have

an,k0:k1:k2=k3=1 = 2n—wt(k) — 2n'7w = a;'b—Q,k (331)

To summarise we have the following relationship

4%74,1@ if ko =4k1 =1and ks = k3 =0.
Qn. k= a'rhz’k if ko = kl = k2 — k3 =1. (332)
0 otherwise

and this gives us the recursion

2" —1 PR | 22
On = Z |an,k]? = Z |dag, g *+ Z lay_s* = 0y +160,_, (3.33)
k=1 k=1 k=1

This proof also holds if we add a linear term and/or a constant to (3.26), because
the degree of a,, 1, is unchanged. It follows from (3.27) that the addition to the
an,k(x) will be 0 or 1 if we add a linear term and/or a constant to s(z).

Q.E.D.

Corollary 1 Let s be a binary sequence described by (3.24). Then the sum-of-
squares o, for s follows the recursion

On =0p_1+40, 2

Proof

From Theorem 4 we know that

Op = Uln_z + 160'n_4. (3.34)

On—1=0,,_3+ 160, 5 (3.35)

On-2=0,_4+160,_; (3.36)
and from Theorem 2

Op—o =0p_3+40;,_4 (3.37)

Op—g =0n_s +40,_¢ (3.38)
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Then we can then use (3.37) and (3.38) and substitute into (3.34)

on = 0,_o+160,,_4

0y_s+200,,_,

Op_3+40, 4+ 160, 5+ 640, ¢

= (0y,_3+160,,_5) +4(opn_4 + 160,,_¢)

and then substitute using (3.35) and (3.36) to get

On =0p_1+40,_2
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Chapter 4

Conclusion

In this thesis we have looked at new techniques to find binary sequences with
low aperiodic autocorrelation. When it comes to exhaustive search, the algo-
rithms proposed here, for both lexicographic and m-sequence ordering, are not
fast enough to compete with the algorithm used by Mertens [18] [19]. But we
have illustrated how hard it is to find the highest Merit Factor through an ex-
haustive search. As the problem appears to be NP-complete the only road to
finding long sequences with high Merit Factor is the use of constructed classes
of sequences.

Two new methods of construction are presented in this thesis. The first one
is to interleave two Legendre sequences to construct a skewsymmetric sequence.
This new class of sequences appears to have an asymptotic Merit Factor of
three. The second class of sequences can be found by using a semi-construction.
Combining the properties of Legendre sequences with a small limited search we
were able to find new extended sequences with high Merit Factor. Using an
algorithm with complexity O(N?) we can find new sequences with MF > 6.3
for large N, by extending a length N Legendre sequence.

In a new field of research we look at the multidimensional aperiodic autocor-
relations (MAACF) for sequences of length N = 2". Here we show that the
multidimensional autocorrelations for Golay-Rudin-Shapiro sequences have a
low sum-of-squares for the aperiodic case. We also define a new cubic class of
sequences and show that this has an even better sum-of-squares. The multidi-
mensional sum-of-squares for both GRS and for the cubic construction can be
computed recursively, without the need for explicit autocorrelation computa-
tion.

This thesis also proposes some ideas for further research. One of them is to
use de Brujin sequences to order an exhaustive search. There is a chance that
one of these sequence orderings will lead to the exposure of high MF sequences
without search. Another idea for further research is to take a closer look at the
Extended Legendre semi-construction. Some ideas might be to use the extended
sequence in a new extended search, or to look for other constructions that will
be improved using the extended directed search. It would also be interesting to
take a closer look at the extension we get from the directed search. Is it possible
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to find the extension without the directed search ?
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